1
|
Restier-Verlet J, Ferlazzo ML, Granzotto A, Al-Choboq J, Bellemou C, Estavoyer M, Lecomte F, Bourguignon M, Pujo-Menjouet L, Foray N. Accelerated Aging Effects Observed In Vitro after an Exposure to Gamma-Rays Delivered at Very Low and Continuous Dose-Rate Equivalent to 1-5 Weeks in International Space Station. Cells 2024; 13:1703. [PMID: 39451221 PMCID: PMC11506070 DOI: 10.3390/cells13201703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Radiation impacting astronauts in their spacecraft come from a "bath" of high-energy rays (0.1-0.5 mGy per mission day) that reaches deep tissues like the heart and bones and a "stochastic rain" of low-energy particles from the shielding and impacting surface tissues like skin and lenses. However, these two components cannot be reproduced on Earth together. The MarsSimulator facility (Toulouse University, France) emits, thanks to a bag containing thorium salts, a continuous exposure of 120 mSv/y, corresponding to that prevailing in the International Space Station (ISS). By using immunofluorescence, we assessed DNA double-strand breaks (DSB) induced by 1-5 weeks exposure in ISS of human tissues evoked above, identified at risk for space exploration. All the tissues tested elicited DSBs that accumulated proportionally to the dose at a tissue-dependent rate (about 40 DSB/Gy for skin, 3 times more for lens). For the lens, bones, and radiosensitive skin cells tested, perinuclear localization of phosphorylated forms of ataxia telangiectasia mutated protein (pATM) was observed during the 1st to 3rd week of exposure. Since pATM crowns were shown to reflect accelerated aging, these findings suggest that a low dose rate of 120 mSv/y may accelerate the senescence process of the tested tissues. A mathematical model of pATM crown formation and disappearance has been proposed. Further investigations are needed to document these results in order to better evaluate the risks related to space exploration.
Collapse
Affiliation(s)
- Juliette Restier-Verlet
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Mélanie L. Ferlazzo
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Adeline Granzotto
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Joëlle Al-Choboq
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Camélia Bellemou
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Maxime Estavoyer
- Universite Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, Inria, 69622 Villeurbanne, France; (M.E.); (F.L.); (L.P.-M.)
| | - Florentin Lecomte
- Universite Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, Inria, 69622 Villeurbanne, France; (M.E.); (F.L.); (L.P.-M.)
| | - Michel Bourguignon
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
- Département de Biophysique et Médecine Nucléaire, Université Paris Saclay, Versailles St. Quentin-en-Yvelines, 78035 Versailles, France
| | - Laurent Pujo-Menjouet
- Universite Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, Inria, 69622 Villeurbanne, France; (M.E.); (F.L.); (L.P.-M.)
| | - Nicolas Foray
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| |
Collapse
|
2
|
Miranda S, Vermeesen R, Janssen A, Rehnberg E, Etlioglu E, Baatout S, Tabury K, Baselet B. Effects of simulated space conditions on CD4+ T cells: a multi modal analysis. Front Immunol 2024; 15:1443936. [PMID: 39286254 PMCID: PMC11402665 DOI: 10.3389/fimmu.2024.1443936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction The immune system is an intricate network of cellular components that safeguards against pathogens and aberrant cells, with CD4+ T cells playing a central role in this process. Human space travel presents unique health challenges, such as heavy ion ionizing radiation, microgravity, and psychological stress, which can collectively impede immune function. The aim of this research was to examine the consequences of simulated space stressors on CD4+ T cell activation, cytokine production, and gene expression. Methods CD4+ T cells were obtained from healthy individuals and subjected to Fe ion particle radiation, Photon irradiation, simulated microgravity, and hydrocortisone, either individually or in different combinations. Cytokine levels for Th1 and Th2 cells were determined using multiplex Luminex assays, and RNA sequencing was used to investigate gene expression patterns and identify essential genes and pathways impacted by these stressors. Results Simulated microgravity exposure resulted in an apparent Th1 to Th2 shift, evidenced on the level of cytokine secretion as well as altered gene expression. RNA sequencing analysis showed that several gene pathways were altered, particularly in response to Fe ions irradiation and simulated microgravity exposures. Individually, each space stressor caused differential gene expression, while the combination of stressors revealed complex interactions. Discussion The research findings underscore the substantial influence of the space exposome on immune function, particularly in the regulation of T cell responses. Future work should focus expanding the limited knowledge in this field. Comprehending these modifications will be essential for devising effective strategies to safeguard the health of astronauts during extended space missions. Conclusion The effects of simulated space stressors on CD4+ T cell function are substantial, implying that space travel poses a potential threat to immune health. Additional research is necessary to investigate the intricate relationship between space stressors and to develop effective countermeasures to mitigate these consequences.
