1
|
Vrettou CS, Issaris V, Kokkoris S, Poupouzas G, Keskinidou C, Lotsios NS, Kotanidou A, Orfanos SE, Dimopoulou I, Vassiliou AG. Exploring Aquaporins in Human Studies: Mechanisms and Therapeutic Potential in Critical Illness. Life (Basel) 2024; 14:1688. [PMID: 39768394 PMCID: PMC11676363 DOI: 10.3390/life14121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Aquaporins (AQPs) are membrane proteins facilitating water and other small solutes to be transported across cell membranes. They are crucial in maintaining cellular homeostasis by regulating water permeability in various tissues. Moreover, they regulate cell migration, signaling pathways, inflammation, tumor growth, and metastasis. In critically ill patients, such as trauma, sepsis, and patients with acute respiratory distress syndrome (ARDS), which are frequently encountered in intensive care units (ICUs), water transport regulation is crucial for maintaining homeostasis, as dysregulation can lead to edema or dehydration, with the latter also implicating hemodynamic compromise. Indeed, AQPs are involved in fluid transport in various organs, including the lungs, kidneys, and brain, where their dysfunction can exacerbate conditions like ARDS, acute kidney injury (AKI), or cerebral edema. In this review, we discuss the implication of AQPs in the clinical entities frequently encountered in ICUs, such as systemic inflammation and sepsis, ARDS, AKI, and brain edema due to different types of primary brain injury from a clinical perspective. Current and possible future therapeutic implications are also considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alice G. Vassiliou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (V.I.); (S.K.); (G.P.); (C.K.); (N.S.L.); (A.K.); (S.E.O.); (I.D.)
| |
Collapse
|
2
|
Jacob AT, Kumar AH, Halivana G, Lukose L, Nair G, Subeesh V. Bioinformatics-guided disproportionality analysis of sevoflurane-induced nephrogenic diabetes insipidus using the FDA Adverse Event Reporting System database. Br J Clin Pharmacol 2024; 90:1804-1810. [PMID: 37536932 DOI: 10.1111/bcp.15869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
AIMS Sevoflurane is an ether-based inhalational anaesthetic that induces and maintains general anaesthesia. Our study aimed to detect sevoflurane-induced nephrogenic diabetes insipidus using data mining algorithms (DMAs) and molecular docking. The FAERS database was analysed using OpenVigil 2.1 for disproportionality analysis. METHODS We analysed FAERS data from 2004 to 2022 to determine the incidence of nephrogenic diabetes insipidus associated with sevoflurane. Reporting odds ratios (RORs) and proportional reporting ratios (PRRs) with 95% confidence intervals were calculated. We also used molecular docking with AutoDock Vina to examine sevoflurane's binding affinity to relevant receptors. RESULTS A total of 554 nephrogenic diabetes insipidus cases were reported in FAERS, of which 2.5% (14 cases) were associated with sevoflurane. Positive signals were observed for sevoflurane with ROR of 76.012 (95% CI: 44.67-129.35) and PRR of 75.72 (χ2: 934.688). Of the 14 cases, 50% required hospitalization, 14% resulted in death, and the remaining cases were categorized as other outcomes. Molecular docking analysis showed that sevoflurane exhibited high binding affinity towards AQP2 (4NEF) and AVPR2 (6U1N) with docking scores of -4.9 and -5.3, respectively. CONCLUSIONS Sevoflurane use is significantly associated with the incidence of nephrogenic diabetes insipidus. Healthcare professionals should be cautious when using this medication and report any adverse events to regulatory agencies. Further research is needed to validate these findings and identify risk factors while performing statistical adjustments to prevent false-positives. Clinical monitoring is crucial to validate potential adverse effects of sevoflurane.
Collapse
Affiliation(s)
- Akhil T Jacob
- Department of Pharmacy Practice, Oxbridge College of Pharmacy, Bengaluru, India
| | - Ankitha Hari Kumar
- Department of Pharmacy Practice, Oxbridge College of Pharmacy, Bengaluru, India
| | - Gayethri Halivana
- Department of Pharmacy Practice, Oxbridge College of Pharmacy, Bengaluru, India
| | - Lipin Lukose
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Gouri Nair
- Department of Pharmacology, Faculty of Pharmacy, Ramaiah University of Applied Sciences, Bengaluru, India
| | - Viswam Subeesh
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
Duan DF, Liu M, Ma DY, Yan LJ, Huang YY, Chen Y, Jiang W, Tang X, Xiong AQ, Shi YY. Exploring Symptom Clusters in Chinese Patients with Diabetic Kidney Disease: A Network Analysis. Int J Gen Med 2024; 17:871-884. [PMID: 38468820 PMCID: PMC10926920 DOI: 10.2147/ijgm.s447921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Purpose The research on symptom management in patients with diabetic kidney disease (DKD) has shifted from separate symptoms to symptom clusters and networks recently. This study aimed to evaluate the unpleasant symptoms of DKD patients, and to investigate how these symptom clusters could affect patients. Methods 408 DKD patients were recruited in this cross-sectional study. The symptoms of DKD patients were measured using the modified Dialysis Symptom Index. Network analysis was employed to evaluate the symptom network and the characteristics of individual nodes, while factor analysis was utilized to identify symptom clusters. Results Blurred vision was the most prevalent symptom among DKD patients. The symptoms identified as the most distressing, severe, and frequent were light headache or dizziness, arteriovenous fistula/catheterization pain, and diarrhea, respectively. Five symptom clusters were obtained from factor analysis, and the most central symptom cluster in the entire symptom network was sexual dysfunction. Conclusion This study identified five symptom clusters in Chinese DKD patients, with sexual dysfunction emerging as the most central cluster. These findings carry significant clinical implications, underscoring the necessity of assessing symptom clusters and their associations to enhance symptom management in DKD patients. Further research is essential to elucidate the underlying mechanisms of symptoms and to clarify the associations among symptoms in DKD patients across different disease trajectories or treatment modalities.
Collapse
Affiliation(s)
- Di-Fei Duan
- West China School of Nursing, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Min Liu
- West China School of Nursing, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Deng-Yan Ma
- West China School of Nursing, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Lin-Jia Yan
- The Nethersole School of Nursing Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| | - Yue-Yang Huang
- West China School of Nursing, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Yi Chen
- West China School of Nursing, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Wei Jiang
- West China School of Nursing, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Xi Tang
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - An-Qi Xiong
- Department of Nursing, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan Province, People’s Republic of China
| | - Yun-Ying Shi
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
4
|
Trentin-Sonoda M, Cheff V, Gutsol A, Hébert RL. Sex-dependent effects of Canagliflozin on kidney protection in mice with combined hypertension-type 1 diabetes. PLoS One 2023; 18:e0295284. [PMID: 38055691 DOI: 10.1371/journal.pone.0295284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Canagliflozin (CANA) is a sodium-glucose cotransporter 2 (SGLT2) inhibitor with blood glucose lowering effects. CANA also promotes kidney protection in patients with cardiovascular diseases and type 2 diabetes (T2D), as well as in normoglycemic patients with hypertension or heart failure. Clinical studies, although conduct in both sexes, do not report sex-dependent differences in T2DM treated with CANA. However, the impact of CANA in type 1 diabetes, as well in sex-dependent outcomes in such cohort needs further understanding. To analyze the effects of CANA in mice with combined hypertension and type 1 diabetes, diabetes was induced by STZ injection (5 days, 50mg/kg/day) in both male and female 8 weeks old genetic hypertensive mice (Lin), whereas the control (Lin) received 0.1M sodium citrate injections. 8 weeks after STZ. Mice were fed either regular or CANA-infused diet for 4 weeks. 8 weeks after STZ, hyperglycemia was present in both male and female mice. CANA reversed BG increase mice fed regular diet. Male LinSTZ mice had elevated water intake, urine output, urinary albumin to creatinine ratio (ACR), kidney lesion score, and creatinine clearance compared to the Lin control group. Kidney injury was improved in male LinSTZ + CANA group in male mice. Water intake and urine output were not statistically significantly different in female LinSTZ compared to female LinSTZ+ CANA. Moreover, CANA did not improve kidney injury in female mice, showing no effect in creatinine clearance, lesion score and fibrosis when compared to LinSTZ fed regular diet. Here we show that Canagliflozin might exert different kidney protection effects in male compared to female mice with hypertension and type 1 diabetes. Sex-dimorphisms were previously found in the pathophysiology of diabetes induced by STZ. Therefore, we highlight the importance of in-depth investigation on sex-dependent effects of CANA, taking in consideration the unique characteristics of disease progression for each sex.
