1
|
Using Personal Activity Intelligence With Patients in a Clinic Setting. J Cardiovasc Nurs 2022; 38:272-278. [PMID: 37027132 DOI: 10.1097/jcn.0000000000000950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Personal Activity Intelligence (PAI) is a novel heart-rate-based metric used to assess cardiorespiratory fitness and quantify physical activity. OBJECTIVE The aim of this study was to examine the feasibility, acceptability, and effectiveness of PAI with patients in a clinic setting. METHODS Patients (n = 25) from 2 clinics underwent 12 weeks of heart-rate-monitored physical activity interfaced with aPAI Health phone app. We used a pre-post design with the Physical Activity Vital Sign and the International Physical Activity Questionnaire. Feasibility, acceptability, and PAI measures were used to evaluate the objectives. RESULTS Twenty-two patients (88%) completed the study. There were significant improvements in International Physical Activity Questionnaire metabolic equivalent task minutes per week ( P = .046) and a decrease in sitting hours ( P = .0001). The Physical Activity Vital Sign activity increase in minutes per week was not significant ( P = .214). Patients achieved a mean PAI score of 116 ± 81.1 and 100 or greater 71% of the days. Most patients (81%) expressed satisfaction with PAI. CONCLUSIONS Personal Activity Intelligence is feasible, acceptable, and effective when used with patients in a clinic setting.
Collapse
|
2
|
Tari AR, Selbæk G, Franklin BA, Bergh S, Skjellegrind H, Sallis RE, Bosnes I, Stordal E, Ziaei M, Lydersen S, Kobro-Flatmoen A, Huuha AM, Nauman J, Wisløff U. Temporal changes in personal activity intelligence and the risk of incident dementia and dementia related mortality: A prospective cohort study (HUNT). EClinicalMedicine 2022; 52:101607. [PMID: 36034407 PMCID: PMC9403490 DOI: 10.1016/j.eclinm.2022.101607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND The Personal Activity Intelligence (PAI) translates heart rate during daily activity into a weekly score. Obtaining a weekly PAI score ≥100 is associated with reduced risk of premature morbidity and mortality from cardiovascular diseases. Here, we determined whether changes in PAI score are associated with changes in risk of incident dementia and dementia-related mortality. METHODS We conducted a prospective cohort study of 29,826 healthy individuals. Using data from the Trøndelag Health-Study (HUNT), PAI was estimated 10 years apart (HUNT1 1984-86 and HUNT2 1995-97). Adjusted hazard-ratios (aHR) and 95%-confidence intervals (CI) for incidence of and death from dementia were related to changes in PAI using Cox regression analyses. FINDINGS During a median follow-up time of 24.5 years (interquartile range [IQR]: 24.1-25.0) for dementia incidence and 23.6 years (IQR: 20.8-24.2) for dementia-related mortality, there were 1998 incident cases and 1033 dementia-related deaths. Individuals who increased their PAI score over time or maintained a high PAI score at both assessments had reduced risk of dementia incidence and dementia-related mortality. Compared with persistently inactive individuals (0 weekly PAI) at both time points, the aHRs for those with a PAI score ≥100 at both occasions were 0.75 (95% CI: 0.58-0.97) for incident dementia, and 0.62 (95% CI: 0.43-0.91) for dementia-related mortality. Using PAI score <100 at both assessments as the reference cohort, those who increased from <100 at HUNT1 to ≥100 at HUNT2 had aHR of 0.83 (95% CI: 0.72-0.96) for incident dementia, and gained 2.8 (95% CI: 1.3-4.2, P<0.0001) dementia-free years. For dementia-related mortality, the corresponding aHR was 0.74 (95% CI: 0.59-0.92) and years of life gained were 2.4 (95% CI: 1.0-3.8, P=0.001). INTERPRETATION Maintaining a high weekly PAI score and increases in PAI scores over time were associated with a reduced risk of incident dementia and dementia-related mortality. Our findings extend the scientific evidence regarding the protective role of PA for dementia prevention, and suggest that PAI may be a valuable tool in guiding research-based PA recommendations. FUNDING The Norwegian Research Council, the Liaison Committee between the Central Norway Regional Health Authority and Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Collapse
Affiliation(s)
- Atefe R. Tari
- Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway
| | - Geir Selbæk
- Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Centre for Age-related Functional Decline and Disease, Innlandet Hospital Trust, Ottestad, Norway
| | - Barry A. Franklin
- Healthy Living for Pandemic Event Protection (HL-PIVOT) Network, Chicago, IL, USA
- Preventive Cardiology and Cardiac Rehabilitation, William Beaumont Hospital, Royal Oak, MI, USA
- Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Sverre Bergh
- Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Research Centre for Age-related Functional Decline and Disease, Innlandet Hospital Trust, Ottestad, Norway
| | - Håvard Skjellegrind
- Department of Public Health and Nursing, HUNT Research Centre, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robert E. Sallis
- Department of Family Medicine, Kaiser Permanente Medical Center, Fontana, CA, USA
| | - Ingunn Bosnes
- Clinic for Mental Health and Substance Abuse, Namsos Hospital, Nord-Trøndelag Hospital Trust, Namsos, Norway
- Department of Mental Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Eystein Stordal
- Clinic for Mental Health and Substance Abuse, Namsos Hospital, Nord-Trøndelag Hospital Trust, Namsos, Norway
- Department of Mental Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Maryam Ziaei
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
- Jebsen Centre for Alzheimer's Diseases, Norwegian University of Science and Technology, Trondheim, Norway
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Stian Lydersen
- Regional Centre for Child and Youth Mental Health and Child Welfare, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
- Jebsen Centre for Alzheimer's Diseases, Norwegian University of Science and Technology, Trondheim, Norway
| | - Aleksi M. Huuha
- Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway
| | - Javaid Nauman
- Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Healthy Living for Pandemic Event Protection (HL-PIVOT) Network, Chicago, IL, USA
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ulrik Wisløff
- Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Healthy Living for Pandemic Event Protection (HL-PIVOT) Network, Chicago, IL, USA
- School of Human Movement & Nutrition Sciences, University of Queensland, Australia
- Corresponding author at: Cardiac Exercise Research Group at the Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim 7491, Norway.
