1
|
Mostafa HIA. Uniaxial Symmetry Breaking in Bacteriorhodopsin at the Thermal Phase Transition of Lipids of Purple Membranes. J Phys Chem B 2024; 128:5397-5406. [PMID: 38776161 DOI: 10.1021/acs.jpcb.4c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The article correlates between symmetry breaking and phase transition. An analogy, extending from physics to biology, is known to exist between these two topics. Bacteriorhodopsin (bR) as a paradigm of membrane proteins has been used as a case study in the present work. The bR, as the sole protein embedded in what is called a purple membrane (PM), has attracted widespread interest in bionanotechnological applications. The lipids of PM have a crucial role in maintaining the crystal lattice of bR inside PM. For this reason, the present work has been concerned with elucidating the thermal phase transition properties of the PM lipids in orthogonal directions. The results indicated that the axial symmetry of bR exhibits considerable changes occurring at the thermal phase transition of lipids. These changes are brought by an anomaly observed in the time course of orthogonal electric responses during the application of thermal fields on PM. The observed anomaly may bear on symmetry breaking in bR occurring at the phase transition of lipids based on such analogy found between symmetry breaking and phase transition. Lipid-protein interactions may underlie the broken axial symmetry of bR at such lipid thermal transition of PM. Accordingly, thermally perturbed axial symmetry of bR may be of biological relevance relying on the essence of the crystal lattice of bR. Most importantly, a question has to be raised in the present study: Can bR, as a helical protein with broken axial symmetry, affect the symmetry breaking of helical light? This may be of potential technical applications based on a recent discovery that bR breaks the symmetry of helical light.
Collapse
Affiliation(s)
- Hamdy I A Mostafa
- Department of Biophysics, Faculty of Science, Cairo University, 12613 Giza, Egypt
| |
Collapse
|
2
|
Gallo V, Bridges AD, Woodgate JL, Chittka L. Sub-cell scale features govern the placement of new cells by honeybees during comb construction. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:793-805. [PMID: 37160812 PMCID: PMC10465656 DOI: 10.1007/s00359-023-01632-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Honeybee comb architecture and the manner of its construction have long been the subject of scientific curiosity. Comb is characterised by an even hexagonal layout and the sharing of cell bases and side walls, which provides maximised storage volume while requiring minimal wax. The efficiency of this structure relies on a regular layout and the correct positioning of cells relative to each other, with each new cell placed at the junction of two previously constructed cells. This task is complicated by the incomplete nature of cells at the edge of comb, where new cells are to be built. We presented bees with wax stimuli comprising shallow depressions and protuberances in simulation of features found within partially formed comb, and demonstrated that construction work by honeybee builders was influenced by these stimuli. The building of new cells was aligned to concave stimuli that simulated the clefts that naturally appear between two partially formed cells, revealing how new cells may be aligned to ensure proper tessellation within comb. We also found that bees built cell walls in response to edges formed by our stimuli, suggesting that cell and wall construction was specifically directed towards the locations necessary for continuation of hexagonal comb.
Collapse
Affiliation(s)
- Vincent Gallo
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Alice D Bridges
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Joseph L Woodgate
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Lars Chittka
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
3
|
Cornish-Bowden A, Cárdenas ML. The essence of life revisited: how theories can shed light on it. Theory Biosci 2022; 141:105-123. [PMID: 33956294 PMCID: PMC8101340 DOI: 10.1007/s12064-021-00342-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Disagreement over whether life is inevitable when the conditions can support life remains unresolved, but calculations show that self-organization can arise naturally from purely random effects. Closure to efficient causation, or the need for all specific catalysts used by an organism to be produced internally, implies that a true model of an organism cannot exist, though this does not exclude the possibility that some characteristics can be simulated. Such simulations indicate that there is a limit to how small a self-organizing system can be: much smaller than a bacterial cell, but around the size of a typical virus particle. All current theories of life incorporate, at least implicitly, the idea of catalysis, but they largely ignore the need for metabolic regulation.
Collapse
|
4
|
Gus’kov VY, Gallyamova GA, Sairanova NI, Sharafutdinova YF, Khalilov LM, Mukhametzyanov TA, Zinoviev IM, Gainullina YY. Possibility of chiral recognition by adsorption on enantiomorphous crystals: the impact of crystal surface polarity. Phys Chem Chem Phys 2022; 24:26785-26794. [DOI: 10.1039/d2cp01212j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The enantioselectivity provided by hippuric acid and phloroglucinol crystals, obtained under Viedma ripening, was studied by the adsorption of menthol enantiomers from solutions and the adsorption of limonene and α-pinene enantiomers from vapors.