Collapse
Affiliation(s)
- Mayra Trentin-Sonoda
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Véronique Cheff
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alex Gutsol
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard L Hébert
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Pechlivanidou M, Xenou K, Tzanetakos D, Koutsos E, Stergiou C, Andreadou E, Voumvourakis K, Giannopoulos S, Kilidireas C, Tüzün E, Tsivgoulis G, Tzartos S, Tzartos J. Potential Role of Antibodies against Aquaporin-1 in Patients with Central Nervous System Demyelination. Int J Mol Sci 2023; 24:12982. [PMID: 37629163 PMCID: PMC10455752 DOI: 10.3390/ijms241612982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Aquaporins (AQPs; AQP0-AQP12) are water channels expressed in many and diverse cell types, participating in various functions of cells, tissues, and systems, including the central nervous system (CNS). AQP dysfunction and autoimmunity to AQPs are implicated in several diseases. The best-known example of autoimmunity against AQPs concerns the antibodies to AQP4 which are involved in the pathogenesis of neuromyelitis optica spectrum disorder (NMOSD), an autoimmune astrocytopathy, causing also CNS demyelination. The present review focuses on the discovery and the potential role of antibodies against AQP1 in the CNS, and their potential involvement in the pathophysiology of NMOSD. We describe (a) the several techniques developed for the detection of the AQP1-antibodies, with emphasis on methods that specifically identify antibodies targeting the extracellular domain of AQP1, i.e., those of potential pathogenic role, and (b) the available evidence supporting the pathogenic relevance of AQP1-antibodies in the NMOSD phenotype.
Collapse
Affiliation(s)
- Maria Pechlivanidou
- Tzartos NeuroDiagnostics, 11523 Athens, Greece; (M.P.); (K.X.); (E.K.); (C.S.); (S.T.)
| | - Konstantina Xenou
- Tzartos NeuroDiagnostics, 11523 Athens, Greece; (M.P.); (K.X.); (E.K.); (C.S.); (S.T.)
| | - Dimitrios Tzanetakos
- Second Department of Neurology ‘’Attikon’’ University Hospital, School of Medicine, National & Kapodistrian University of Athens, 12462 Athens, Greece; (D.T.); (K.V.); (S.G.); (G.T.)
| | - Emmanuel Koutsos
- Tzartos NeuroDiagnostics, 11523 Athens, Greece; (M.P.); (K.X.); (E.K.); (C.S.); (S.T.)
| | - Christos Stergiou
- Tzartos NeuroDiagnostics, 11523 Athens, Greece; (M.P.); (K.X.); (E.K.); (C.S.); (S.T.)
| | - Elisabeth Andreadou
- First Department of Neurology, ‘’Aiginiteion’’ University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (C.K.)
| | - Konstantinos Voumvourakis
- Second Department of Neurology ‘’Attikon’’ University Hospital, School of Medicine, National & Kapodistrian University of Athens, 12462 Athens, Greece; (D.T.); (K.V.); (S.G.); (G.T.)
| | - Sotirios Giannopoulos
- Second Department of Neurology ‘’Attikon’’ University Hospital, School of Medicine, National & Kapodistrian University of Athens, 12462 Athens, Greece; (D.T.); (K.V.); (S.G.); (G.T.)
| | - Constantinos Kilidireas
- First Department of Neurology, ‘’Aiginiteion’’ University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (C.K.)
- Second Department of Neurology, Henry Dunant Hospital Center, 11526 Athens, Greece
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey;
| | - Georgios Tsivgoulis
- Second Department of Neurology ‘’Attikon’’ University Hospital, School of Medicine, National & Kapodistrian University of Athens, 12462 Athens, Greece; (D.T.); (K.V.); (S.G.); (G.T.)
| | - Socrates Tzartos
- Tzartos NeuroDiagnostics, 11523 Athens, Greece; (M.P.); (K.X.); (E.K.); (C.S.); (S.T.)
- Department of Neurobiology, Hellenic Pasteur Institute, 11521 Athens, Greece
- Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - John Tzartos
- Second Department of Neurology ‘’Attikon’’ University Hospital, School of Medicine, National & Kapodistrian University of Athens, 12462 Athens, Greece; (D.T.); (K.V.); (S.G.); (G.T.)
| |
Collapse
|
6
|
Makretskaya NA, Nanzanova US, Hamaganova IR, Eremina ER, Tiulpakov AN. [Clinical and laboratory characteristics of arginine vasopressin resistance, caused by a new homozygous mutation p.R113C in AQP2]. PROBLEMY ENDOKRINOLOGII 2023; 69:75-79. [PMID: 37448274 DOI: 10.14341/probl13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 07/15/2023]
Abstract
Congenital nephrogenic diabetes insipidus (CNDI, arginine vasopressin resistance) is a rare inherited disorder characterized by insensitivity of the kidney to the antidiuretic effect of vasopressin. NDI is clinically characterized by polyuria with hyposthenuria and nocturia and polydipsia. In the majority of cases, about 90%, nephrogenic diabetes insipidus is an X-linked recessive disorder caused by mutations in the AVP V2 receptor gene (AVPR2). In the remaining cases, about 10%, the disease is autosomal recessive or dominant and, for these patients, mutations in the aquaporin 2 gene (AQP2) have been reported. To date, the nucleotide variants registered in AQP2 were sporadic, there is no data on the presence of «frequent» mutations and the prevalence of the disease both among the global population and among individual ethnic groups. In this paper, we describe 12 cases of arginine vasopressin resistance caused by a new homozygous mutation p.R113C in AQP2 presented among the indigenous population of the Republic of Buryatia.
Collapse
Affiliation(s)
| | | | | | - E R Eremina
- Perinatal Center of Republica; Buryat State University; Scientific Centre for Family Health and Human Reproduction Problems
| | | |
Collapse
|
7
|
Olde Hanhof CJA, Dilmen E, Yousef Yengej FA, Latta F, Ammerlaan CME, Schreurs J, Hooijmaijers L, Jansen J, Rookmaaker MB, Orhon I, Verhaar MC, Hoenderop JG. Differentiated mouse kidney tubuloids as a novel in vitro model to study collecting duct physiology. Front Cell Dev Biol 2023; 11:1086823. [PMID: 36760360 PMCID: PMC9905633 DOI: 10.3389/fcell.2023.1086823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Kidney tubuloids are cell models that are derived from human or mouse renal epithelial cells and show high similarities with their in vivo counterparts. Tubuloids grow polarized in 3D, allow for long-term expansion, and represent multiple segments of the nephron, as shown by their gene expression pattern. In addition, human tubuloids form tight, functional barriers and have been succesfully used for drug testing. Our knowledge of mouse tubuloids, on the other hand, is only minimal. In this study, we further characterized mouse tubuloids and differentiated them towards the collecting duct, which led to a significant upregulation of collecting duct-specific mRNAs of genes and protein expression, including the water channel AQP2 and the sodium channel ENaC. Differentiation resulted in polarized expression of collecting duct water channels AQP2 and AQP3. Also, a physiological response to desmopressin and forskolin stimulation by translocation of AQP2 to the apical membrane was demonstrated. Furthermore, amiloride-sensitive ENaC-mediated sodium uptake was shown in differentiated tubuloids using radioactive tracer sodium. This study demonstrates that mouse tubuloids can be differentiated towards the collecting duct and exhibit collecting duct-specific function. This illustrates the potential use of mouse kidney tubuloids as novel in vitro models to study (patho)physiology of kidney diseases.