Collapse
Affiliation(s)
- Silvana Miranda
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Emil Rehnberg
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Emre Etlioglu
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, United States
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| |
Collapse
|
3
|
Cowen D, Zhang R, Komorowski M. Infections in long-duration space missions. THE LANCET. MICROBE 2024; 5:100875. [PMID: 38861994 DOI: 10.1016/s2666-5247(24)00098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 06/13/2024]
Abstract
As government space agencies and private companies announce plans for deep space exploration and colonisation, prioritisation of medical preparedness is becoming crucial. Among all medical conditions, infections pose one of the biggest threats to astronaut health and mission success. To gain a comprehensive understanding of these risks, we review the measured and estimated incidence of infections in space, effect of space environment on the human immune system and microbial behaviour, current preventive and management strategies for infections, and future perspectives for diagnosis and treatment. This information will enable space agencies to enhance their comprehension of the risk of infection in space, highlight gaps in knowledge, aid better crew preparation, and potentially contribute to sepsis management in terrestrial settings, including not only isolated or austere environments but also conventional clinical settings.
Collapse
Affiliation(s)
- Daniel Cowen
- School of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | | | - Matthieu Komorowski
- Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
4
|
Hussain I, Ullah R, Simran BFNU, Kaur P, Kumar M, Raj R, Faraz M, Mehmoodi A, Malik J. Cardiovascular effects of long-duration space flight. Health Sci Rep 2024; 7:e2305. [PMID: 39135704 PMCID: PMC11318032 DOI: 10.1002/hsr2.2305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/10/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Early studies exploring the physiological effects of space travel have indicated the body's capacity for reversible adaptation. However, the impact of long-duration spaceflight, exceeding 6 months, presents more intricate challenges. Effects on the Cardiovascular CV System Extended exposure to microgravity and radiation profoundly affects the CV system. Notable phenomena include fluid shifts toward the head and modified arterial pressure. These changes disrupt blood pressure regulation and elevate cardiac output. Additionally, the loss of venous compression leads to a reduction in central venous pressure. Fluid and Plasma Volume Changes The displacement of fluid from the vascular system to the interstitium, driven by baroreceptor stimulation, results in a 10%-15% decline in plasma volume. Cardiac Muscle and Hematocrit Variations Intriguingly, despite potential increases in cardiac workload, cardiac muscle atrophy and perplexing variations in hematocrit levels have been observed. The mechanism underlying atrophy appears to involve a shift in protein synthesis from the endoplasmic reticulum to the mitochondria via mortalin-mediated mechanisms. Arrhythmias and QT Interval Prolongation Instances of arrhythmias have been recurrently documented, although generally nonlethal, in both Russian and American space missions. Long-duration spaceflight has been associated with the prolongation of the QT interval, particularly in extended missions. Radiation Effects Exposure of the heart to the proton and heavy ion radiation pervasive in deep space contributes to coronary artery degeneration, augmented aortic stiffness, and carotid intima thickening through collagen-mediated processes. Moreover, it accelerates the onset of atherosclerosis and triggers proinflammatory responses. Reentry and Postflight Challenges Upon reentry, astronauts frequently experience orthostatic intolerance and altered sympathetic responses, which bear potential hazards in scenarios requiring rapid mobilization or evacuation. Conclusion Consequently, careful monitoring of these cardiac risks is imperative for forthcoming missions. While early studies illuminate the adaptability of the body to space travel's challenges, the intricacies of long-duration missions and their effects on the CV system necessitate continued investigation and vigilance to ensure astronaut health and mission success.
