1
|
Miller WB, Baluška F, Reber AS, Slijepčević P. Biology in the 21st century: Natural selection is cognitive selection. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 190:170-184. [PMID: 38740143 DOI: 10.1016/j.pbiomolbio.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Natural selection has a formal definition as the natural process that results in the survival and reproductive success of individuals or groups best adjusted to their environment, leading to the perpetuation of those genetic qualities best suited to that organism's environmental niche. Within conventional Neo-Darwinism, the largest source of those variations that can be selected is presumed to be secondary to random genetic mutations. As these arise, natural selection sustains adaptive traits in the context of a 'struggle for existence'. Consequently, in the 20th century, natural selection was generally portrayed as the primary evolutionary driver. The 21st century offers a comprehensive alternative to Neo-Darwinian dogma within Cognition-Based Evolution. The substantial differences between these respective evolutionary frameworks have been most recently articulated in a revision of Crick's Central Dogma, a former centerpiece of Neo-Darwinism. The argument is now advanced that the concept of natural selection should also be comprehensively reappraised. Cognitive selection is presented as a more precise term better suited to 21st century biology. Since cognition began with life's origin, natural selection represents cognitive selection.
Collapse
Affiliation(s)
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Germany.
| | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - Predrag Slijepčević
- Department of Life Sciences College of Health, Medicine and Life Sciences, University of Brunel, UK.
| |
Collapse
|
2
|
Lv X, Gao Z, Li B, Zhou W, Zhang S, Wang X. Mass spectrometry-based metabolomics for the investigation of antibiotic-bacterial interactions. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39004897 DOI: 10.1002/mas.21899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
With the development of analytical technologies especially mass spectrometry, metabolomics is becoming increasingly hot in the field of studying antibiotic-bacterial interactions. On the one hand, metabolomics can reveal metabolic perturbations in bacteria in the presence of antibiotics and expose metabolic mechanisms. On the other hand, through in-depth analysis of bacterial metabolic profiles, biomarkers and bioactive secondary metabolites with great potential as drug precursors can be discovered. This review focuses on the experimental workflow of bacterial metabolomics and its application to study the interaction between bacteria and antibiotics. Metabolomics improves the understanding of antibiotic lethality, reveals metabolic perturbations in antibiotic-resistant bacteria, guides the diagnosis and antibiotic treatment of infectious diseases, and aids in the exploration of antibacterial metabolites in nature. Furthermore, current limitations and directions for future developments in this area are discussed.
Collapse
Affiliation(s)
- Xiaoyuan Lv
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenye Gao
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Bingjie Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxiu Zhou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Shengman Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Gontier N. Situating physiology within evolutionary theory. J Physiol 2024; 602:2401-2415. [PMID: 37755322 DOI: 10.1113/jp284410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Traditionally defined as the science of the living, or as the field that beyond anatomical structure and bodily form studies functional organization and behaviour, physiology has long been excluded from evolutionary research. The main reason for this exclusion is that physiology has a presential and futuristic outlook on life, while evolutionary theory is traditionally defined as the study of natural history. In this paper, I re-evaluate these classic science divisions and situate physiology within the history of the evolutionary sciences, as well as within debates on the Extended Evolutionary Synthesis and the need for a Third Way of Evolution. I then briefly point out how evolutionary physiology in particular contributes to research on function, causation, teleonomy, agency and cognition.
Collapse
Affiliation(s)
- Nathalie Gontier
- Applied Evolutionary Epistemology Lab & Centro de Filosofia das Ciências, Departamento de História e Filosofia das Ciências, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Levin M. Self-Improvising Memory: A Perspective on Memories as Agential, Dynamically Reinterpreting Cognitive Glue. ENTROPY (BASEL, SWITZERLAND) 2024; 26:481. [PMID: 38920491 PMCID: PMC11203334 DOI: 10.3390/e26060481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Many studies on memory emphasize the material substrate and mechanisms by which data can be stored and reliably read out. Here, I focus on complementary aspects: the need for agents to dynamically reinterpret and modify memories to suit their ever-changing selves and environment. Using examples from developmental biology, evolution, and synthetic bioengineering, in addition to neuroscience, I propose that a perspective on memory as preserving salience, not fidelity, is applicable to many phenomena on scales from cells to societies. Continuous commitment to creative, adaptive confabulation, from the molecular to the behavioral levels, is the answer to the persistence paradox as it applies to individuals and whole lineages. I also speculate that a substrate-independent, processual view of life and mind suggests that memories, as patterns in the excitable medium of cognitive systems, could be seen as active agents in the sense-making process. I explore a view of life as a diverse set of embodied perspectives-nested agents who interpret each other's and their own past messages and actions as best as they can (polycomputation). This synthesis suggests unifying symmetries across scales and disciplines, which is of relevance to research programs in Diverse Intelligence and the engineering of novel embodied minds.
