1
|
Barbulescu GI, Bojin FM, Ordodi VL, Goje ID, Barbulescu AS, Paunescu V. Decellularized Extracellular Matrix Scaffolds for Cardiovascular Tissue Engineering: Current Techniques and Challenges. Int J Mol Sci 2022; 23:13040. [PMID: 36361824 PMCID: PMC9658138 DOI: 10.3390/ijms232113040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 08/13/2023] Open
Abstract
Cardiovascular diseases are the leading cause of global mortality. Over the past two decades, researchers have tried to provide novel solutions for end-stage heart failure to address cardiac transplantation hurdles such as donor organ shortage, chronic rejection, and life-long immunosuppression. Cardiac decellularized extracellular matrix (dECM) has been widely explored as a promising approach in tissue-regenerative medicine because of its remarkable similarity to the original tissue. Optimized decellularization protocols combining physical, chemical, and enzymatic agents have been developed to obtain the perfect balance between cell removal, ECM composition, and function maintenance. However, proper assessment of decellularized tissue composition is still needed before clinical translation. Recellularizing the acellular scaffold with organ-specific cells and evaluating the extent of cardiomyocyte repopulation is also challenging. This review aims to discuss the existing literature on decellularized cardiac scaffolds, especially on the advantages and methods of preparation, pointing out areas for improvement. Finally, an overview of the state of research regarding the application of cardiac dECM and future challenges in bioengineering a human heart suitable for transplantation is provided.
Collapse
Affiliation(s)
- Greta Ionela Barbulescu
- Immuno-Physiology and Biotechnologies Center (CIFBIOTEH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Department of Clinical Practical Skills, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Florina Maria Bojin
- Immuno-Physiology and Biotechnologies Center (CIFBIOTEH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, No 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Valentin Laurentiu Ordodi
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, No 156 Liviu Rebreanu, 300723 Timisoara, Romania
- Faculty of Industrial Chemistry and Environmental Engineering, “Politehnica” University Timisoara, No 2 Victoriei Square, 300006 Timisoara, Romania
| | - Iacob Daniel Goje
- Department of Medical Semiology I, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Advanced Cardiology and Hemostaseology Research Center, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Andreea Severina Barbulescu
- Center for Advanced Research in Gastroenterology and Hepatology, Department of Internal Medicine II, Division of Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Virgil Paunescu
- Immuno-Physiology and Biotechnologies Center (CIFBIOTEH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, No 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, No 156 Liviu Rebreanu, 300723 Timisoara, Romania
| |
Collapse
|
2
|
Pajic-Lijakovic I, Milivojevic M, Clark AG. Collective Cell Migration on Collagen-I Networks: The Impact of Matrix Viscoelasticity. Front Cell Dev Biol 2022; 10:901026. [PMID: 35859899 PMCID: PMC9289519 DOI: 10.3389/fcell.2022.901026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/10/2022] [Indexed: 01/01/2023] Open
Abstract
Collective cell migration on extracellular matrix (ECM) networks is a key biological process involved in development, tissue homeostasis and diseases such as metastatic cancer. During invasion of epithelial cancers, cell clusters migrate through the surrounding stroma, which is comprised primarily of networks of collagen-I fibers. There is growing evidence that the rheological and topological properties of collagen networks can impact cell behavior and cell migration dynamics. During migration, cells exert mechanical forces on their substrate, resulting in an active remodeling of ECM networks that depends not only on the forces produced, but also on the molecular mechanisms that dictate network rheology. One aspect of collagen network rheology whose role is emerging as a crucial parameter in dictating cell behavior is network viscoelasticity. Dynamic reorganization of ECM networks can induce local changes in network organization and mechanics, which can further feed back on cell migration dynamics and cell-cell rearrangement. A number of studies, including many recent publications, have investigated the mechanisms underlying structural changes to collagen networks in response to mechanical force as well as the role of collagen rheology and topology in regulating cell behavior. In this mini-review, we explore the cause-consequence relationship between collagen network viscoelasticity and cell rearrangements at various spatiotemporal scales. We focus on structural alterations of collagen-I networks during collective cell migration and discuss the main rheological parameters, and in particular the role of viscoelasticity, which can contribute to local matrix stiffening during cell movement and can elicit changes in cell dynamics.