Collapse
Affiliation(s)
- Iqbal Hussain
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Rehmat Ullah
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | | | - Parvinder Kaur
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Mahendra Kumar
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Rohan Raj
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Maria Faraz
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Amin Mehmoodi
- Department of MedicineIbn e Seena HospitalKabulAfghanistan
| | - Jahanzeb Malik
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| |
Collapse
|
5
|
Wu W, Ren J, Han M, Huang B. Influence of gut microbiome on metabolic diseases: a new perspective based on microgravity. J Diabetes Metab Disord 2024; 23:353-364. [PMID: 38932858 PMCID: PMC11196560 DOI: 10.1007/s40200-024-01394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/28/2024] [Indexed: 06/28/2024]
Abstract
Purpose Microgravity, characterized by gravity levels of 10-3-10-6g, has been found to significantly impair various physiological systems in astronauts, including cardiovascular function, bone density, and metabolism. With the recent surge in human spaceflight, understanding the impact of microgravity on biological health has become paramount. Methods A comprehensive literature search was performed using the PubMed database to identify relevant publications pertaining to the interplay between gut microbiome, microgravity, space environment, and metabolic diseases. Results This comprehensive review primarily focuses on the progress made in investigating the gut microbiome and its association with metabolic diseases under microgravity conditions. Microgravity induces notable alterations in the composition, diversity, and functionality of the gut microbiome. These changes hold direct implications for metabolic disorders such as cardiovascular disease (CVD), bone metabolism disorders, energy metabolism dysregulation, liver dysfunction, and complications during pregnancy. Conclusion This novel perspective is crucial for preparing for deep space exploration and interstellar migration, where understanding the complex interplay between the gut microbiome and metabolic health becomes indispensable.
Collapse
Affiliation(s)
- Wanxin Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui China
| | - Junjie Ren
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui China
| | - Maozhen Han
- School of Life Sciences, Anhui Medical University, Hefei, 230032 Anhui China
| | - Binbin Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui China
| |
Collapse
|
6
|
Zhou W, Li Y, Hou Y, Dan W, Chen L, Shi F, Zhao F, Fang L. Simulated microgravity increases CD226 + Lin - CD117 - Sca1 + mesenchymal stem cells in mice. Physiol Rep 2024; 12:e15971. [PMID: 38467556 DOI: 10.14814/phy2.15971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Microgravity is one of the most common causes counting for the bone loss. Mesenchymal stem cells (MSCs) contribute greatly to the differentiation and function of bone related cells. The development of novel MSCs biomarkers is critical for implementing effective therapies for microgravity induced bone loss. We aimed to find the new molecules involved in the differentiation and function of MSCs in mouse simulated microgravity model. We found CD226 was preferentially expressed on a subset of MSCs. Simulation of microgravity treatment significantly increased the proportion of CD226+ Lin- CD117- Sca1+ MSCs. The CD226+ MSCs produced higher IL-6, M-CSF, RANKL and lower CD200 expression, and promoted osteoclast differentiation. This study provides pivotal information to understand the role of CD226 in MSCs, and inspires new ideas for prevention of bone loss related diseases.
Collapse
Affiliation(s)
- Wenjing Zhou
- College of Life Sciences, Northwest University, Xi' an, China
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yi Li
- Department of Immunology, Fourth Military Medical University, Xi'an, China
- Medical School of Yan'an University, Yan'an, China
| | - Yongli Hou
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Wenli Dan
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Fang Zhao
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Liang Fang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Mahmood R, Shaik T, Kaur IP, Gupta V, Shaik A, Anamika F, Garg N, Jain R. Cardiovascular Challenges Beyond Earth: Investigating the Impact of Space Travel on Astronauts' Cardiovascular Health. Cardiol Rev 2024:00045415-990000000-00194. [PMID: 38230953 DOI: 10.1097/crd.0000000000000642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In the coming decades, as humanity aims to establish a presence on Mars, there is a growing significance in comprehending, monitoring, and controlling the diverse health challenges arising from space exploration. The extended exposure to microgravity during space missions leads to various physical alterations in astronauts, such as shifts in bodily fluids, reduced plasma volume, loss of bone density, muscle wasting, and cardiovascular deconditioning. These changes can ultimately lead to orthostatic intolerance, underscoring the increasing importance of addressing these health risks. Astronauts are exposed to cosmic radiation consisting of high-energy particles from various sources, including solar cosmic rays and galactic cosmic rays. These radiations can impact the electrical signals in the heart, potentially causing irregular heart rhythms. Understanding the risks to the heart and blood circulation brought on by exposure to space radiation and the overall stress of spaceflight is essential and this article reviews the cardiovascular effects of space travel on astronauts.
