1
|
Alaei L, Ashengroph M, Moosavi-Movahedi AA. Sulfonamides stimulate ROS formation upon glycation of human carbonic anhydrase II. Int J Biol Macromol 2024; 255:128294. [PMID: 37992931 DOI: 10.1016/j.ijbiomac.2023.128294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Advanced glycation end products are the most important species of glycation pathway, and cause disorders such as oxidative stress and diabetes. Sulfonamide compounds, which are generally known as widespread inhibitors, are potential agents used in different drug products, which can readily enter biological matrices. In the present work, the structure and activity of human carbonic anhydrase II studied in the presence of glucose as well as four sulfonamide agents from different views. These included enzyme kinetics, free lysine content, fluorescence spectroscopy, circular dichroism, and ROS measurement. Our results indicated that upon glycation, the structure of HCA II collapses and 8 to 13 lysine residues will be more available based on ligand incubation. Secondary and tertiary structural changes were also observed in the presence and absence of sulfonamide agents using fluorescence and circular dichroism methods, respectively. These spectroscopic data also showed a remarkable increase in hydrophobicity and decrease in α-helix contents during glycation, especially after 35 days of incubation. ROS assay was studied in the presence of glucose and sulfonamide compounds, that demonstrated the role of sulfonamide compounds in ROS formation in the presence of glucose in a synergistic manner. Overall, our data indicated that sulfonamides act as a stimulant factor upon prolonged interaction with HCA II and may intensify the complications of some disorders, such as diabetes and other conformational diseases.
Collapse
Affiliation(s)
- Loghman Alaei
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran; Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | - Morahem Ashengroph
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran.
| | | |
Collapse
|
2
|
Barinov NA, Pavlova ER, Tolstova AP, Matveeva AG, Moskalets AP, Dubrovin EV, Klinov DV. Myeloperoxidase-induced fibrinogen unfolding and clotting. Microsc Res Tech 2022; 85:2537-2548. [PMID: 35315962 DOI: 10.1002/jemt.24107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/19/2022] [Accepted: 03/03/2022] [Indexed: 11/08/2022]
Abstract
Due to its unique properties and high biomedical relevance fibrinogen is a promising protein for the development of various matrixes and scaffolds for biotechnological applications. Fibrinogen molecules may form extensive clots either upon specific cleavage by thrombin or in thrombin-free environment, for example, in the presence of different salts. Here, we report the novel type of non-conventional fibrinogen clot formation, which is mediated by myeloperoxidase and takes place even at low fibrinogen concentrations (<0.1 mg/ml). We have revealed fibrillar nature of myeloperoxidase-mediated fibrinogen clots, which differ morphologically from fibrin clots. We have shown that fibrinogen clotting is mediated by direct interaction of myeloperoxidase molecules with the outer globular regions of fibrinogen molecules followed by fibrinogen unfolding from its natural trinodular to a fibrillar structure. We have demonstrated a major role of the Debye screening effect in regulating of myeloperoxidase-induced fibrinogen clotting, which is facilitated by small ionic strength. While fibrinogen in an aqueous solution with myeloperoxidase undergoes changes, the enzymatic activity of myeloperoxidase is not inhibited in excess of fibrinogen. The obtained results open new insights into fibrinogen clotting, give new possibilities for the development of fibrinogen-based functional biomaterials, and provide the novel concepts of protein unfolding.
Collapse
Affiliation(s)
- Nikolay A Barinov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation.,Scientific and educational resource center for innovative technologies of immunophenotyping, digital spatial profiling and ultrastructural analysis (molecular morphology), Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Elizaveta R Pavlova
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation.,Scientific and educational resource center for innovative technologies of immunophenotyping, digital spatial profiling and ultrastructural analysis (molecular morphology), Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Anna P Tolstova
- Laboratory of protein conformational polymorphism in health and disease, Engelhardt Institute of Molecular Biology, Moscow, Russian Federation
| | - Ainur G Matveeva
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation.,Scientific and educational resource center for innovative technologies of immunophenotyping, digital spatial profiling and ultrastructural analysis (molecular morphology), Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Aleksandr P Moskalets
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Evgeniy V Dubrovin
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation.,Scientific and educational resource center for innovative technologies of immunophenotyping, digital spatial profiling and ultrastructural analysis (molecular morphology), Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation.,Faculty of Physics, Lomonosov Moscow State University, Moscow, Russian Federation.,Laboratory of Biophysics, National University of Science and Technology MISIS, Moscow, Russian Federation
| | - Dmitry V Klinov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation.,Scientific and educational resource center for innovative technologies of immunophenotyping, digital spatial profiling and ultrastructural analysis (molecular morphology), Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| |
Collapse
|
3
|
The concept of protein folding/unfolding and its impacts on human health. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021. [PMID: 34090616 DOI: 10.1016/bs.apcsb.2021.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Proteins have evolved in specific 3D structures and play different functions in cells and determine various reactions and pathways. The newly synthesized amino acid chains once depart ribosome must crumple into three-dimensional structures so can be biologically active. This process of protein that makes a functional molecule is called protein folding. The protein folding is both a biological and a physicochemical process that depends on the sequence of it. In fact, this process occurs more complicated and in some cases and in exposure to some molecules like glucose (glycation), mistaken folding leads to amyloid structures and fatal disorders called conformational diseases. Such conditions are detected by the quality control system of the cell and these abnormal proteins undergo renovation or degradation. This scenario takes place by the chaperones, chaperonins, and Ubiquitin-proteasome complex. Understanding of protein folding mechanisms from different views including experimental and computational approaches has revealed some intermediate ensembles such as molten globule and has been subjected to biophysical and molecular biology attempts to know more about prevalent conformational diseases.