Collapse
Affiliation(s)
- C. J. A. Olde Hanhof
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - E. Dilmen
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - F. A. Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - F. Latta
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C. M. E. Ammerlaan
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. Schreurs
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - L. Hooijmaijers
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - J. Jansen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children’s Hospital, Nijmegen, Netherlands,Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - M. B. Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - I. Orhon
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - M. C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. G. Hoenderop
- Department of Molecular Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands,*Correspondence: J. G. Hoenderop,
| |
Collapse
|
8
|
Sodium Homeostasis, a Balance Necessary for Life. Nutrients 2023; 15:nu15020395. [PMID: 36678265 PMCID: PMC9862583 DOI: 10.3390/nu15020395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Body sodium (Na) levels must be maintained within a narrow range for the correct functioning of the organism (Na homeostasis). Na disorders include not only elevated levels of this solute (hypernatremia), as in diabetes insipidus, but also reduced levels (hyponatremia), as in cerebral salt wasting syndrome. The balance in body Na levels therefore requires a delicate equilibrium to be maintained between the ingestion and excretion of Na. Salt (NaCl) intake is processed by receptors in the tongue and digestive system, which transmit the information to the nucleus of the solitary tract via a neural pathway (chorda tympani/vagus nerves) and to circumventricular organs, including the subfornical organ and area postrema, via a humoral pathway (blood/cerebrospinal fluid). Circuits are formed that stimulate or inhibit homeostatic Na intake involving participation of the parabrachial nucleus, pre-locus coeruleus, medial tuberomammillary nuclei, median eminence, paraventricular and supraoptic nuclei, and other structures with reward properties such as the bed nucleus of the stria terminalis, central amygdala, and ventral tegmental area. Finally, the kidney uses neural signals (e.g., renal sympathetic nerves) and vascular (e.g., renal perfusion pressure) and humoral (e.g., renin-angiotensin-aldosterone system, cardiac natriuretic peptides, antidiuretic hormone, and oxytocin) factors to promote Na excretion or retention and thereby maintain extracellular fluid volume. All these intake and excretion processes are modulated by chemical messengers, many of which (e.g., aldosterone, angiotensin II, and oxytocin) have effects that are coordinated at peripheral and central level to ensure Na homeostasis.
Collapse
|
9
|
Yang LL, Xu Y, Qiu JL, Zhao QY, Li MM, Shi H. Congenital nephrogenic diabetes insipidus arginine vasopressin receptor 2 gene mutation at new site: A case report. World J Clin Cases 2022; 10:13443-13450. [PMID: 36683631 PMCID: PMC9850987 DOI: 10.12998/wjcc.v10.i36.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 12/08/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Congenital nephrogenic diabetes insipidus (CNDI) is a rare hereditary disorder. It is associated with mutations in the arginine vasopressin receptor 2 (AVPR2) gene and aquaporin 2 (AQP2) gene, and approximately 270 different mutation sites have been reported for AVPR2. Therefore, new mutations and new manifestations are crucial to complement the clinical deficiencies in the diagnosis of this disease. We report a case of a novel AVPR2 gene mutation locus and a new clinical mani-festation.
CASE SUMMARY We describe the case of a 48-d-old boy who presented with recurrent fever and diarrhea 5 d after birth. Laboratory tests showed electrolyte disturbances and low urine specific gravity, and imaging tests showed no abnormalities. Genetic testing revealed a novel X-linked recessive missense mutation, c.283 (exon 2) C>T (p.P95S). This mutation results in the substitution of a proline residue with a serine residue in the AVPR2 protein sequence. The diagnosis of CNDI was confirmed based on the AVPR2 gene mutation. The treatment strategy for this patient was divided into two stages, including physical cooling supplemented with appropriate amounts of water in the early stage and oral hydrochlorothia-zide (1-2 mg/kg) after a clear diagnosis. After follow-up of one and a half years, the patient gradually improved.
CONCLUSION AVPR2 gene mutations in new loci and new clinical symptoms help clinicians understand this disease and shorten the diagnosis cycle.
Collapse
Affiliation(s)
- Lu-Lu Yang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Yan Xu
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Jian-Li Qiu
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Qian-Yi Zhao
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Man-Man Li
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Hui Shi
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| |
Collapse
|
10
|
Yang M, Li C, Xue X, Wei W, Xing L, Feng J, Zhang Q. Analysis of curative effect of insulin external application on burn wounds of diabetic patients with different depths. Int Wound J 2022; 20:1393-1401. [PMID: 36336969 PMCID: PMC10088841 DOI: 10.1111/iwj.13987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 11/09/2022] Open
Abstract
To explore the curative effect of insulin external application on burn wounds of diabetic patients with different depths. A retrospective analysis of 114 diabetic burn patients in the First Hospital of Hebei Medical University from June 2019 to June 2022. According to the different treatment methods, they were divided into study group (insulin therapy) and control group (conventional therapy) with 57 cases in each. The wound healing time, dressing changes, scar healing after wound healing and adverse events were compared between two groups. Pain level, serum inflammatory factors, vascular endothelial growth factor (VEGF) and oxidative stress factors before and after treatment were compared. The wound healing time (17.23 ± 2.18 vs 20.31 ± 2.09 days) and the number of dressing changes (7.01 ± 1.23 vs 8.93 ± 1.32 times) in study group were significantly lower than those in control group (P < 0.05). Before treatment, there was no difference in pain level, VEGF, interleukin-1 (IL-1), tumour necrosis factor-α (TNF-α), malondialdehyde (MDA) and superoxide dismutase (SOD) between two groups (P > 0.05). However, the pain level, scar healing, IL-1, TNF-a and MDA in study group were significantly lower than those in control group after treatment (P < 0.05). And the VEGF and SOD in study group was significantly higher than that in control group (P < 0.05). External application of insulin can shorten the wound healing time of diabetic patients with different depths, reduce the number of dressing changes, promote scar healing after wound healing, relieve pain and reduce the level of inflammatory factors, which is worthy of clinical promotion.
Collapse
Affiliation(s)
- Meng Yang
- Department of Burn and Plastic Surgery The First Hospital of Hebei Medical University Shijiazhuang China
| | - Cuikun Li
- Department of Burn and Plastic Surgery The First Hospital of Hebei Medical University Shijiazhuang China
| | - Xin Xue
- Department of Burn and Plastic Surgery The First Hospital of Hebei Medical University Shijiazhuang China
| | - Wei Wei
- Department of Burn and Plastic Surgery The First Hospital of Hebei Medical University Shijiazhuang China
| | - Liang Xing
- Department of Burn and Plastic Surgery The First Hospital of Hebei Medical University Shijiazhuang China
| | - Jianke Feng
- Department of Burn and Plastic Surgery The First Hospital of Hebei Medical University Shijiazhuang China
| | - Qingfu Zhang
- Department of Burn and Plastic Surgery The First Hospital of Hebei Medical University Shijiazhuang China
| |
Collapse
|
11
|
Tseng YS, Swaney N, Cashen K, Jain A, Ma N, Prout A. Nephrogenic diabetes insipidus with new onset diabetic ketoacidosis in a child - challenges in fluid and electrolyte management. Pediatr Nephrol 2022; 37:2209-2212. [PMID: 35286454 DOI: 10.1007/s00467-022-05436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 10/18/2022]
Abstract
BACKGROUND Intensive care management of diabetic ketoacidosis (DKA) is targeted to reverse ketoacidosis, replace the fluid deficit, and correct electrolyte imbalances. Adequate restoration of circulation and treatment of shock is key. Pediatric treatment guidelines of DKA have become standard but complexities arise in children with co-morbidities. Congenital nephrogenic diabetes insipidus (NDI) is a rare hereditary disorder characterized by impaired kidney concentrating ability and treatment is challenging. NDI and DKA together have only been previously reported in one patient. CASE DIAGNOSIS/TREATMENT We present the case of a 12-year-old male with NDI and new onset DKA with hyperosmolality. He presented in hypovolemic shock with altered mental status. Rehydration was challenging and isotonic fluid resuscitation resulted in increased urine output and worsening hyperosmolar state. Use of hypotonic fluid and insulin infusion led to lowering of serum osmolality faster than desired and increased the risk for cerebral edema. Despite the rapid decline in serum osmolality his mental status improved so we allowed him to drink free water mixed with potassium phosphorous every hour to match his urinary output (1:1 replacement) and continued 0.45% sodium chloride based on his fluid deficit and replacement rate with improvement in his clinical status. CONCLUSIONS This case illustrates the challenges in managing hypovolemic shock, hyperosmolality, and extreme electrolyte derangements driven by NDI and DKA, as both disease processes drive excessive urine output, electrolyte and acid-base imbalances, and rapid fluctuation in osmolality.