Collapse
Affiliation(s)
| | - Milan Milivojevic
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Andrew G. Clark
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
- University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
- University of Tübingen, Center for Personalized Medicine, Tübingen, Germany
| |
Collapse
|
3
|
Mailand E, Özelçi E, Kim J, Rüegg M, Chaliotis O, Märki J, Bouklas N, Sakar MS. Tissue Engineering with Mechanically Induced Solid-Fluid Transitions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106149. [PMID: 34648197 PMCID: PMC11468955 DOI: 10.1002/adma.202106149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Epithelia are contiguous sheets of cells that stabilize the shape of internal organs and support their structure by covering their surfaces. They acquire diverse morphological forms appropriate for their specific functions during embryonic development, such as the kidney tubules and the complex branching structures found in the lung. The maintenance of epithelial morphogenesis and homeostasis is controlled by their remarkable mechanics-epithelia can become elastic, plastic, and viscous by actively remodeling cell-cell junctions and modulating the distribution of local stresses. Microfabrication, finite element modelling, light-sheet microscopy, and robotic micromanipulation are used to show that collagen gels covered with an epithelial skin serve as shape-programmable soft matter. The process involves solid to fluid transitions induced by mechanical perturbations, generates spatially distributed surface stresses at tissue interfaces, and is amenable to both additive and subtractive manufacturing techniques. The robustness and versatility of this strategy for engineering designer tissues is demonstrated by directing the morphogenesis of a variety of molded, carved, and assembled forms from the base material. The results provide insight into the active mechanical properties of the epithelia and establish methods for engineering tissues with sustainable architectures.
Collapse
Affiliation(s)
- Erik Mailand
- Institute of Mechanical EngineeringEcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Ece Özelçi
- Institute of Mechanical EngineeringEcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Jaemin Kim
- Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaNY14850USA
| | - Matthias Rüegg
- Institute of Mechanical EngineeringEcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Odysseas Chaliotis
- Institute of Mechanical EngineeringEcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Jon Märki
- Institute of Mechanical EngineeringEcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaNY14850USA
| | - Mahmut Selman Sakar
- Institute of Mechanical EngineeringEcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| |
Collapse
|
4
|
Ivanov AA, Kuznetsova AV, Popova OP, Danilova TI, Yanushevich OO. Modern Approaches to Acellular Therapy in Bone and Dental Regeneration. Int J Mol Sci 2021; 22:13454. [PMID: 34948251 PMCID: PMC8708083 DOI: 10.3390/ijms222413454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
An approach called cell-free therapy has rapidly developed in regenerative medicine over the past decade. Understanding the molecular mechanisms and signaling pathways involved in the internal potential of tissue repair inspires the development of new strategies aimed at controlling and enhancing these processes during regeneration. The use of stem cell mobilization, or homing for regeneration based on endogenous healing mechanisms, prompted a new concept in regenerative medicine: endogenous regenerative medicine. The application of cell-free therapeutic agents leading to the recruitment/homing of endogenous stem cells has advantages in overcoming the limitations and risks associated with cell therapy. In this review, we discuss the potential of cell-free products such as the decellularized extracellular matrix, growth factors, extracellular vesicles and miRNAs in endogenous bone and dental regeneration.