Collapse
|
4
|
Choudhury M, Dhara A, Kumar M. Trigger Factor in Association with the ClpP1P2 Heterocomplex of Leptospira Promotes Protease/Peptidase Activity. ACS OMEGA 2021; 6:1400-1409. [PMID: 33490799 PMCID: PMC7818586 DOI: 10.1021/acsomega.0c05057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/28/2020] [Indexed: 05/07/2023]
Abstract
The genomic analysis of Leptospira reveals a trigger factor (TF) encoding gene (tig) to be colocalized along with the clpP1 and clpX. The TF is a crouching dragon-like protein known to be a ribosome-associated chaperone that is involved in cotranslational protein folding in bacteria in an ATP-independent mode. In Leptospira, tig is localized upstream of the clpP1 with a short (4 bp) overlap. In the present study, we document the distinctive role of Leptospira TF (LinTF) in the caseinolytic protease (ClpP) system. The recombinant LinTF (rLinTF) was found to improve the peptidase or protease activity of the ClpP1P2 heterocomplex and ClpXP1P2 complex, respectively, on model substrates. In addition, on supplementation of rLinTF to rClpP1P2 bound to its physiological ATPase chaperone ClpX or the antibiotic analogue acyldepsipeptide (ADEP), an augmentation in the activity of ClpP1P2 was observed. These studies underscore the novel role of LinTF in aiding the caseinolytic protease activity of Leptospira. Supplementation of rLinTF to a peptidase assay of rClpP1P2 conditionally in the presence of a salt (sodium citrate) with high Hofmeister strength led us to speculate that rLinTF may have a role in the assembly of multimeric proteins. The deletion of one of the arms (arm-2) of the LinTF structure from the carboxy terminal domain indicated a reduction in its capacity to stimulate rClpP1P2 activity. Thus, the C-terminal domain of LinTF may have a role in the assembly of multimeric ClpP protein, leading to enhancement of ClpP activity.
Collapse
Affiliation(s)
| | | | - Manish Kumar
- . Phone: +91-361-258-2230. Fax: +91-361-258-2249
| |
Collapse
|
5
|
Eronina TB, Mikhaylova VV, Chebotareva NA, Shubin VV, Kleymenov SY, Kurganov BI. Effect of arginine on stability and aggregation of muscle glycogen phosphorylase b. Int J Biol Macromol 2020; 165:365-374. [PMID: 32961195 DOI: 10.1016/j.ijbiomac.2020.09.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 11/26/2022]
Abstract
Arginine (Arg) is frequently used in biotechnology and pharmaceutics to stabilize protein preparations. When using charged ions like Arg, it is necessary to take into account their contribution to the increase in ionic strength, in addition to the effect of Arg on particular processes occurring under the conditions of constancy of ionic strength. Here, we examined contribution of ionic strength (0.15 and 0.5 M) to the effects of Arg on denaturation, thermal inactivation and aggregation of skeletal muscle glycogen phosphorylase b (Phb). Dynamic light scattering, analytical ultracentrifugation, differential scanning calorimetry, circular dichroism and enzymatic activity assay were used to assess the effects of Arg at constant ionic strength compared with the effects of ionic strength alone. We found that high ionic strength did not affect the secondary structure of Phb, but changed conformation of the protein. Such a destabilization of the enzyme causes an increase in the initial rate of aggregation and inactivation of Phb thereby affecting its denaturation. Binding of Arg causes additional changes in the protein conformation, weakening the bonds between monomers in the dimer. This causes the dimer to dissociate into monomers, which rapidly aggregate. Thus, Arg acts on these processes much stronger than just ionic strength.
Collapse
Affiliation(s)
- Tatiana B Eronina
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Valeriya V Mikhaylova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Natalia A Chebotareva
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Vladimir V Shubin
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Sergey Y Kleymenov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia; Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova 26, Moscow 119991, Russia
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| |
Collapse
|
6
|
Alaei L, Izadi Z, Jafari S, Jahanshahi F, Jaymand M, Mohammadi P, Paray BA, Hasan A, Falahati M, Varnamkhasti BS, Saboury AA, Moosavi-Nejad Z, Sheikh-Hosseini M, Derakhshankhah H. Irreversible thermal inactivation and conformational lock of alpha glucosidase. J Biomol Struct Dyn 2020; 39:3256-3262. [DOI: 10.1080/07391102.2020.1762742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Loghman Alaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Biology and Biotechnology, Faculty of Sciences, University of Kurdistan, Sanandaj, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Zistmavad Pharmed Co, Tehran, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Zistmavad Pharmed Co, Tehran, Iran
| | - Fatemeh Jahanshahi
- Student research committee, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Zistmavad Pharmed Co, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zahra Moosavi-Nejad
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mehrnaz Sheikh-Hosseini
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Zistmavad Pharmed Co, Tehran, Iran
| |
Collapse
|