| |
Collapse
|
3
|
Nauman J, Franklin BA, Nes BM, Sallis RE, Sawada SS, Marinović J, Stensvold D, Lavie CJ, Tari AR, Wisløff U. Association Between Personal Activity Intelligence and Mortality: Population-Based China Kadoorie Biobank Study. Mayo Clin Proc 2022; 97:668-681. [PMID: 34865822 DOI: 10.1016/j.mayocp.2021.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/02/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To prospectively investigate the association between personal activity intelligence (PAI) - a novel metabolic metric which translates heart rate during physical activity into a simple weekly score - and mortality in relatively healthy participants in China whose levels and patterns of physical activity in addition to other lifestyle factors are different from those in high-income countries. PATIENTS AND METHODS From the population-based China Kadoorie Biobank study, 443,792 healthy adults were recruited between June 2004 and July 2008. Participant's weekly PAI score was estimated and divided into four groups (PAI scores of 0, ≤50, 51-99, or ≥100). Using Cox proportional hazard analyses, we calculated adjusted hazard ratios (AHRs) for cardiovascular disease (CVD) and all-cause mortality related to PAI scores. RESULTS During a median follow-up of 8.2 (interquartile range, 7.3 to 9.1) years, there were 21,901 deaths, including 9466 CVD deaths. Compared with the inactive group (0 PAI score), a baseline weekly PAI score greater than or equal to 100 was associated with a lower risk of CVD mortality, an AHR of 0.87 (95% CI, 0.81 to 0.94) in men, and an AHR of 0.84 (95% CI, 0.78 to 0.92) in women, after adjusting for multiple confounders. Participants with a weekly PAI score greater than or equal to 100 also had a lower risk of all-cause mortality (AHR, 0.93; 95% CI, 0.89 to 0.97 in men, and AHR, 0.93; 95%, 0.88 to 0.98 in women). Moreover, this subgroup gained 2.7 (95% CI, 2.4 to 3.0) years of life, compared with the inactive cohort. CONCLUSION Among relatively healthy Chinese adults, the PAI metric was inversely associated with CVD and all-cause mortality, highlighting the generalizability of the score in different races, ethnicities, and socioeconomic strata.
Collapse
Affiliation(s)
- Javaid Nauman
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates; Healthy Living for Pandemic Event Protection (HL-PIVOT) Network, Chicago, IL, USA.
| | - Barry A Franklin
- Healthy Living for Pandemic Event Protection (HL-PIVOT) Network, Chicago, IL, USA; Preventive Cardiology and Cardiac Rehabilitation, William Beaumont Hospital, Royal Oak, MI, and Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Bjarne M Nes
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Cardiology, St Olav's Hospital, Trondheim, Norway
| | - Robert E Sallis
- Department of Family Medicine, Kaiser Permanente Medical Center, Fontana, CA, USA
| | - Susumu S Sawada
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Jasna Marinović
- Department of Physiology, University of Split School of Medicine, Split, Croatia
| | - Dorthe Stensvold
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Healthy Living for Pandemic Event Protection (HL-PIVOT) Network, Chicago, IL, USA
| | - Carl J Lavie
- Healthy Living for Pandemic Event Protection (HL-PIVOT) Network, Chicago, IL, USA; Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School - University of Queensland School of Medicine, New Orleans, LA, USA
| | - Atefe R Tari
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology, St Olav's Hospital, Trondheim, Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Healthy Living for Pandemic Event Protection (HL-PIVOT) Network, Chicago, IL, USA; School of Human Movement & Nutrition Sciences, University of Queensland, Australia
| |
Collapse
|