Collapse
Affiliation(s)
- Alexey A. Ivanov
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.)
| | - Alla V. Kuznetsova
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Str., 119334 Moscow, Russia
| | - Olga P. Popova
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.)
| | - Tamara I. Danilova
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.)
| | - Oleg O. Yanushevich
- Department of Paradontology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia;
| |
Collapse
|
5
|
Speer J, Barcellona M, Jing L, Liu B, Lu M, Kelly M, Buchowski J, Zebala L, Luhmann S, Gupta M, Setton L. Integrin-mediated interactions with a laminin-presenting substrate modulate biosynthesis and phenotypic expression for cells of the human nucleus pulposus. Eur Cell Mater 2021; 41:793-810. [PMID: 34160056 PMCID: PMC8378851 DOI: 10.22203/ecm.v041a50] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
With aging and pathology, cells of the nucleus pulposus (NP) de-differentiate towards a fibroblast-like phenotype, a change that contributes to degeneration of the intervertebral disc (IVD). Laminin isoforms are a component of the NP extracellular matrix during development but largely disappear in the adult NP tissue. Exposing human adult NP cells to hydrogels made from PEGylated-laminin-111 (PEGLM) has been shown to regulate NP cell behaviors and promote cells to assume a biosynthetically active state with gene/protein expression and morphology consistent with those observed in juvenile NP cells. However, the mechanism regulating this effect has remained unknown. In the present study, the integrin subunits that promote adult degenerative NP cell interactions with laminin-111 are identified by performing integrin blocking studies along with assays of intracellular signaling and cell phenotype. The findings indicate that integrin α3 is a primary regulator of cell attachment to laminin and is associated with phosphorylation of signaling molecules downstream of integrin engagement (ERK 1/2 and GSK3β). Sustained effects of blocking integrin α3 were also demonstrated including decreased expression of phenotypic markers, reduced biosynthesis, and altered cytoskeletal organization. Furthermore, blocking both integrin α3 and additional integrin subunits elicited changes in cell clustering, but did not alter the phenotype of single cells. These findings reveal that integrin- mediated interactions through integrin α3 are critical in the process by which NP cells sense and alter phenotype in response to culture upon laminin and further suggest that targeting integrin α3 has potential for reversing or slowing degenerative changes to the NP cell.
Collapse
Affiliation(s)
- J. Speer
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - M. Barcellona
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - L. Jing
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - B. Liu
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - M. Lu
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - M. Kelly
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - J. Buchowski
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - L. Zebala
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - S. Luhmann
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - M. Gupta
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - L. Setton
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA,Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA,Address for correspondence: Dr. Lori A. Setton, Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1097, St. Louis, MO 63130, USA. Telephone number: +1 3149356164,
| |
Collapse
|
6
|
Cohen JD, Sparacio AP, Belfi AC, Forman-Rubinsky R, Hall DH, Maul-Newby H, Frand AR, Sundaram MV. A multi-layered and dynamic apical extracellular matrix shapes the vulva lumen in Caenorhabditis elegans. eLife 2020; 9:e57874. [PMID: 32975517 PMCID: PMC7544507 DOI: 10.7554/elife.57874] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Biological tubes must develop and maintain their proper diameter to transport materials efficiently. These tubes are molded and protected in part by apical extracellular matrices (aECMs) that line their lumens. Despite their importance, aECMs are difficult to image in vivo and therefore poorly understood. The Caenorhabditis elegans vulva has been a paradigm for understanding many aspects of organogenesis. Here we describe the vulva luminal matrix, which contains chondroitin proteoglycans, Zona Pellucida (ZP) domain proteins, and other glycoproteins and lipid transporters related to those in mammals. Confocal and transmission electron microscopy revealed, with unprecedented detail, a complex and dynamic aECM. Different matrix factors assemble on the apical surfaces of each vulva cell type, with clear distinctions seen between Ras-dependent (1°) and Notch-dependent (2°) cell types. Genetic perturbations suggest that chondroitin and other aECM factors together generate a structured scaffold that both expands and constricts lumen shape.
