1
|
Baverstock K. Responses to commentaries on "The gene: An appraisal". PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:31-42. [PMID: 38360273 DOI: 10.1016/j.pbiomolbio.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
The central conclusions of "The Gene: An Appraisal" are that genetic variance does not underpin biological evolution, and, therefore, that genes are not Mendel's units of inheritance. In this response, I will address the criticisms I have received via commentaries on that paper by defending the following statements: 1. Epistasis does not explain the power-law fitness profile of the Long-Term Evolution Experiment (LTEE). The data from the evolution of natural systems displays the power-law form ubiquitously. Epistasis plays no role in evolution. 2. The common characteristics of living things (natural systems) are described by the principle of least action in de Maupertuis's original form, which is synonymous with the 2nd law of thermodynamics and Newton's 2nd law of motion in its complete form, i.e., F = dp/dt. Organisms strive to achieve free energy balance with their environments. 3. Based on an appraisal of the scientific environment between 1880 and 1911, I conclude that Johannsen's genotype conception was perhaps, the only option available to him. 4. The power-law fitness profile of the LTEE falsifies Fisher's Genetical Theory of Natural Selection, Johannsen's genotype conception, and the idea that 'Darwinian evolution' is an exception to the generic thermodynamic process of evolution in natural systems. 5. The use of the technique of genome-wide association to identify the causes and the likelihoods of inherited common diseases and behavioural traits is a 'wild goose chase' because genes are not the units of inheritance.
Collapse
Affiliation(s)
- Keith Baverstock
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
| |
Collapse
|
2
|
Baverstock K. The Gene: An appraisal. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 186:e73-e88. [PMID: 38044248 DOI: 10.1016/j.pbiomolbio.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The gene can be described as the foundational concept of modern biology. As such, it has spilled over into daily discourse, yet it is acknowledged among biologists to be ill-defined. Here, following a short history of the gene, I analyse critically its role in inheritance, evolution, development, and morphogenesis. Wilhelm Johannsen's genotype-conception, formulated in 1910, has been adopted as the foundation stone of genetics, giving the gene a higher degree of prominence than is justified by the evidence. An analysis of the results of the Long-Term Evolution Experiment (LTEE) with E. coli bacteria, grown over 60,000 generations, does not support spontaneous gene mutation as the source of variance for natural selection. From this it follows that the gene is not Mendel's unit of inheritance: that must be Johannsen's transmission-conception at the gamete phenotype level, a form of inheritance that Johannsen did not consider. Alternatively, I contend that biology viewed on the bases of thermodynamics, complex system dynamics, and self-organisation, provides a new framework for the foundations of biology. In this framework, the gene plays a passive role as a vital information store: it is the phenotype that plays the active role in inheritance, evolution, development, and morphogenesis.
Collapse
Affiliation(s)
- Keith Baverstock
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
| |
Collapse
|
3
|
Serpico D. A Wolf in Sheep's Clothing: Idealisations and the aims of polygenic scores. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2023; 102:72-83. [PMID: 37907020 DOI: 10.1016/j.shpsa.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/13/2023] [Accepted: 10/07/2023] [Indexed: 11/02/2023]
Abstract
Research in pharmacogenomics and precision medicine has recently introduced the concept of Polygenic Scores (PGSs), namely, indexes that aggregate the effects that many genetic variants are predicted to have on individual disease risk. The popularity of PGSs is increasing rapidly, but surprisingly little attention has been paid to the idealisations they make about phenotypic development. Indeed, PGSs rely on quantitative genetics models and methods, which involve considerable theoretical assumptions that have been questioned on various grounds. This comes with epistemological and ethical concerns about the use of PGSs in clinical decision-making. In this paper, I investigate to what extent idealisations in genetics models can impact the data gathering and clinical interpretation of genomics findings, particularly the calculation and predictive accuracy of PGSs. Although idealisations are considered ineliminable components of scientific models, they may be legitimate or not depending on the epistemic aims of a model. I thus analyse how various idealisations have been introduced in classical models and progressively readapted throughout the history of genetic theorising. Notably, this process involved important changes in the epistemic purpose of such idealisations, which raises the question of whether they are legitimate in the context of contemporary genomics.
