1
|
Kahle E, Fallahi H, Bergstrom AR, Li A, Trouillot CE, Mulcahey MK, Lu XL, Han L, Marcolongo MS. Biomimetic Proteoglycans Strengthen the Pericellular Matrix of Normal and Osteoarthritic Human Cartilage. ACS Biomater Sci Eng 2024; 10:5617-5623. [PMID: 39133208 PMCID: PMC11388146 DOI: 10.1021/acsbiomaterials.4c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
In osteoarthritis (OA), degradation of cartilage pericellular matrix (PCM), the proteoglycan-rich immediate cell microniche, is a leading event of disease initiation. This study demonstrated that biomimetic proteoglycans (BPGs) can diffuse into human cartilage from both normal and osteoarthritic donors and are preferentially localized within the PCM. Applying immunofluorescence (IF)-guided AFM nanomechanical mapping, we show that this localization of BPGs increases the PCM micromodulus of both normal and OA specimens. These results illustrate the capability of BPGs to integrate with degenerative tissues and support the translational potential of BPGs for treating human OA and other diseases associated with proteoglycan degradation.
Collapse
Affiliation(s)
- Elizabeth
R. Kahle
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hooman Fallahi
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Annika R. Bergstrom
- Department
of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Anita Li
- Department
of Mechanical Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Colette E. Trouillot
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Mary K. Mulcahey
- Department
of Orthopaedic Surgery and Rehabilitation, Loyola University Medical Center, Maywood, Illinois 60153, United States
| | - X. Lucas Lu
- Department
of Mechanical Engineering, University of
Delaware, Newark, Delaware 19716, United States
| | - Lin Han
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Michele S. Marcolongo
- Department
of Mechanical Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| |
Collapse
|
2
|
Mishra J, Chakraborty S, Niharika, Roy A, Manna S, Baral T, Nandi P, Patra SK. Mechanotransduction and epigenetic modulations of chromatin: Role of mechanical signals in gene regulation. J Cell Biochem 2024; 125:e30531. [PMID: 38345428 DOI: 10.1002/jcb.30531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 03/12/2024]
Abstract
Mechanical forces may be generated within a cell due to tissue stiffness, cytoskeletal reorganization, and the changes (even subtle) in the cell's physical surroundings. These changes of forces impose a mechanical tension within the intracellular protein network (both cytosolic and nuclear). Mechanical tension could be released by a series of protein-protein interactions often facilitated by membrane lipids, lectins and sugar molecules and thus generate a type of signal to drive cellular processes, including cell differentiation, polarity, growth, adhesion, movement, and survival. Recent experimental data have accentuated the molecular mechanism of this mechanical signal transduction pathway, dubbed mechanotransduction. Mechanosensitive proteins in the cell's plasma membrane discern the physical forces and channel the information to the cell interior. Cells respond to the message by altering their cytoskeletal arrangement and directly transmitting the signal to the nucleus through the connection of the cytoskeleton and nucleoskeleton before the information despatched to the nucleus by biochemical signaling pathways. Nuclear transmission of the force leads to the activation of chromatin modifiers and modulation of the epigenetic landscape, inducing chromatin reorganization and gene expression regulation; by the time chemical messengers (transcription factors) arrive into the nucleus. While significant research has been done on the role of mechanotransduction in tumor development and cancer progression/metastasis, the mechanistic basis of force-activated carcinogenesis is still enigmatic. Here, in this review, we have discussed the various cues and molecular connections to better comprehend the cellular mechanotransduction pathway, and we also explored the detailed role of some of the multiple players (proteins and macromolecular complexes) involved in mechanotransduction. Thus, we have described an avenue: how mechanical stress directs the epigenetic modifiers to modulate the epigenome of the cells and how aberrant stress leads to the cancer phenotype.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
