1
|
Madariaga D, Arro D, Irarrázaval C, Soto A, Guerra F, Romero A, Ovalle F, Fedrigolli E, DesRosiers T, Serbe-Kamp É, Marzullo T. A library of electrophysiological responses in plants - a model of transversal education and open science. PLANT SIGNALING & BEHAVIOR 2024; 19:2310977. [PMID: 38493508 PMCID: PMC10950275 DOI: 10.1080/15592324.2024.2310977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/22/2024] [Indexed: 03/19/2024]
Abstract
Electrophysiology in plants is understudied, and, moreover, an ideal model for student inclusion at all levels of education. Here, we report on an investigation in open science, whereby scientists worked with high school students, faculty, and undergraduates from Chile, Germany, Serbia, South Korea, and the USA. The students recorded the electrophysiological signals of >15 plant species in response to a flame or tactile stimulus applied to the leaves. We observed that approximately 60% of the plants studied showed an electrophysiological response, with a delay of ~ 3-6 s after stimulus presentation. In preliminary conduction velocity experiments, we verified that observed signals are indeed biological in origin, with information transmission speeds of ~ 2-9 mm/s. Such easily replicable experiments can serve to include more investigators and students in contributing to our understanding of plant electrophysiology.
Collapse
Affiliation(s)
- Danae Madariaga
- Colegio (High School) Alberto Blest Gana, San Ramón, Santiago, Chile
| | - Derek Arro
- Colegio (High School) Alberto Blest Gana, San Ramón, Santiago, Chile
| | | | - Alejandro Soto
- Colegio (High School) Alberto Blest Gana, San Ramón, Santiago, Chile
| | - Felipe Guerra
- Colegio (High School) Alberto Blest Gana, San Ramón, Santiago, Chile
| | - Angélica Romero
- Colegio (High School) Alberto Blest Gana, San Ramón, Santiago, Chile
| | - Fabián Ovalle
- Colegio (High School) Alberto Blest Gana, San Ramón, Santiago, Chile
| | - Elsa Fedrigolli
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Thomas DesRosiers
- College of Literature, Science, and Arts, University of Michigan, Ann Arbor, MI, USA
| | - Étienne Serbe-Kamp
- Hirnkastl, Max Planck Institute for Biological Intelligence, LMU Munich, Munich, Germany
- Research and Development, Backyard Brains, Ann Arbor, MI, USA
| | - Timothy Marzullo
- Research and Development, Backyard Brains, Ann Arbor, MI, USA
- Research and Development, Backyard Brains, Seoul, South Korea
| |
Collapse
|
2
|
Guerra S, Castiello U, Bonato B, Dadda M. Handedness in Animals and Plants. BIOLOGY 2024; 13:502. [PMID: 39015821 PMCID: PMC7616222 DOI: 10.3390/biology13070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
Structural and functional asymmetries are traceable in every form of life, and some lateralities are homologous. Functionally speaking, the division of labour between the two halves of the brain is a basic characteristic of the nervous system that arose even before the appearance of vertebrates. The most well-known expression of this specialisation in humans is hand dominance, also known as handedness. Even if hand/limb/paw dominance is far more commonly associated with the presence of a nervous system, it is also observed in its own form in aneural organisms, such as plants. To date, little is known regarding the possible functional significance of this dominance in plants, and many questions remain open (among them, whether it reflects a generalised behavioural asymmetry). Here, we propose a comparative approach to the study of handedness, including plants, by taking advantage of the experimental models and paradigms already used to study laterality in humans and various animal species. By taking this approach, we aim to enrich our knowledge of the concept of handedness across natural kingdoms.
Collapse
Affiliation(s)
- Silvia Guerra
- Department of General Psychology (DPG), University of Padova, 35131 Padova, Italy; (U.C.); (B.B.); (M.D.)
| | | | | | | |
Collapse
|
3
|
de Melo HC. Science fosters ongoing reassessments of plant capabilities. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2024; 36:457-475. [DOI: 10.1007/s40626-023-00300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2025]
|
4
|
Reissig GN, de Carvalho Oliveira TF, Parise AG, Costa ÁVL, Posso DA, Rombaldi CV, Souza GM. Approximate entropy: a promising tool to understand the hidden electrical activity of fruit. Commun Integr Biol 2023; 16:2195236. [PMID: 37007213 PMCID: PMC10054301 DOI: 10.1080/19420889.2023.2195236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Fruits, like other parts of the plant, appear to have a rich electrical activity that may contain information. Here, we present data showing differences in the electrome complexity of tomato fruits through ripening and discuss possible physiological processes involved. The complexity of the signals, measured through approximate entropy, varied along the fruit ripening process. When analyzing the fruits individually, a decrease in entropy values was observed when they entered the breaker stage, followed by a tendency to increase again when they entered the light red stage. Consequently, the data obtained showed a decrease in signal complexity in the breaker stage, probably due to some physiological process that ends up predominating to the detriment of others. This result may be linked to processes involved in ripening, such as climacteric. Electrophysiological studies in the reproductive stage of the plant are still scarce, and research in this direction is of paramount importance to understand whether the electrical signals observed can transmit information from reproductive structures to other modules of plants. This work opens the possibility of studying the relationship between the electrical activity and fruit ripening through the analysis of approximate entropy. More studies are necessary to understand whether there is a correlation or a cause-response relationship in the phenomena involved. There is a myriad of possibilities for the applicability of this knowledge to different areas, from understanding the cognitive processes of plants to achieving more accurate and sustainable agriculture.