Collapse
Affiliation(s)
- Yu-Shan Tseng
- Divisions of Critical Care Medicine and Nephrology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA. .,Central Michigan University School of Medicine, Mount Pleasant, MI, USA. .,Division of Critical Care, Department of Pediatrics, Carle Foundation Hospital, Urbana, IL, USA. .,Carle Illinois College of Medicine, Urbana, IL, USA.
| | - Nicole Swaney
- Divisions of Critical Care Medicine and Nephrology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA.,Central Michigan University School of Medicine, Mount Pleasant, MI, USA
| | - Katherine Cashen
- Duke Children's Hospital, Division of Critical Care Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Amrish Jain
- Divisions of Critical Care Medicine and Nephrology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA.,Central Michigan University School of Medicine, Mount Pleasant, MI, USA
| | - Nina Ma
- Divisions of Critical Care Medicine and Nephrology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA.,Central Michigan University School of Medicine, Mount Pleasant, MI, USA
| | - Andrew Prout
- Divisions of Critical Care Medicine and Nephrology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA.,Central Michigan University School of Medicine, Mount Pleasant, MI, USA
| |
Collapse
|
12
|
Vaz de Castro PAS, Bitencourt L, de Oliveira Campos JL, Fischer BL, Soares de Brito SBC, Soares BS, Drummond JB, Simões E Silva AC. Nephrogenic diabetes insipidus: a comprehensive overview. J Pediatr Endocrinol Metab 2022; 35:421-434. [PMID: 35146976 DOI: 10.1515/jpem-2021-0566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
Abstract
Nephrogenic diabetes insipidus (NDI) is characterized by the inability to concentrate urine that results in polyuria and polydipsia, despite having normal or elevated plasma concentrations of arginine vasopressin (AVP). In this study, we review the clinical aspects and diagnosis of NDI, the various etiologies, current treatment options and potential future developments. NDI has different clinical manifestations and approaches according to the etiology. Hereditary forms of NDI are mainly caused by mutations in the genes that encode key proteins in the AVP signaling pathway, while acquired causes are normally associated with specific drug exposure, especially lithium, and hydroelectrolytic disorders. Clinical manifestations of the disease vary according to the degree of dehydration and hyperosmolality, being worse when renal water losses cannot be properly compensated by fluid intake. Regarding the diagnosis of NDI, it is important to consider the symptoms of the patient and the diagnostic tests, including the water deprivation test and the baseline plasma copeptin measurement, a stable surrogate biomarker of AVP release. Without proper treatment, patients may developcomplications leading to high morbidity and mortality, such as severe dehydration and hypernatremia. In that sense, the treatment of NDI consists in decreasing the urine output, while allowing appropriate fluid balance, normonatremia, and ensuring an acceptable quality of life. Therefore, therapeutic options include nonpharmacological interventions, including sufficient water intake and a low-sodium diet, and pharmacological treatment. The main medications used for NDI are thiazide diuretics, nonsteroidal anti-inflammatory drugs (NSAIDs), and amiloride, used isolated or in combination.
Collapse
Affiliation(s)
- Pedro Alves Soares Vaz de Castro
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Letícia Bitencourt
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana Lacerda de Oliveira Campos
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bruna Luisa Fischer
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Stephanie Bruna Camilo Soares de Brito
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Beatriz Santana Soares
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, UFMG, Belo Horizonte, Brazil
| | - Juliana Beaudette Drummond
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, UFMG, Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
13
|
He Y, Tan J, Han X. High-Resolution Computer Tomography Image Features of Lungs for Patients with Type 2 Diabetes under the Faster-Region Recurrent Convolutional Neural Network Algorithm. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4147365. [PMID: 35509859 PMCID: PMC9061003 DOI: 10.1155/2022/4147365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/11/2022] [Accepted: 03/30/2022] [Indexed: 12/17/2022]
Abstract
The objective of this study was to adopt the high-resolution computed tomography (HRCT) technology based on the faster-region recurrent convolutional neural network (Faster-RCNN) algorithm to evaluate the lung infection in patients with type 2 diabetes, so as to analyze the application value of imaging features in the assessment of pulmonary disease in type 2 diabetes. In this study, 176 patients with type 2 diabetes were selected as the research objects, and they were divided into different groups based on gender, course of disease, age, glycosylated hemoglobin level (HbA1c), 2 h C peptide (2 h C-P) after meal, fasting C peptide (FC-P), and complications. The research objects were performed with HRCT scan, and the Faster-RCNN algorithm model was built to obtain the imaging features. The relationships between HRCT imaging features and 2 h C-P, FC-P, HbA1c, gender, course of disease, age, and complications were analyzed comprehensively. The results showed that there were no significant differences in HRCT scores between male and female patients, patients of various ages, and patients with different HbA1c contents (P > 0.05). As the course of disease and complications increased, HRCT scores of patients increased obviously (P < 0.05). The HRCT score decreased dramatically with the increase in the contents of 2 h C-P and FC-P after the meal (P < 0.05). In addition, the results of the Spearman rank correlation analysis showed that the course of disease and complications were positively correlated with the HRCT scores, while the 2 h C-P and FC-P levels after meal were negatively correlated with the HRCT scores. The receiver operating curve (ROC) showed that the accuracy, specificity, and sensitivity of HRCT imaging based on Faster-RCNN algorithm were 90.12%, 90.43%, and 83.64%, respectively, in diagnosing lung infection of patients with type 2 diabetes. In summary, the HRCT imaging features based on the Faster-RCNN algorithm can provide effective reference information for the diagnosis and condition assessment of lung infection in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Yumei He
- Department of General Medicine, Affiliated Hospital of Yan'an University, Yan'an, 716000 Shaanxi, China
| | - Juan Tan
- Department of Traditional Chinese Medicine, Affiliated Hospital of Yan'an University, Yan'an, 716000 Shaanxi, China
| | - Xiuping Han
- Department of General Medicine, Affiliated Hospital of Yan'an University, Yan'an, 716000 Shaanxi, China
| |
Collapse
|
14
|
Li J, Jia Y, Qin Y, Peng Z, Wang G. Clinical validity of the smallest oblique sagittal area of the neural foramen in patients with suspected cervical spondylotic radiculopathy. J Orthop Surg (Hong Kong) 2022; 30:23094990211073628. [PMID: 35041554 DOI: 10.1177/23094990211073628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To evaluate the smallest oblique sagittal area of the neural foramen in detecting cervical spondylotic radiculopathy (CSR) and to determine its potential significance for treatment decisions. METHODS The subjects of the study were patients with CSR who visited the spine surgery from 2016 to 2019. All patients were compared according to the minimum oblique sagittal area and the cut-off point value, and they were divided into positive and negative parameters. The changes in neck disability index (NDI), Japanese Orthopaedic Association score (JOA), and visual analog scale (VAS) during the two treatment groups from baseline to at least 24 months of follow-up were compared. RESULTS In the surgery group, there was no significant difference in symptom improvement between patients with positive and negative parameters. In the non-surgical group, for patients with positive parameters, NDI decreased by 2.35, JOA increased by 0.88, and neck VAS score improved by 0.42. For patients with negative parameters, NDI decreased by 10.32, JOA increased by 2.86 on average, and neck VAS score improved by 2.46 points on average (both p<0.01 on t test). CONCLUSIONS Patients with both positive and negative parameters showed significant improvement in their symptoms after surgery, and the smallest oblique sagittal area of the neural foramen seems to be unable to predict the outcome of the surgery. However, in non-surgical patients, symptomatic improvement was more limited in patients with positive parameters than in those with negative parameters. This suggests that patients with positive parameters may be more suitable for surgery and those with negative parameters are more suitable for conservative treatment.