3
|
Li M, Sun H, Hou Z, Hao S, Jin L, Wang B. Engineering the Physical Microenvironment into Neural Organoids for Neurogenesis and Neurodevelopment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306451. [PMID: 37771182 DOI: 10.1002/smll.202306451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Understanding the signals from the physical microenvironment is critical for deciphering the processes of neurogenesis and neurodevelopment. The discovery of how surrounding physical signals shape human developing neurons is hindered by the bottleneck of conventional cell culture and animal models. Notwithstanding neural organoids provide a promising platform for recapitulating human neurogenesis and neurodevelopment, building neuronal physical microenvironment that accurately mimics the native neurophysical features is largely ignored in current organoid technologies. Here, it is discussed how the physical microenvironment modulates critical events during the periods of neurogenesis and neurodevelopment, such as neural stem cell fates, neural tube closure, neuronal migration, axonal guidance, optic cup formation, and cortical folding. Although animal models are widely used to investigate the impacts of physical factors on neurodevelopment and neuropathy, the important roles of human stem cell-derived neural organoids in this field are particularly highlighted. Considering the great promise of human organoids, building neural organoid microenvironments with mechanical forces, electrophysiological microsystems, and light manipulation will help to fully understand the physical cues in neurodevelopmental processes. Neural organoids combined with cutting-edge techniques, such as advanced atomic force microscopes, microrobots, and structural color biomaterials might promote the development of neural organoid-based research and neuroscience.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Zongkun Hou
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
4
|
Wei M, Zhang Y, Wang Y, Liu X, Li X, Zheng X. Employing Atomic Force Microscopy (AFM) for Microscale Investigation of Interfaces and Interactions in Membrane Fouling Processes: New Perspectives and Prospects. MEMBRANES 2024; 14:35. [PMID: 38392662 PMCID: PMC10890076 DOI: 10.3390/membranes14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Membrane fouling presents a significant challenge in the treatment of wastewater. Several detection methods have been used to interpret membrane fouling processes. Compared with other analysis and detection methods, atomic force microscopy (AFM) is widely used because of its advantages in liquid-phase in situ 3D imaging, ability to measure interactive forces, and mild testing conditions. Although AFM has been widely used in the study of membrane fouling, the current literature has not fully explored its potential. This review aims to uncover and provide a new perspective on the application of AFM technology in future studies on membrane fouling. Initially, a rigorous review was conducted on the morphology, roughness, and interaction forces of AFM in situ characterization of membranes and foulants. Then, the application of AFM in the process of changing membrane fouling factors was reviewed based on its in situ measurement capability, and it was found that changes in ionic conditions, pH, voltage, and even time can cause changes in membrane fouling morphology and forces. Existing membrane fouling models are then discussed, and the role of AFM in predicting and testing these models is presented. Finally, the potential of the improved AFM techniques to be applied in the field of membrane fouling has been underestimated. In this paper, we have fully elucidated the potentials of the improved AFM techniques to be applied in the process of membrane fouling, and we have presented the current challenges and the directions for the future development in an attempt to provide new insights into this field.