Collapse
Affiliation(s)
| | | | | | | | - Leonard M. Khalilov
- Institute of Petrochemistry and Catalysis RAS, 141 Oktyabrya av., Ufa, Russia
| | - Timur A. Mukhametzyanov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | | | | |
Collapse
|
5
|
Cruz-Rosas HI, Miramontes P. Spatial Information in the Emergence of Life. Front Genet 2021; 12:672780. [PMID: 34567060 PMCID: PMC8458620 DOI: 10.3389/fgene.2021.672780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Information in living systems is part of a complex relationship between the internal organization and functionality of life. In a cell, both genetic-coding sequences and molecular-shape recognition are sources of biological information. For folded polymers, its spatial arrangement contains general references about conditions that shaped them, as imprints, defining the data for spatial (conformational) information. Considering the origin of life problem, prebiotic dynamics of matching and transfer of molecular shapes may emerge as a flow of information in prebiotic assemblages. The property of carrying information in molecular conformations is only displayed at this system organization level. Accordingly, spatial information is a resource for active system responses toward milieu disturbances. Propagation of resilient conformations could be the substrate for structural maintenance through dynamical molecular scaffolding. The above is a basis for adaptive behavior in potentially biogenic systems. Starting from non-structured populations of carrying-information polymers, in the present contribution, we advance toward an entire theoretical framework considering the active role of these polymers to support the emergence of adaptive response in systems that manage conformational information flow. We discuss this scenario as a previous step for the arising of sequential information carried out by genetic polymers.
Collapse
Affiliation(s)
- Hugo I. Cruz-Rosas
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Pedro Miramontes
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
6
|
Gus'kov VY, Shayakhmetova RK, Allayarova DA, Sharafutdinova YF, Gilfanova EL, Pavlova IN, Garipova GZ. Mechanism of chiral recognition by enantiomorphous cytosine crystals during enantiomer adsorption. Phys Chem Chem Phys 2021; 23:11968-11979. [PMID: 34002188 DOI: 10.1039/d1cp01265g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The quest to understand why life exhibits chirality has been far from successful. In the terrestrial theory of chirality emergence in living matter, one of the main possible mechanisms is the chiral recognition of organic molecules by enantiomorphic crystals. In this work, we studied the ability of enantiomorphic cytosine crystals, obtained by Viedma ripening, for chiral recognition by enantiomers adsorption. For this, we used MD calculations, inverse gas chromatography, and adsorption from solutions. The difference between the isotherms of enantiomers was determined using a t-test. We found that cytosine crystals were capable of chiral recognition only when the adsorbate concentration on the surface was sufficient for lateral interactions leading to layer formation. In order to approximate adsorption isotherms, Langmuir, Freundlich, BET, and Fowler-Guggenheim equations were used. The difference in lateral interactions between menthol enantiomers during their adsorption from a solution in n-heptane was established. A mechanism of chiral recognition of the adsorbed substance by cytosine crystals was proposed. The conditions under which chiral recognition could proceed were determined. We observed that, upon adsorption from a solution, chiral recognition manifested itself at higher coverages than in MD simulations. This was caused by the competitive adsorption of the solvent. The results obtained show that adsorption on enantiomorphic crystals could be the source of the first minute enantiomeric excess, providing an opportunity to understand the origin of chiral imbalance.
Collapse
Affiliation(s)
| | | | | | | | | | - Irina N Pavlova
- Institute of Petrochemistry and Catalysis RAS, 141 Oktyabrya av., Ufa, Russia
| | | |
Collapse
|
7
|
Molecular shape as a key source of prebiotic information. J Theor Biol 2020; 499:110316. [PMID: 32387366 DOI: 10.1016/j.jtbi.2020.110316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 01/27/2023]
Abstract
One of the most striking features of a living system is the self-sustaining functional inner organization, which is only possible when a source of internal references is available from which the system is able to self-organize components and processes. Internal references are intrinsically related to biological information, which is typically understood as genetic information. However, the organization in living systems supports a diversity of intricate processes that enable life to endure, adapt and reproduce because of this organization. In a biological context, information refers to a complex relationship between internal architecture and system functionality. Nongenetic processes, such as conformational recognition, are not considered biological information, although they exert important control over cell processes. In this contribution, we discuss the informational nature in the recognition of molecular shape in living systems. Thus, we highlight supramolecular matching as having a theoretical key role in the origin of life. Based on recent data, we demonstrate that the transfer of molecular conformation is a very likely dynamic of prebiotic information, which is closely related to the origin of biological homochirality and biogenic systems. In light of the current hypothesis, we also revisit the central dogma of molecular biology to assess the consistency of the proposal presented here. We conclude that both spatial (molecular shape) and sequential (genetic) information must be represented in this biological paradigm.
Collapse
|