Collapse
Affiliation(s)
- Davide Serpico
- Department of Economics and Management, University of Trento, Via Vigilio Inama 5, 38122, Trento, Italy; Interdisciplinary Centre for Ethics & Institute of Philosophy, Jagiellonian University, Grodzka 52, 31-044 Kraków, Poland.
| |
Collapse
|
4
|
Joseph J. A Blueprint for Genetic Determinism. AMERICAN JOURNAL OF PSYCHOLOGY 2022. [DOI: 10.5406/19398298.135.4.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
Pinzón-Espinosa J, van der Horst M, Zinkstok J, Austin J, Aalfs C, Batalla A, Sullivan P, Vorstman J, Luykx JJ. Barriers to genetic testing in clinical psychiatry and ways to overcome them: from clinicians' attitudes to sociocultural differences between patients across the globe. Transl Psychiatry 2022; 12:442. [PMID: 36220808 PMCID: PMC9553897 DOI: 10.1038/s41398-022-02203-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
Genetic testing has evolved rapidly over recent years and new developments have the potential to provide insights that could improve the ability to diagnose, treat, and prevent diseases. Information obtained through genetic testing has proven useful in other specialties, such as cardiology and oncology. Nonetheless, a range of barriers impedes techniques, such as whole-exome or whole-genome sequencing, pharmacogenomics, and polygenic risk scoring, from being implemented in psychiatric practice. These barriers may be procedural (e.g., limitations in extrapolating results to the individual level), economic (e.g., perceived relatively elevated costs precluding insurance coverage), or related to clinicians' knowledge, attitudes, and practices (e.g., perceived unfavorable cost-effectiveness, insufficient understanding of probability statistics, and concerns regarding genetic counseling). Additionally, several ethical concerns may arise (e.g., increased stigma and discrimination through exclusion from health insurance). Here, we provide an overview of potential barriers for the implementation of genetic testing in psychiatry, as well as an in-depth discussion of strategies to address these challenges.
Collapse
Affiliation(s)
- Justo Pinzón-Espinosa
- Sant Pau Mental Health Group, Institut d'Investigació Biomèdica Sant Pau (IBB-Sant Pau), Hospital de la Sant Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Department of Medicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Department of Clinical Psychiatry, School of Medicine, University of Panama, Panama City, Panama
- Department of Mental Health, Parc Tauli University Hospital, Institut d'Investigació i Innovació Parc Tauli (I3PT), Sabadell, Barcelona, Spain
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marte van der Horst
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Outpatient Second Opinion Clinic, GGNet Mental Health, Warnsveld, The Netherlands
| | - Janneke Zinkstok
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry, Nijmegen, The Netherlands
| | - Jehannine Austin
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry and Medical Genetics, Genetic Counselling Training Program, University of British Columbia, Vancouver, BC, Canada
| | - Cora Aalfs
- Department of Clinical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albert Batalla
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Patrick Sullivan
- Center for Psychiatric Genomics, Department of Genetics and Psychiatric, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Karolinska Institute, Stockholm, Sweden
| | - Jacob Vorstman
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jurjen J Luykx
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
- Outpatient Second Opinion Clinic, GGNet Mental Health, Warnsveld, The Netherlands.
| |
Collapse
|
6
|
Baverstock K. The gene: An appraisal. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 164:46-62. [PMID: 33979646 DOI: 10.1016/j.pbiomolbio.2021.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022]
Abstract
The gene can be described as the foundational concept of modern biology. As such, it has spilled over into daily discourse, yet it is acknowledged among biologists to be ill-defined. Here, following a short history of the gene, I analyse critically its role in inheritance, evolution, development, and morphogenesis. Wilhelm Johannsen's genotype-conception, formulated in 1910, has been adopted as the foundation stone of genetics, giving the gene a higher degree of prominence than is justified by the evidence. An analysis of the results of the Long-Term Evolution Experiment (LTEE) with E. coli bacteria, grown over 60,000 generations, does not support spontaneous gene mutation as the source of variance for natural selection. From this it follows that the gene is not Mendel's unit of inheritance: that must be Johannsen's transmission-conception at the gamete phenotype level, a form of inheritance that Johannsen did not consider. Alternatively, I contend that biology viewed on the bases of thermodynamics, complex system dynamics and self-organisation, provides a new framework for the foundations of biology. In this framework, the gene plays a passive role as a vital information store: it is the phenotype that plays the active role in inheritance, evolution, development, and morphogenesis.