Collapse
Affiliation(s)
- Michael Levin
- Department of Biology, Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| |
Collapse
|
5
|
Reber AS, Baluška F, Miller WB, Slijepčević P. The sensual cell: Feeling and affect in unicellular species. Biosystems 2024; 238:105197. [PMID: 38556108 DOI: 10.1016/j.biosystems.2024.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Our previous efforts to probe the complex, rich experiential lives of unicellular species have focused on the origins of consciousness (Reber, 2019) and the biomolecular processes that underlie sentience (Reber et al., 2023). Implied, but unexplored, was the assumption that these cognitive functions and associated unicellular organismal behaviors were linked with and often driven by affect, feelings, sensual experiences. In this essay we dig more deeply into these valenced (We're using the term valence here to cover the aspects of sensory experiences that have evaluative elements, are experienced as positive or negative ─ those where this affective, internal representation is an essential element in how the input is interpreted and responded to.) self-referencing features. In the first part, we examine the empirical evidence for various sensual experiences that have been identified. In the second part, we look at other features of prokaryote life that appear to also have affective, valenced elements but where the data to support the proposition aren't as strong. We engage in some informed speculation about these phenomena.
Collapse
Affiliation(s)
- Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Germany.
| | | | - Predrag Slijepčević
- Department of Life Sciences, College of Health, Medicine and Life Sciences, University of Brunel, UK.
| |
Collapse
|
6
|
Miller WB, Baluška F, Reber AS, Slijepčević P. Why death and aging ? All memories are imperfect. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:21-35. [PMID: 38316274 DOI: 10.1016/j.pbiomolbio.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/02/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Recent papers have emphasized the primary role of cellular information management in biological and evolutionary development. In this framework, intelligent cells collectively measure environmental cues to improve informational validity to support natural cellular engineering as collaborative decision-making and problem-solving in confrontation with environmental stresses. These collective actions are crucially dependent on cell-based memories as acquired patterns of response to environmental stressors. Notably, in a cellular self-referential framework, all biological information is ambiguous. This conditional requirement imposes a previously unexplored derivative. All cellular memories are imperfect. From this atypical background, a novel theory of aging and death is proposed. Since cellular decision-making is memory-dependent and biology is a continuous natural learning system, the accumulation of previously acquired imperfect memories eventually overwhelms the flexibility cells require to react adroitly to contemporaneous stresses to support continued cellular homeorhetic balance. The result is a gradual breakdown of the critical ability to efficiently measure environmental information and effect cell-cell communication. This age-dependent accretion governs senescence, ultimately ending in death as an organism-wide failure of cellular networking. This approach to aging and death is compatible with all prior theories. Each earlier approach illuminates different pertinent cellular signatures of this ongoing, obliged, living process.
Collapse
Affiliation(s)
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Germany.
| | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - Predrag Slijepčević
- Department of Life Sciences, College of Health, Medicine and Life Sciences, University of Brunel, UK.
| |
Collapse
|
7
|
Reber AS, Miller WB, Slijepcevic P, Baluška F. The CBC theory and its entailments : Why current models of the origin of consciousness fail. EMBO Rep 2024; 25:8-12. [PMID: 38177898 PMCID: PMC10883262 DOI: 10.1038/s44319-023-00004-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024] Open
Affiliation(s)
- Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | | | - Predrag Slijepcevic
- Department of Life Sciences, College of Health, Medicine and Life Sciences, University of Brunel, Uxbridge, UK
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Slijepcevic P. Principles of cognitive biology and the concept of biocivilisations. Biosystems 2024; 235:105109. [PMID: 38157923 DOI: 10.1016/j.biosystems.2023.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/16/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
A range of studies published in the last few decades promotes the cognitive aspects of life: all organisms, from bacteria to mammals, are capable of sensing/perception, decision-making, problem-solving, learning, and other cognitive functions, including sentience and consciousness. In this paper I present a scientific and philosophical synthesis of these studies, leading to an integrated view of cognitive biology. This view is expressed through the four principles applicable to all living systems: (1) sentience and consciousness, (2) autopoiesis, (3) free energy principle and relational biology, and (4) cognitive repertoire. The principles are circular, and they reinforce themselves. The circularity is not rigid, meaning that hierarchical and heterarchical shifts are widespread in the biosphere. The above principles emerged at the dawn of life, with the first cells, bacteria and archaea. All biogenic forms and functions that emerged since then can be traced to the first cells - indivisible units of biological agency. Following these principles, I developed the concept of biocivilisations to explain various forms of social intelligence in different kingdoms of life. The term biociviloisations draws on the human interpretation of the concept of civilisation, which searches for non-human equivalents of communication, engineering, science, medicine, art, and agriculture, in all kingdoms of life by applying the principles of cognitive biology. Potential avenues for testing the concept of biocivilisations are highlighted.
Collapse
Affiliation(s)
- Predrag Slijepcevic
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, England, UK.
| |
Collapse
|
9
|
Chirumbolo S, Vella A. Shannon's (informational) dissipation as the major engine leading to living dynamic and the origin of self. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 185:37-38. [PMID: 37967622 DOI: 10.1016/j.pbiomolbio.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Affiliation(s)
| | - Antonio Vella
- University Hospital, Azienda Ospedaliera Universitaria Integrata (AOUI), Section of Immunology, Verona, Italy
| |
Collapse
|