Collapse
Affiliation(s)
- Mohan Wei
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Yaozhong Zhang
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Yifan Wang
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaoping Liu
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
- Yulin Coal Chemical Waste Resource Utilization and Low Carbon Environmental Protection Engineering Technology Research Center, Yulin High-tech Zone Yuheng No. 1 Industrial Sewage Treatment Co., Ltd., Yulin 719000, China
| | - Xiaoliang Li
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
5
|
He Y, Sun Z, He X, Mi Y. AFM is used to study the biophysics of hypertension-induced tachyarrhythmia. Microsc Res Tech 2023; 86:1099-1107. [PMID: 37422907 DOI: 10.1002/jemt.24365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 07/11/2023]
Abstract
Patients with long-lasting hypertension often suffer from atrial or ventricular arrhythmias. Evidence suggests that mechanical stimulation can change the refractory period and dispersion of the ventricular myocyte action potential through stretch-activated ion channels (SACs) and influence cellular calcium transients, thus increasing susceptibility to ventricular arrhythmias. However, the specific pathogenesis of hypertension-induced arrhythmias is unknown. In this study, through clinical data, we found that a short-term increase in blood pressure leads to a rise in tachyarrhythmias in patients with clinical hypertension. We investigated the mechanism of this phenomenon using a combined imaging system(AC) of atomic force microscopy (AFM) and laser scanning confocal microscopy. After mechanical distraction to stimulate ventricular myocytes isolated from Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), we synchronously monitored cardiomyocyte stiffness and intracellular calcium changes. This method can reasonably simulate cardiomyocytes' mechanics and ion changes when blood pressure rises rapidly. Our results indicated that the stiffness value of cardiomyocytes in SHR was significantly more extensive than that of normal controls, and cardiomyocytes were more sensitive to mechanical stress; In addition, intracellular calcium increased rapidly and briefly in rats with spontaneous hypertension. After intervention with streptomycin, a SAC blocker, ventricular myocytes are significantly less sensitive to mechanical stimuli. Thus, SAC is involved in developing and maintaining ventricular arrhythmias induced by hypertension. The increased stiffness of ventricular myocytes caused by hypertension leads to hypersensitivity of cellular calcium flow to mechanical stimuli is one of the mechanisms that cause arrhythmias. The AC system is a new research method to study the mechanical properties of cardiomyocytes. This study provides new techniques and ideas for developing new anti-arrhythmic drugs. HIGHLIGHT: The mechanism of hypertension-induced tachyarrhythmia is not precise. Through this study, it is found that the biophysical properties of myocardial abnormalities, the myocardium is excessively sensitive to mechanical stimulation, and the calcium flow appears to transient explosive changes, leading to tachyarrhythmia.
Collapse
Affiliation(s)
- Yin He
- Emergency Department, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhifu Sun
- Otolaryngology head and neck surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaonan He
- Emergency Department, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yuhong Mi
- Emergency Department, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
6
|
Fan M, Wang C, Kwok B, Kahle ER, He L, Lucas Lu X, Mauck RL, Han L. Impacts of aging on murine cartilage biomechanics and chondrocyte in situ calcium signaling. J Biomech 2022; 144:111336. [PMID: 36240656 PMCID: PMC9641638 DOI: 10.1016/j.jbiomech.2022.111336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Aging is the most prominent risk factor for osteoarthritis onset, but the etiology of aging-associated cartilage degeneration is not fully understood. Recent studies by Guilak and colleagues have highlighted the crucial roles of cell-matrix interactions in cartilage homeostasis and disease. This study thus quantified aging-associated changes in cartilage biomechanics and chondrocyte intracellular calcium signaling, [Ca2+]i, activities in wild-type mice at 3, 12 and 22 months of age. In aged mice, articular cartilage exhibits reduced staining of sulfated glycosaminoglycans (sGAGs), indicating decreased aggrecan content. On cartilage surface, collagen fibrils undergo significant thickening while retaining their transverse isotropic architecture, and exhibit signs of fibril crimping in the 22-month group. These compositional and structural changes contribute to a significant decrease in cartilage modulus at 22 months of age (0.55 ± 0.25 MPa, mean ± 95 % CI, n = 8) relative to those at 3 and 12 months (1.82 ± 0.48 MPa and 1.45 ± 0.46 MPa, respectively, n ≥ 8). Despite the decreases in sGAG content and tissue modulus, chondrocytes do not exhibit significantly demoted [Ca2+]i activities in situ, in both physiological (isotonic) and osmotically instigated (hypo- and hypertonic) conditions. At 12 months of age, there exists a sub-population of chondrocytes with hyper-active [Ca2+]i responses under hypotonic stimuli, possibly indicating a phenotypic shift of chondrocytes during aging. Together, these results yield new insights into aging-associated biomechanical and mechanobiological changes of murine cartilage, providing a benchmark for elucidating the molecular mechanisms of age-related changes in cell-matrix interactions.
Collapse
Affiliation(s)
- Mingyue Fan
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Elizabeth R Kahle
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Lan He
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
7
|
Probing biological systems with mechanical microscopy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:1-2. [DOI: 10.1016/j.pbiomolbio.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|