Collapse
Affiliation(s)
- Keith Baverstock
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
| |
Collapse
|
7
|
Kaplan JM, Turkheimer E. Galton's Quincunx: Probabilistic causation in developmental behavior genetics. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2021; 88:60-69. [PMID: 34058686 DOI: 10.1016/j.shpsa.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
In what sense are associations between particular markers and complex behaviors made by genome-wide association studies (GWAS) and related techniques discoveries of, or entries into the study of, the causes of those behaviors? In this paper, we argue that when applied to individuals, the kinds of probabilistic 'causes' of complex traits that GWAS-style studies can point towards do not provide the kind of causal information that is useful for generating explanations; they do not, in other words, point towards useful explanations of why particular individuals have the traits that they do. We develop an analogy centered around Galton's "Quincunx" machine; while each pin might be associated with outcomes of a certain sort, in any particular trial, that pin might be entirely bypassed even if the ball eventually comes to rest in the box most strongly associated with that pin. Indeed, in any particular trial, the actual outcome of a ball hitting a pin might be the opposite of what is usually expected. While we might find particular pins associated with outcomes in the aggregate, these associations will not provide causally relevant information for understanding individual outcomes. In a similar way, the complexities of development likely render impossible any moves from population-level statistical associations between genetic markers and complex behaviors to an understanding of the causal processes by which individuals come to have the traits that they in fact have.
Collapse
|
8
|
Noble D. The role of stochasticity in biological communication processes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 162:122-128. [DOI: 10.1016/j.pbiomolbio.2020.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
|
9
|
Choi SW, Mak TSH, O'Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc 2020; 15:2759-2772. [PMID: 32709988 PMCID: PMC7612115 DOI: 10.1038/s41596-020-0353-1] [Citation(s) in RCA: 921] [Impact Index Per Article: 184.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/05/2020] [Indexed: 02/08/2023]
Abstract
A polygenic score (PGS) or polygenic risk score (PRS) is an estimate of an individual's genetic liability to a trait or disease, calculated according to their genotype profile and relevant genome-wide association study (GWAS) data. While present PRSs typically explain only a small fraction of trait variance, their correlation with the single largest contributor to phenotypic variation-genetic liability-has led to the routine application of PRSs across biomedical research. Among a range of applications, PRSs are exploited to assess shared etiology between phenotypes, to evaluate the clinical utility of genetic data for complex disease and as part of experimental studies in which, for example, experiments are performed that compare outcomes (e.g., gene expression and cellular response to treatment) between individuals with low and high PRS values. As GWAS sample sizes increase and PRSs become more powerful, PRSs are set to play a key role in research and stratified medicine. However, despite the importance and growing application of PRSs, there are limited guidelines for performing PRS analyses, which can lead to inconsistency between studies and misinterpretation of results. Here, we provide detailed guidelines for performing and interpreting PRS analyses. We outline standard quality control steps, discuss different methods for the calculation of PRSs, provide an introductory online tutorial, highlight common misconceptions relating to PRS results, offer recommendations for best practice and discuss future challenges.
Collapse
Affiliation(s)
- Shing Wan Choi
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | | | - Paul F O'Reilly
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Editorial: Charles Darwin, Jean-Baptiste Lamarck, and 21st century arguments on the fundamentals of biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 153:1-4. [DOI: 10.1016/j.pbiomolbio.2020.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Richardson K. Polygenic scores are an even bigger social hazard: Commentary on: Baverstock, K. (2019) polygenic scores: Are they a public health hazard? Progress in Biophysics and Molecular Biology. Available online 6 August 2019. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 153:13-16. [PMID: 31887314 DOI: 10.1016/j.pbiomolbio.2019.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
|
12
|
Noble D, Hunter P. How to link genomics to physiology through epigenomics. Epigenomics 2020; 12:285-287. [DOI: 10.2217/epi-2020-0012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Denis Noble
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Peter Hunter
- Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
13
|
Joyner MJ. Comment on "polygenic scores: A public health hazard?". PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:9. [PMID: 31398370 DOI: 10.1016/j.pbiomolbio.2019.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, 55902, USA.
| |
Collapse
|