Collapse
Affiliation(s)
- Jennifer D Cohen
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Alessandro P Sparacio
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Alexandra C Belfi
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Rachel Forman-Rubinsky
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Hannah Maul-Newby
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Alison R Frand
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| |
Collapse
|
7
|
Smith SJ, Davidson LA, Rebeiz M. Evolutionary expansion of apical extracellular matrix is required for the elongation of cells in a novel structure. eLife 2020; 9:55965. [PMID: 32338602 PMCID: PMC7266619 DOI: 10.7554/elife.55965] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
One of the fundamental gaps in our knowledge of how novel anatomical structures evolve is understanding the origins of the morphogenetic processes that form these features. Here, we traced the cellular development of a recently evolved morphological novelty, the posterior lobe of D. melanogaster. We found that this genital outgrowth forms through extreme increases in epithelial cell height. By examining the apical extracellular matrix (aECM), we also uncovered a vast matrix associated with the developing genitalia of lobed and non-lobed species. Expression of the aECM protein Dumpy is spatially expanded in lobe-forming species, connecting the posterior lobe to the ancestrally derived aECM network. Further analysis demonstrated that Dumpy attachments are necessary for cell height increases during posterior lobe development. We propose that the aECM presents a rich reservoir for generating morphological novelty and highlights a yet unseen role for aECM in regulating extreme cell height.
Collapse
Affiliation(s)
- Sarah Jacquelyn Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
8
|
Matchett EF, Wang S, Crawford BD. Paralogues of Mmp11 and Timp4 Interact during the Development of the Myotendinous Junction in the Zebrafish Embryo. J Dev Biol 2019; 7:jdb7040022. [PMID: 31816958 PMCID: PMC6955687 DOI: 10.3390/jdb7040022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) of the myotendinous junction (MTJ) undergoes dramatic physical and biochemical remodeling during the first 48 h of development in zebrafish, transforming from a rectangular fibronectin-dominated somite boundary to a chevron-shaped laminin-dominated MTJ. Matrix metalloproteinase 11 (Mmp11, a.k.a. Stromelysin-3) is both necessary and sufficient for the removal of fibronectin at the MTJ, but whether this protease acts directly on fibronectin and how its activity is regulated remain unknown. Using immunofluorescence, we show that both paralogues of Mmp11 accumulate at the MTJ during this time period, but with Mmp11a present early and later replaced by Mmp11b. Moreover, Mmp11a also accumulates intracellularly, associated with the Z-discs of sarcomeres within skeletal muscle cells. Using the epitope-mediated MMP activation (EMMA) assay, we show that despite having a weaker paired basic amino acid motif in its propeptide than Mmp11b, Mmp11a is activated by furin, but may also be activated by other mechanisms intracellularly. One or both paralogues of tissue inhibitors of metalloproteinase-4 (Timp4) are also present at the MTJ throughout this process, and yeast two-hybrid assays reveal distinct and specific interactions between various domains of these proteins. We propose a model in which Mmp11a activity is modulated (but not inhibited) by Timp4 during early MTJ remodeling, followed by a phase in which Mmp11b activity is both inhibited and spatially constrained by Timp4 in order to maintain the structural integrity of the mature MTJ.
Collapse
|
9
|
Yao Q, Zheng YW, Lan QH, Kou L, Xu HL, Zhao YZ. Recent development and biomedical applications of decellularized extracellular matrix biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109942. [PMID: 31499951 DOI: 10.1016/j.msec.2019.109942] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/13/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022]
Abstract
Decellularized matrix (dECM) is isolated extracellular matrix of tissues from its original inhabiting cells, which has emerged as a promising natural biomaterial for tissue engineering, aiming at support, replacement or regeneration of damaged tissues. The dECM can be easily obtained from tissues/organs of various species by adequate decellularization methods, and mimics the structure and composition of the native extracellular matrix, providing a favorable cellular environment. In this review, we summarize the recent developments in the preparation of dECM materials, including decellularization, crosslinking and sterilization. Also, we cover the advances in the utilization of dECM biomaterials in regeneration medicine in pre-clinic and clinical trials. Moreover, we highlight those emerging medical benefits of dECM beyond tissue engineering, such as cell transplantation, in vitro/in vivo model and therapeutic cues delivery. With the advances in the preparation and broader application, the dECM biomaterials could become the gold scaffold and pharmaceutical excipients in medical sciences.
Collapse
Affiliation(s)
- Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Ya-Wen Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qing-Hua Lan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|