Collapse
|
5
|
Cosca CM, Haggard JA, Kato HM, Sklavenitis EM, Blumstein DT. Do environmental stimuli modify sensitive plant (Mimosa pudica L.) risk assessment? PLoS One 2023; 18:e0294971. [PMID: 38127910 PMCID: PMC10734946 DOI: 10.1371/journal.pone.0294971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Although plants and animals both assess their environment and respond to stimuli, this reaction is considered a behavior in animals and a response in plants. Responses in plants are seen within various timescales- from the nanosecond stimuli is presented to a lifelong progression. Within this study, we bridge the gap between animal behavioral studies and plant response. Sensitive plants (Mimosa pudica L.) are an ideal subject for this due to the rapid closure of their primary leaflets when touched. We designed a multimodal, or stress combination, experiment to test two hypotheses with sensitive plants: if they could be distracted and if they would alter their risk assessment when exposed to external stimuli (wind and sound). To evaluate the distraction hypothesis, we measured an individual's latency to close, hypothesizing that if the plants were distracted, they would take longer to close. To evaluate the uncertain risk hypothesis, we quantified the latency to reopen, hypothesizing that if the plants were uncertain, they would take longer to reopen. We also quantified the number of pinnae closed on the selected stem to test for changes in risk assessment across treatments. We expected the unimodal treatments would distract or alter risk assessment, and the multimodal treatment would elicit an enhanced response. Multimodal stimuli had a significant effect on the number of pinnae closed before the tap, but we found no evidence that plants were distracted by any stimulus tested. We found that temperature had a significant effect on the latency to close, and that plants modified their risk assessment when exposed to experimental wind stimuli. By manipulating environmental stimuli, we found that sensitive plants trade-off energy and perceived risk much in the way that is commonly found in animals. Framing the study of plants' responses to environmental stimuli as behavioral questions may generate new insights.
Collapse
Affiliation(s)
- Charlotte M. Cosca
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Justin A. Haggard
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Halli M. Kato
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Eleni M. Sklavenitis
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
6
|
Parise AG, Oliveira TFDC, Debono MW, Souza GM. The Electrome of a Parasitic Plant in a Putative State of Attention Increases the Energy of Low Band Frequency Waves: A Comparative Study with Neural Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:2005. [PMID: 37653922 PMCID: PMC10224360 DOI: 10.3390/plants12102005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 09/02/2023]
Abstract
Selective attention is an important cognitive phenomenon that allows organisms to flexibly engage with certain environmental cues or activities while ignoring others, permitting optimal behaviour. It has been proposed that selective attention can be present in many different animal species and, more recently, in plants. The phenomenon of attention in plants would be reflected in its electrophysiological activity, possibly being observable through electrophytographic (EPG) techniques. Former EPG time series obtained from the parasitic plant Cuscuta racemosa in a putative state of attention towards two different potential hosts, the suitable bean (Phaseolus vulgaris) and the unsuitable wheat (Triticum aestivum), were revisited. Here, we investigated the potential existence of different band frequencies (including low, delta, theta, mu, alpha, beta, and gamma waves) using a protocol adapted from neuroscientific research. Average band power (ABP) was used to analyse the energy distribution of each band frequency in the EPG signals, and time dispersion analysis of features (TDAF) was used to explore the variations in the energy of each band. Our findings indicated that most band waves were centred in the lower frequencies. We also observed that C. racemosa invested more energy in these low-frequency waves when suitable hosts were present. However, we also noted peaks of energy investment in all the band frequencies, which may be linked to extremely low oscillatory electrical signals in the entire tissue. Overall, the presence of suitable hosts induced a higher energy power, which supports the hypothesis of attention in plants. We further discuss and compare our results with generic neural systems.
Collapse
Affiliation(s)
| | - Thiago Francisco de Carvalho Oliveira
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão 96160-000, RS, Brazil; (T.F.d.C.O.)
| | | | - Gustavo Maia Souza
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão 96160-000, RS, Brazil; (T.F.d.C.O.)
| |
Collapse
|
7
|
Costa ÁVL, Oliveira TFDC, Posso DA, Reissig GN, Parise AG, Barros WS, Souza GM. Systemic Signals Induced by Single and Combined Abiotic Stimuli in Common Bean Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:924. [PMID: 36840271 PMCID: PMC9964927 DOI: 10.3390/plants12040924] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
To survive in a dynamic environment growing fixed to the ground, plants have developed mechanisms for monitoring and perceiving the environment. When a stimulus is perceived, a series of signals are induced and can propagate away from the stimulated site. Three distinct types of systemic signaling exist, i.e., (i) electrical, (ii) hydraulic, and (iii) chemical, which differ not only in their nature but also in their propagation speed. Naturally, plants suffer influences from two or more stimuli (biotic and/or abiotic). Stimuli combination can promote the activation of new signaling mechanisms that are explicitly activated, as well as the emergence of a new response. This study evaluated the behavior of electrical (electrome) and hydraulic signals after applying simple and combined stimuli in common bean plants. We used simple and mixed stimuli applications to identify biochemical responses and extract information from the electrical and hydraulic patterns. Time series analysis, comparing the conditions before and after the stimuli and the oxidative responses at local and systemic levels, detected changes in electrome and hydraulic signal profiles. Changes in electrome are different between types of stimulation, including their combination, and systemic changes in hydraulic and oxidative dynamics accompany these electrical signals.
Collapse
Affiliation(s)
- Ádrya Vanessa Lira Costa
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | - Thiago Francisco de Carvalho Oliveira
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | - Douglas Antônio Posso
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | - Gabriela Niemeyer Reissig
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | | | - Willian Silva Barros
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| | - Gustavo Maia Souza
- Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University of Pelotas, Capão do Leão CEP 96160-000, Rio Grande do Sul, Brazil
| |
Collapse
|