Collapse
Affiliation(s)
- Ramsha Mahmood
- From the Department of Internal Medicine, Avalon University School of Medicine, Willemstad, Curacao
| | - Tanveer Shaik
- From the Department of Internal Medicine, Avalon University School of Medicine, Willemstad, Curacao
| | - Inder P Kaur
- Department of Internal Medicine, Preventive Medicine Resident, University of Mississippi Medical Center, Jackson, MS
| | - Vasu Gupta
- Department of Internal Medicine, Dayanand Medical College, Ludhiana, Punjab, India
| | | | - Fnu Anamika
- Department of Internal Medicine, University College of Medical Sciences, New Delhi, India
| | - Nikita Garg
- Department of Paediatrics, Children's Hospital of Michigan, Detroit, MI; and
| | - Rohit Jain
- Department of Internal Medicine, Penn State Milton S Hershey Medical Center, Hershey, PA
| |
Collapse
|
8
|
Dobney W, Mols L, Mistry D, Tabury K, Baselet B, Baatout S. Evaluation of deep space exploration risks and mitigations against radiation and microgravity. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1225034. [PMID: 39355042 PMCID: PMC11440958 DOI: 10.3389/fnume.2023.1225034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2024]
Abstract
Ionizing radiation and microgravity are two considerable health risks encountered during deep space exploration. Both have deleterious effects on the human body. On one hand, weightlessness is known to induce a weakening of the immune system, delayed wound healing and musculoskeletal, cardiovascular, and sensorimotor deconditioning. On the other hand, radiation exposure can lead to long-term health effects such as cancer and cataracts as well as have an adverse effect on the central nervous and cardiovascular systems. Ionizing radiation originates from three main sources in space: galactic cosmic radiation, solar particle events and solar winds. Furthermore, inside the spacecraft and inside certain space habitats on Lunar and Martian surfaces, the crew is exposed to intravehicular radiation, which arises from nuclear reactions between space radiation and matter. Besides the approaches already in use, such as radiation shielding materials (such as aluminium, water or polyethylene), alternative shielding materials (including boron nanotubes, complex hybrids, composite hybrid materials, and regolith) and active shielding (using fields to deflect radiation particles) are being investigated for their abilities to mitigate the effects of ionizing radiation. From a biological point of view, it can be predicted that exposure to ionizing radiation during missions beyond Low Earth Orbit (LEO) will affect the human body in undesirable ways, e.g., increasing the risks of cataracts, cardiovascular and central nervous system diseases, carcinogenesis, as well as accelerated ageing. Therefore, it is necessary to assess the risks related to deep space exploration and to develop mitigation strategies to reduce these risks to a tolerable level. By using biomarkers for radiation sensitivity, space agencies are developing extensive personalised medical examination programmes to determine an astronaut's vulnerability to radiation. Moreover, researchers are developing pharmacological solutions (e.g., radioprotectors and radiomitigators) to proactively or reactively protect astronauts during deep space exploration. Finally, research is necessary to develop more effective countermeasures for use in future human space missions, which can also lead to improvements to medical care on Earth. This review will discuss the risks space travel beyond LEO poses to astronauts, methods to monitor astronauts' health, and possible approaches to mitigate these risks.
Collapse
Affiliation(s)
- William Dobney
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- School of Aeronautical, Automotive, Chemical and Materials Engineering, Loughborough University, Loughborough, United Kingdom
| | - Louise Mols
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Dhruti Mistry
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, United States
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
- Department of Molecular Biotechnology, UGhent, Gent, Belgium
- Department of Human Structure & Repair, UGhent, Gent, Belgium
| |
Collapse
|