1
|
Costa J, Membrino A, Zanchetta C, Rizzato S, Cortiula F, Rossetto C, Pelizzari G, Aprile G, Macerelli M. The Role of ctDNA in the Management of Non-Small-Cell Lung Cancer in the AI and NGS Era. Int J Mol Sci 2024; 25:13669. [PMID: 39769431 PMCID: PMC11727717 DOI: 10.3390/ijms252413669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Liquid biopsy (LB) involves the analysis of circulating tumour-derived DNA (ctDNA), providing a minimally invasive method for gathering both quantitative and qualitative information. Genomic analysis of ctDNA through next-generation sequencing (NGS) enables comprehensive genetic profiling of tumours, including non-driver alterations that offer prognostic insights. LB can be applied in both early-stage disease settings, for the diagnosis and monitoring of minimal residual disease (MRD), and advanced disease settings, for monitoring treatment response and understanding the mechanisms behind disease progression and tumour heterogeneity. Currently, LB has limited use in clinical practice, primarily due to its significant costs, limited diagnostic yield, and uncertain prognostic role. The application of artificial intelligence (AI) in the medical field is a promising approach to processing extensive information and applying it to individual cases to enhance therapeutic decision-making and refine risk assessment.
Collapse
Affiliation(s)
- Jacopo Costa
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (A.M.); (C.Z.)
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy; (S.R.); (F.C.); (C.R.); (G.P.); (G.A.); (M.M.)
| | - Alexandro Membrino
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (A.M.); (C.Z.)
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy; (S.R.); (F.C.); (C.R.); (G.P.); (G.A.); (M.M.)
| | - Carol Zanchetta
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (A.M.); (C.Z.)
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy; (S.R.); (F.C.); (C.R.); (G.P.); (G.A.); (M.M.)
| | - Simona Rizzato
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy; (S.R.); (F.C.); (C.R.); (G.P.); (G.A.); (M.M.)
| | - Francesco Cortiula
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy; (S.R.); (F.C.); (C.R.); (G.P.); (G.A.); (M.M.)
- Department of Respiratory Medicine, Maastricht University Medical Centre, GROW School for Oncology and Reproduction, 6229 ER Maastricht, The Netherlands
| | - Ciro Rossetto
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy; (S.R.); (F.C.); (C.R.); (G.P.); (G.A.); (M.M.)
| | - Giacomo Pelizzari
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy; (S.R.); (F.C.); (C.R.); (G.P.); (G.A.); (M.M.)
| | - Giuseppe Aprile
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy; (S.R.); (F.C.); (C.R.); (G.P.); (G.A.); (M.M.)
| | - Marianna Macerelli
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy; (S.R.); (F.C.); (C.R.); (G.P.); (G.A.); (M.M.)
| |
Collapse
|
2
|
Du J, Zhang J, Liu D, Gao L, Liao H, Chu L, Lin J, Li W, Meng X, Zou F, Cai S, Zou M, Dong H. 1G6-D7 Inhibits Homologous Recombination Repair by Targeting Extracellular HSP90α to Promote Apoptosis in Non-Small Cell Lung Cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:4884-4898. [PMID: 38899512 DOI: 10.1002/tox.24356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Despite recent advances in treatment, non-small cell lung cancer (NSCLC) continues to have a high mortality rate. Currently, NSCLC pathogenesis requires further investigation, and therapeutic drugs are still under development. Homologous recombination repair (HRR) repairs severe DNA double-strand breaks. Homologous recombination repair deficiency (HRD) occurs when HRR is impaired and causes irreparable double-strand DNA damage, leading to genomic instability and increasing the risk of cancer development. Poly(ADP-ribose) polymerase (PARP) inhibitors can effectively treat HRD-positive tumors. Extracellular heat shock protein 90α (eHSP90α) is highly expressed in hypoxic environments and inhibits apoptosis, thereby increasing cellular tolerance. Here, we investigated the relationship between eHSP90α and HRR in NSCLC. DNA damage models were established in NSCLC cell lines (A549 and H1299). The activation of DNA damage and HRR markers, apoptosis, proliferation, and migration were investigated. In vivo tumor models were established using BALB/c nude mice and A549 cells. We found that human recombinant HSP90α stimulation further activated HRR and reduced DNA damage extent; however, eHSP90α monoclonal antibody, 1G6-D7, effectively inhibited HRR. HRR inhibition and increased apoptosis were observed after LRP1 knockdown; this effect could not be reversed with hrHSP90α addition. The combined use of 1G6-D7 and olaparib caused significant apoptosis and HRR inhibition in vitro and demonstrated promising anti-tumor effects in vivo. Extracellular HSP90α may be involved in HRR in NSCLC through LRP1. The combined use of 1G6-D7 and PARP inhibitors may exert anti-tumor effects by inhibiting DNA repair and further inducing apoptosis of NSCLC cells.
Collapse
Affiliation(s)
- Jiangzhou Du
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinming Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Gao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Liao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lanhe Chu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Li
- Department of Dermatology, The USC-Norris Comprehensive Cancer Center, University of Southern California Keck Medical Center, California, Los Angeles, USA
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengchen Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|