Collapse
Affiliation(s)
- Jin Li
- The People's Hospital of Baoan Shenzhen, Shenzhen, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yukun Jia
- The People's Hospital of Baoan Shenzhen, Shenzhen, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yuantian Qin
- Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhan Peng
- The People's Hospital of Baoan Shenzhen, Shenzhen, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guangye Wang
- The People's Hospital of Baoan Shenzhen, Shenzhen, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Ma W, Liang X, Su Z. Effects of a Chinese herbal extract on the intestinal tract and aquaporin in Adriamycin-induced nephropathy. Bioengineered 2022; 13:2732-2745. [PMID: 35068345 PMCID: PMC8973663 DOI: 10.1080/21655979.2021.2014620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Wuling Decoction is a traditional Chinese medicine that has been used to open knots, benefit water, transform Qi, return fluid, and has a significant effect on strengthening the spleen and removing dampness. To explore the effects of Wuling Decoction on the intestinal tract and aquaporin in Adriamycin-induced nephropathy, 45 specific pathogen free (SPF) Wistar rats were randomly divided into a blank control group (5 rats), Dosing control group (10 rats), Adriamycin nephropathy model group (10 rats), diarrhea group (10 rats), and an Adriamycin nephropathy diarrhea model group (10 rats). The tissue localization of aquaporin (AQP) was determined by immunohistochemistry. The expression of AQP mRNA and protein was measured by RT-PCR and western blot analysis, respectively. The results indicated that Wuling Decoction causes excretion of AQP2 through the urine, regulates AQP2 levels, and exerts diuretic and anti-diarrheal effects. It also regulates the levels of antidiuretic hormone (ADH) and arginine vasopressin (AVP), affects water absorption rate, and reduces the level of cyclic adenosine monophosphate (cAMP) in each tissue, thus reducing the absorption of AQP2 to water. Wuling Decoction promoted AQP2 expression in the nephropathy model group and inhibited AQP2 expression in the diarrhea group. Wuling Decoction increased the expression of aquaporin in the intestinal tract, reduced the water content of stool by promoting the absorption of water in the intestinal tract, inhibited the expression of aquaporin and its regulatory factors in nephridia tissue, and reduced the reabsorption of water to increase urine volume, to decrease the occurrence of diarrhea.
Collapse
Affiliation(s)
- Weizhong Ma
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Liang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuowei Su
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Clinical, Genetic and Functional Characterization of a Novel AVPR2 Missense Mutation in a Woman with X-Linked Recessive Nephrogenic Diabetes Insipidus. J Pers Med 2022; 12:jpm12010118. [PMID: 35055433 PMCID: PMC8779739 DOI: 10.3390/jpm12010118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022] Open
Abstract
Nephrogenic diabetes insipidus (NDI) is a rare disorder characterized by renal unresponsiveness to the hormone vasopressin, leading to excretion of large volumes of diluted urine. Mutations in the arginine vasopressin receptor-2 (AVPR2) gene cause congenital NDI and have an X-linked recessive inheritance. The disorder affects almost exclusively male family members, but female carriers occasionally present partial phenotypes due to skewed inactivation of the X-chromosome. Here, we report a rare case of a woman affected with X-linked recessive NDI, presenting an average urinary output of 12 L/day. Clinical and biochemical studies showed incomplete responses to water deprivation and vasopressin stimulation tests. Genetic analyses revealed a novel heterozygous missense mutation (c.493G > C, p.Ala165Pro) in the AVPR2 gene. Using a combination of in-silico protein modeling with human cellular models and molecular phenotyping, we provide functional evidence for phenotypic effects. The mutation destabilizes the helical structure of the AVPR2 transmembrane domains and disrupts its plasma membrane localization and downstream intracellular signaling pathways upon activation with its agonist vasopressin. These defects lead to deficient aquaporin 2 (AQP2) membrane translocation, explaining the inability to concentrate urine in this patient.
Collapse
|
17
|
Barnabei A, Strigari L, Corsello A, Paragliola RM, Iannantuono GM, Salvatori R, Corsello SM, Torino F. Grading Central Diabetes Insipidus Induced by Immune Checkpoint Inhibitors: A Challenging Task. Front Endocrinol (Lausanne) 2022; 13:840971. [PMID: 35388297 PMCID: PMC8978963 DOI: 10.3389/fendo.2022.840971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/08/2022] [Indexed: 12/26/2022] Open
Abstract
Central diabetes insipidus (CDI) is a rare endocrine disease deriving from an insufficient production or secretion of anti-diuretic hormone. Recently, CDI has been reported as a rare side effect triggered by immune checkpoint inhibitors (ICI) in cancer patients. Despite its current rarity, CDI triggered by ICI is expected to affect an increasing number of patients because of the expanding use of these effective drugs in a growing number of solid and hematologic malignancies. An appropriate assessment of the severity of adverse events induced by anticancer agents is crucial in their management, including dosing adjustment and temporary withdrawal or discontinuation treatment. However, assessment of the severity of CDI induced by ICI may be challenging, as its main signs and symptoms (polyuria, dehydration, weight loss, and hypernatremia) can be incompletely graded. Indeed, the current grading system of toxicity induced by anticancer treatments does not include polyuria. Additionally, dehydration in patients affected by diabetes insipidus, including ICI-induced CDI, is different in certain aspects from that due to other conditions seen in cancer patients, such as vomiting and diarrhea. This prompted us to reflect on the need to grade polyuria, and how to grade it, and to consider a specific grading system for dehydration associated with CDI induced by ICI. Here we propose a new grading system for polyuria and dehydration, as critical symptoms of the CDI syndrome occurring in patients on ICI treatment, to obtain better management of both the adverse event and the triggering drugs.
Collapse
Affiliation(s)
- Agnese Barnabei
- Endocrinology Unit, Presidio Ospedaliero Santo Spirito in Sassia, Azienda Sanitaria Locale Roma 1, Rome, Italy
| | - Lidia Strigari
- Medical Physics Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Corsello
- Department of Translational Medicine and Surgery, Unit of Endocrinology, Università Cattolica del Sacro Cuore-Fondazione Policlinico “Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Rosa Maria Paragliola
- Department of Translational Medicine and Surgery, Unit of Endocrinology, Università Cattolica del Sacro Cuore-Fondazione Policlinico “Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | | | - Roberto Salvatori
- Division of Endocrinology, Diabetes, and Metabolism and Pituitary Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Salvatore Maria Corsello
- Department of Translational Medicine and Surgery, Unit of Endocrinology, Università Cattolica del Sacro Cuore-Fondazione Policlinico “Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- UniCamillus Chair of Endocrinology, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology, Tor Vergata University of Rome, Rome, Italy
- *Correspondence: Francesco Torino,
| |
Collapse
|
18
|
Ikegawa K, Hachiya R, Akiba K, Hasegawa Y. Oral disintegrating desmopressin tablet is effective for partial congenital nephrogenic diabetes insipidus with AVPR2 mutation: a case report. Clin Pediatr Endocrinol 2022; 31:87-92. [PMID: 35431445 PMCID: PMC8981043 DOI: 10.1297/cpe.2021-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 01/24/2022] [Indexed: 11/06/2022] Open
Abstract
Congenital nephrogenic diabetes insipidus (NDI) is a rare disease that causes polydipsia
and polyuria, and there are currently no effective treatments for most cases, particularly
severe ones. The present report describes the case of a 1-yr-5-mo-old male patient with
partial congenital NDI who was successfully treated with oral disintegrating
1-deamino-8-D-arginine vasopressin (DDAVP). The patient presented with poor weight gain
and polydipsia (fluid, 1.5 L/d) and received a diagnosis of NDI after genetic analysis
revealed an AVPR2 mutation (c.383A>C, p.Y128S). His water-restricted
urine osmolality increased from 360 mOsm/kg/H2O to 667 mOsm/kg/H2O
after subcutaneous AVP injection, indicating that he had some urine concentrating ability.
