Lookin O, Butova X, Protsenko Y. The role of pacing rate in the modulation of mechano-induced immediate and delayed changes in the force and Ca-transient of cardiac muscle.
PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020;
159:34-45. [PMID:
32450183 DOI:
10.1016/j.pbiomolbio.2020.05.005]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/11/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022]
Abstract
Myocardial function is tuned by dynamic changes in length and load via mechano-calcium feedback. This regulation may be significantly affected by heart rhythm. We evaluated the mechano-induced modulation of contractility and Ca-transient (CaT) in the rat myocardium subjected to twitch-by-twitch shortening-re-lengthening (↓-↑) trains of different lengths (N = 1 … 720 cycles) at low (1 Hz) and near-physiological (3.5 Hz) pacing rates. Force/CaT characteristics were evaluated in the first post-train isometric twitch (immediate effect) and during slow changes (delayed maximal elevation/decrease) and compared with those of the pre-train twitch. The immediate inotropic effect was positive for N = 30 … 720 and negative for N = 1 … 20, while the delayed effect was always positive. The immediate and delayed inotropic effects were significantly higher at 3.5-Hz vs 1-Hz (P < 0.05). The prominent inotropism was accompanied by much smaller changes in the CaT diastolic level/amplitude. The shortening-re-lengthening train induced oscillations of the slow change in force at 3.5-Hz (always) and at 1-Hz (∼50% of muscles), which were dependent of the train length and independent of the pacing rate. We suggest that twitch-by-twitch shortening-re-lengthening of cardiac muscle decreases Ca2+ buffering by troponin C and elevates Ca2+ loading of the sarcoplasmic reticulum (SR); the latter cumulatively depends on the train length. A high pacing rate intensifies the cumulative transient shift in the SR Ca2+ loading, augmenting the post-train inotropic response and prolonging its recovery to the pre-train level. The pacing-dependent mechano-induced inotropic effects remain to be elucidated in the myocardium with impaired Ca handling.
Collapse