Oral disintegrating DDAVP therapy was started at 360 µg/d with hydrochlorothiazide and
increased to 720 µg/d without any adverse effects. A 30% decrease in urine output and
water intake was followed by an increase in body weight. The present study is the first to
report the effectiveness and safety of oral disintegrating DDAVP in a patient with partial
congenital NDI due to an AVPR2 gene mutation. The severity of NDI at
which DDAVP therapy is the most effective remains to be determined.
Collapse
Affiliation(s)
- Kento Ikegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
| | - Rumi Hachiya
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
| | - Kazuhisa Akiba
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
| |
Collapse
|
19
|
Bitencourt L, Fischer BL, de Oliveira Campos JL, Vaz de Castro PAS, Soares de Brito SBC, Versiani CM, Soares BS, Drummond JB, Simões E Silva AC. The usefulness of copeptin for the diagnosis of nephrogenic diabetes insipidus in infancy: a case report. J Pediatr Endocrinol Metab 2021; 34:1475-1479. [PMID: 34291622 DOI: 10.1515/jpem-2021-0296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES We report a case of an infant with nephrogenic diabetes insipidus (NDI) diagnosed by the measurement of serum copeptin. There is only one study that previously evaluated the use of copeptin measurement in a pediatric patient. CASE PRESENTATION We present a 10-month-old child with polyuria-polydipsia syndrome (PPS) and hypernatremia that could not support water restriction due to increased risk of dehydration and worsening of his condition. Therefore, plasma measurement of copeptin allowed the diagnosis of NDI. CONCLUSIONS The water deprivation test (WDT) is considered the gold standard for diagnosis in PPS. However, WDT has serious limitations regarding its interpretation. Furthermore, the WDT can cause dehydration and hypernatremia, especially in young children. Therefore, the measurement of plasma copeptin seems to be a promising method to perform an earlier, safer, and accurate investigation of PPS. Up to now, our study is the second to report the usefulness of copeptin in children.
Collapse
Affiliation(s)
- Letícia Bitencourt
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bruna Luisa Fischer
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana Lacerda de Oliveira Campos
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Pedro Alves Soares Vaz de Castro
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Stephanie Bruna Camilo Soares de Brito
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Carolina Mazieiro Versiani
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, UFMG, Belo Horizonte, Brazil
| | - Beatriz Santana Soares
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, UFMG, Belo Horizonte, Brazil
| | - Juliana Beaudette Drummond
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, UFMG, Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
20
|
Ryznychuk MO, Pishak VP, Bacyuk-Ponych NV, Pishak OV. Hereditary tubulopathies accompanying polyuia. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Tubulopathies are a group of heterogeneous diseases that are manifested in the malfunction of the renal tubules. This review addresses tubulopathies associated with polyuria syndrome, namely renal glucosuria syndrome, nephrogenic diabetes insipidus and pseudohyperaldosteronism. Types of renal glucosuria are described, namely: type A, type B and the most severe type 0. Type A is characterized by a low filtration threshold and low glucose reabsorption. The type of inheritance is autosomal recessive. Type B, autosomal dominant, is characterized by uneven activity of glucose transport, in which its reabsorption is reduced only in some nephrons. That is, normal reabsorption of glucose is maintained, but the filtration threshold of the latter is reduced. Type 0 with a severe course is characterized by complete inability of epithelial cells of the proximal tubules to reabsorb glucose. Nephrogenic diabetes insipidus is a rare inherited disease caused by impaired response of the renal tubules to antidiuretic hormone (ADH). Depending on the degree of inability to concentrate urine, there are complete and partial forms. It is divided into nephrogenic diabetes insipidus type I (X-linked recessive); nephrogenic diabetes insipidus type II (autosomal recessive and autosomal dominant) and nephrogenic diabetes insipidus syndrome with dementia and intracerebral calcifications (type of inheritance remains unknown). Children with autosomal recessive type of inheritance suffer from the more severe disease course. Pseudohypoaldosteronism is characterized by a special condition of the renal tubules which is due to insufficient sensitivity of the tubular epithelium to aldosterone, which in turn leads to hyperaldosteronism, the development of hyponatremia, metabolic acidosis with hyperkalemia, polydipsia and polyuria, decreased sodium reabsorption and retardation of the child's physical development. The classification includes three syndromes of pseudohypoaldosteronism, namely: type I (PHA1), which is divided into PHA1A (autosomal dominant, renal), PHA1B (autosomal recessive, systemic); type II (PHA2; Gordon’s syndrome), type III (secondary), which develops as a result of renal pathology.
Collapse
|
21
|
Chen MC, Hsiao YC, Chang CC, Pan SF, Peng CW, Li YT, Liu CD, Liou JW, Hsu HJ. Valine-279 Deletion-Mutation on Arginine Vasopressin Receptor 2 Causes Obstruction in G-Protein Binding Site: A Clinical Nephrogenic Diabetes Insipidus Case and Its Sub-Molecular Pathogenic Analysis. Biomedicines 2021; 9:301. [PMID: 33804115 PMCID: PMC8002004 DOI: 10.3390/biomedicines9030301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
Congenital nephrogenic diabetes insipidus (CNDI) is a genetic disorder caused by mutations in arginine vasopressin receptor 2 (AVPR2) or aquaporin 2 genes, rendering collecting duct cells insensitive to the peptide hormone arginine vasopressin stimulation for water reabsorption. This study reports a first identified AVPR2 mutation in Taiwan and demonstrates our effort to understand the pathogenesis caused by applying computational structural analysis tools. The CNDI condition of an 8-month-old male patient was confirmed according to symptoms, family history, and DNA sequence analysis. The patient was identified to have a valine 279 deletion-mutation in the AVPR2 gene. Cellular experiments using mutant protein transfected cells revealed that mutated AVPR2 is expressed successfully in cells and localized on cell surfaces. We further analyzed the pathogenesis of the mutation at sub-molecular levels via long-term molecular dynamics (MD) simulations and structural analysis. The MD simulations showed while the structure of the extracellular ligand-binding domain remains unchanged, the mutation alters the direction of dynamic motion of AVPR2 transmembrane helix 6 toward the center of the G-protein binding site, obstructing the binding of G-protein, thus likely disabling downstream signaling. This study demonstrated that the computational approaches can be powerful tools for obtaining valuable information on the pathogenesis induced by mutations in G-protein-coupled receptors. These methods can also be helpful in providing clues on potential therapeutic strategies for CNDI.
Collapse
Affiliation(s)
- Ming-Chun Chen
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (M.-C.C.); (Y.-C.H.)
- Department of Pediatrics, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Yu-Chao Hsiao
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (M.-C.C.); (Y.-C.H.)
| | - Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Sheng-Feng Pan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (S.-F.P.); (Y.-T.L.)
| | - Chih-Wen Peng
- Department of Life Science, College of Science and Engineering, National Dong Hwa University, Hualien 974301, Taiwan; (C.-W.P.); (C.-D.L.)
| | - Ya-Tzu Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (S.-F.P.); (Y.-T.L.)
| | - Cheng-Der Liu
- Department of Life Science, College of Science and Engineering, National Dong Hwa University, Hualien 974301, Taiwan; (C.-W.P.); (C.-D.L.)
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (S.-F.P.); (Y.-T.L.)
| | - Hao-Jen Hsu
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (S.-F.P.); (Y.-T.L.)
- Department of Life Sciences, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
22
|
Inoue M, Nakai K, Mitsuiki K. Triamterene in lithium-induced nephrogenic diabetes insipidus: a case report. CEN Case Rep 2021; 10:64-68. [PMID: 32772236 PMCID: PMC7829309 DOI: 10.1007/s13730-020-00517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022] Open
Abstract
Lithium-induced nephrogenic diabetes insipidus (NDI) is a rare and difficult-to-treat condition. We describe the case of an 81-year-old woman with bipolar treated with lithium and no previous history of diabetes insipidus. She was hospitalized due to disturbance of consciousness and was diagnosed with, hypercalcemia, hyperparathyroidism, and NDI. Parathyroidectomy was contraindicated and parathyroid hormone level was improved insufficiently after cinacalcet initiation, percutaneous ethanol injection therapy was performed for the enlarged parathyroid gland. After improvement in hypercalcemia and unsuccessful indapamide treatment, triamterene was administrated to control polyuria. Lithium is one of the indispensable maintenance treatment options for bipolar disorder, but it has the side effect of NDI. Lithium enters the collecting duct's principal cells mainly via the epithelial sodium channel (ENaC) located on their apical membranes, ENaC shows high selectivity for both sodium and lithium, is upregulated by aldosterone, and inhibited by triamterene. To our knowledge, this is the first publication on triamterene use in lithium-induced NDI patients.
Collapse
Affiliation(s)
- Megumi Inoue
- Division of Nephrology and Dialysis Center, Japanese Red Cross Fukuoka Hospital, 3-1-1 Ogusu, Minami-ku, Fukuoka, 815-8555, Japan
| | - Kentaro Nakai
- Division of Nephrology and Dialysis Center, Japanese Red Cross Fukuoka Hospital, 3-1-1 Ogusu, Minami-ku, Fukuoka, 815-8555, Japan
| | - Koji Mitsuiki
- Division of Nephrology and Dialysis Center, Japanese Red Cross Fukuoka Hospital, 3-1-1 Ogusu, Minami-ku, Fukuoka, 815-8555, Japan.
| |
Collapse
|
23
|
De Sa HA, Chung S, Shaniuk PM. Sweet and Salty: Diabetic Ketoacidosis in a Patient With Nephrogenic Diabetes Insipidus. Cureus 2021; 13:e12682. [PMID: 33604216 PMCID: PMC7880854 DOI: 10.7759/cureus.12682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The co-existence of nephrogenic diabetes insipidus (NDI) with diabetes mellitus (DM) in a patient that presents in diabetic ketoacidosis (DKA) is rare and, to our knowledge, has not been described even in case reports. We report the case of a 16-year-old male with known NDI who presented to the pediatric emergency department (ED) for one day with generalized weakness and decreased appetite, found to be in moderate DKA from new-onset DM. The initial management of his dehydration and hyperosmolar state presented a unique challenge. Fluid resuscitation with isotonic fluids in a patient with NDI poses a risk of worsening hypernatremia, which can lead to seizures and death. However, the use of hypotonic fluids has the potential to lower serum osmolality too quickly, which can result in cerebral edema. Nephrology, endocrinology, and the pediatric intensive care unit (PICU) consultants were notified of this patient, and a discussion was coordinated between sub-specialists to determine the appropriate fluid resuscitation. The patient was allowed to drink free water in addition to receiving intravenous fluids (IVF) of dextrose 5% with 0.2% sodium chloride at a rate of one-and-a-half maintenance (150 mL/hr) in the ED prior to transfer to the PICU where insulin infusion was initiated. This case report provides guidance to inpatient providers on the management of patients with co-existent NDI and DM in DKA, a rare combination that requires thoughtful and urgent management.
Collapse
Affiliation(s)
- Hong A De Sa
- Internal Medicine-Pediatrics, University Hospitals Cleveland Medical Center/Rainbow Babies and Children's Hospital, Cleveland, USA
| | - Sunhee Chung
- Pediatric Emergency Medicine, Oregon Health & Science University, Portland, USA
| | - Paul M Shaniuk
- Medicine, Louis Stokes Cleveland VA Medical Center/Case Western Reserve University School of Medicine, Cleveland, USA
| |
Collapse
|
24
|
Priya G, Kalra S, Dasgupta A, Grewal E. Diabetes Insipidus: A Pragmatic Approach to Management. Cureus 2021; 13:e12498. [PMID: 33425560 PMCID: PMC7785480 DOI: 10.7759/cureus.12498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 11/05/2022] Open
Abstract
Diabetes insipidus (DI) is a disorder of water balance characterized by polyuria and polydipsia. It can occur due to genetic and acquired causes that affect the secretion or action of arginine vasopressin (AVP) or antidiuretic hormone (ADH).Markedly increased thirst and urination are not only quite distressing but also increases the risk of volume depletion and hypernatremia in severe situations. A careful diagnosis of the type of DI and its etiology is based on careful clinical evaluation, measurement of urine and serum osmolality, and water deprivation test. Management includes the correction of any water deficit and the use of specific pharmacological agents, including desmopressin, thiazides, and amiloride.
Collapse
Affiliation(s)
| | - Sanjay Kalra
- Endocrinology, Bharti Research Institute of Diabetes and Endocrinology (BRIDE), Karnal, IND
| | | | | |
Collapse
|
25
|
Abstract
The hormone arginine vasopressin (AVP) is a nonapeptide synthesized by hypothalamic magnocellular nuclei and secreted from the posterior pituitary into the bloodstream. It binds to AVP receptor 2 in the kidney to promote the insertion of aquaporin channels (AQP2) and antidiuretic responses. AVP secretion deficits produce central diabetes insipidus (CDI), while renal insensitivity to the antidiuretic effect of AVP causes nephrogenic diabetes insipidus (NDI). Hereditary and acquired forms of CDI and NDI generate hypotonic polyuria, polydipsia, hyperosmolality, and hypernatremia. The AVP mutant (Brattleboro) rat is the principal animal model of hereditary CDI, while neurohypophysectomy, pituitary stalk compression, hypophysectomy, and mediobasal hypothalamic lesions produce acquired CDI. In animals, hereditary NDI is mainly caused by mutations in AVP2R or AQP2 genes, while acquired NDI is most frequently induced by lithium. We report here on the determinants of the intake and excretion of water and mineral salts and on the different types of DI in humans. We then describe the hydromineral characteristics of these animal models and the responses observed after administration of hypertonic NaCl or when they are fed with low-sodium diets. Finally, we report on the effects of drugs such as AVP analogues and/or oxytocin, another neuropeptide that increases sodium excretion in animal models and humans with CDI, and sildenafil, a compound that increases the expression and function of AQP2 channels in animal models and humans with NDI.
Collapse
Affiliation(s)
- Javier Mahía
- Department of Psychobiology, and Mind, Brain and Behavior Research Center, University of Granada, Granada, Spain
| | - Antonio Bernal
- Department of Psychobiology, and Mind, Brain and Behavior Research Center, University of Granada, Granada, Spain
| |
Collapse
|
26
|
Figueiredo C, Lemos J. Lithium, an old friend and a forgotten enemy. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2020; 66:1625-1627. [PMID: 33331567 DOI: 10.1590/1806-9282.66.12.1625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Nephrogenic diabetes insipidus (DI) is a polyuric and polydipsic syndrome and can have multiple causing factors. CASE DESCRIPTION A 69-year-old woman with bipolar disorder medicated with lithium 400mg for 12 years on a daily basis. The patient was admitted, after psychiatric decompensation, with hypernatremia unresponsive to hypotonic iv fluids. The diagnosis of DI was made with high plasmatic osmolality measurement, low urine osmolality, and high levels of antidiuretic hormone. Full clinical recovery was possible with lithium suspension, hydration, and chlorthalidone. DISCUSSION Although frequently used in the past, Lithium (Li) is nowadays rarely used in clinical practice for prolonged treatments because of its potentially devastating side effects. Clinicians must be aware of those side effects in order to prevent organ damage, mainly in patients with severe bipolar disease and precarious response to alternative treatments.
Collapse
Affiliation(s)
- Cátia Figueiredo
- Department of Internal Medicine, Centro Hospitalar Tondela-Viseu, E.P.E., Viseu, Portugal
| | - Joana Lemos
- Department of Internal Medicine, Centro Hospitalar Tondela-Viseu, E.P.E., Viseu, Portugal
| |
Collapse
|
27
|
Kuo C, Foon D, Waters K, Cheung C, Margol AS. Central diabetes insipidus: A rare unreported side effect of temozolomide in pediatrics. Pediatr Blood Cancer 2020; 67:e28516. [PMID: 32573959 DOI: 10.1002/pbc.28516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Christopher Kuo
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California
| | - Dione Foon
- Cancer and Blood Disease Institute and Division of Hematology Oncology, Children's Hospital Los Angeles, Los Angeles, California
| | - Kaaren Waters
- Cancer and Blood Disease Institute and Division of Hematology Oncology, Children's Hospital Los Angeles, Los Angeles, California
| | - Clement Cheung
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California.,Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ashley S Margol
- Cancer and Blood Disease Institute and Division of Hematology Oncology, Children's Hospital Los Angeles, Los Angeles, California.,Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
28
|
Hussain A, Baier RJ, Mehrem AA, Soylu H, Fraser D, Elsayed Y. Central Diabetes Insipidus in a Preterm Neonate Unresponsive to Intranasal Desmopressin. Neonatal Netw 2020; 39:339-346. [PMID: 33318230 DOI: 10.1891/0730-0832/11-t-679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2020] [Indexed: 06/12/2023]
Abstract
Central or neurogenic diabetes insipidus (DI) is uncommon in the pediatric age group and rarely occurs in neonates. It should be suspected in any neonate presenting with excessive urine output and hypernatremia that persists despite increased fluid administration. Diabetes insipidus may be secondary to asphyxia, intraventricular hemorrhage, infection, and structural abnormalities or may be idiopathic or genetic. Diagnosis includes a careful history, laboratory testing, and magnetic resonance imaging. Management of neonatal DI involves a careful balance between fluid intake and pharmacologic treatment. In this article we report a case of an extremely low birth weight infant presenting with central DI possibly caused by abnormality of the pituitary gland. Persistent hypernatremia was the initial presentation. Increased fluids were given initially but were only partially helpful. Eventually subcutaneous desmopressin (DDAVP) was required. The infant was unresponsive to intranasal DDAVP and required subcutaneous DDAVP upon discharge.
Collapse
|
29
|
Liu JS, Huang H, Jin JY, Du R, Wang CY, Fan LL. Identification of a Novel Arginine Vasopressin Receptor 2 Mutation (p.V183M) in a Chinese Family with Nephrogenic Diabetes Insipidus. Mol Syndromol 2020; 11:130-134. [PMID: 32903920 DOI: 10.1159/000507035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2020] [Indexed: 11/19/2022] Open
Abstract
Loss of function of arginine vasopressin receptor 2 (AVPR2) may affect the recognition and binding of arginine vasopressin (AVP) which, in turn, may prevent the activation of Gs/adenylate cyclase and reduce the reabsorption of water by renal tubules and combined tubes. Finally, the organism may suffer from nephrogenic diabetes insipidus (NDI), a kind of kidney disorder featured by polyuria and polydipsia, due to a break of water homeostasis. In this study, we enrolled a Chinese family with polyuria and polydipsia. The proband presented abnormal fluid intake and excessive urine output. A water deprivation and AVP stimulation test further indicated that this patient had NDI. By sequencing known causative genes for diabetes insipidus, we identified a novel mutation in AVPR2 (c.547G>A; p.V183M) in the family. This mutation, located in a conserved site of AVPR2 and predicted to be disease-causing by informatics programs, was absent in our 200 controls and other public databases. Our study not only further confirms the clinical diagnosis, but also expands the spectrum of AVPR2 mutations and contributes to genetic diagnosis and counseling of patients with NDI.
Collapse
Affiliation(s)
- Ji-Shi Liu
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hao Huang
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China
| | - Jie-Yuan Jin
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China
| | - Ran Du
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China
| | - Chen-Yu Wang
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China
| | - Liang-Liang Fan
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
30
|
Žukovskaja O, Ryabchykov O, Straßburger M, Heinekamp T, Brakhage AA, Hennings CJ, Hübner CA, Wegmann M, Cialla-May D, Bocklitz TW, Weber K, Popp J. Towards Raman spectroscopy of urine as screening tool. JOURNAL OF BIOPHOTONICS 2020; 13:e201900143. [PMID: 31682320 DOI: 10.1002/jbio.201900143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/05/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
For the screening purposes urine is an especially attractive biofluid, since it offers easy and noninvasive sample collection and provides a snapshot of the whole metabolic status of the organism, which may change under different pathological conditions. Raman spectroscopy (RS) has the potential to monitor these changes and utilize them for disease diagnostics. The current study utilizes mouse models aiming to compare the feasibility of the urine based RS combined with chemometrics for diagnosing kidney diseases directly influencing urine composition and respiratory tract diseases having no direct connection to urine formation. The diagnostic models for included diseases were built using principal component analysis with linear discriminant analysis and validated with a leave-one-mouse-out cross-validation approach. Considering kidney disorders, the accuracy of 100% was obtained in discrimination between sick and healthy mice, as well as between two different kidney diseases. For asthma and invasive pulmonary aspergillosis achieved accuracies were noticeably lower, being, respectively, 77.27% and 78.57%. In conclusion, our results suggest that RS of urine samples not only provides a solution for a rapid, sensitive and noninvasive diagnosis of kidney disorders, but also holds some promises for the screening of nonurinary tract diseases.
Collapse
Affiliation(s)
- Olga Žukovskaja
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany
- Research Campus Infectognostic, Philosophenweg, Jena, Germany
- Leibniz Institute of Photonic Technology, Member of the Research Alliance "Leibniz Health Technologies", Jena, Germany
| | - Oleg Ryabchykov
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany
- Leibniz Institute of Photonic Technology, Member of the Research Alliance "Leibniz Health Technologies", Jena, Germany
| | - Maria Straßburger
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Thorsten Heinekamp
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Axel A Brakhage
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | | | | | - Michael Wegmann
- Division of Asthma Exacerbation & Regulation, Program Area Asthma & Allergy, Leibniz-Center for Medicine and Biosciences, Member of the Research Alliance "Leibniz Health Technologies", Jena, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research, Borstel, Germany
| | - Dana Cialla-May
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany
- Research Campus Infectognostic, Philosophenweg, Jena, Germany
- Leibniz Institute of Photonic Technology, Member of the Research Alliance "Leibniz Health Technologies", Jena, Germany
| | - Thomas W Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany
- Leibniz Institute of Photonic Technology, Member of the Research Alliance "Leibniz Health Technologies", Jena, Germany
| | - Karina Weber
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany
- Research Campus Infectognostic, Philosophenweg, Jena, Germany
- Leibniz Institute of Photonic Technology, Member of the Research Alliance "Leibniz Health Technologies", Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena, Germany
- Research Campus Infectognostic, Philosophenweg, Jena, Germany
- Leibniz Institute of Photonic Technology, Member of the Research Alliance "Leibniz Health Technologies", Jena, Germany
| |
Collapse
|
31
|
Aquaporins in Renal Diseases. Int J Mol Sci 2019; 20:ijms20020366. [PMID: 30654539 PMCID: PMC6359174 DOI: 10.3390/ijms20020366] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Aquaporins (AQPs) are a family of highly selective transmembrane channels that mainly transport water across the cell and some facilitate low-molecular-weight solutes. Eight AQPs, including AQP1, AQP2, AQP3, AQP4, AQP5, AQP6, AQP7, and AQP11, are expressed in different segments and various cells in the kidney to maintain normal urine concentration function. AQP2 is critical in regulating urine concentrating ability. The expression and function of AQP2 are regulated by a series of transcriptional factors and post-transcriptional phosphorylation, ubiquitination, and glycosylation. Mutation or functional deficiency of AQP2 leads to severe nephrogenic diabetes insipidus. Studies with animal models show AQPs are related to acute kidney injury and various chronic kidney diseases, such as diabetic nephropathy, polycystic kidney disease, and renal cell carcinoma. Experimental data suggest ideal prospects for AQPs as biomarkers and therapeutic targets in clinic. This review article mainly focuses on recent advances in studying AQPs in renal diseases.
Collapse
|