1
|
Liu Y, Fens MH, Lou B, van Kronenburg NC, Maas-Bakker RF, Kok RJ, Oliveira S, Hennink WE, van Nostrum CF. π-π-Stacked Poly(ε-caprolactone)- b-poly(ethylene glycol) Micelles Loaded with a Photosensitizer for Photodynamic Therapy. Pharmaceutics 2020; 12:pharmaceutics12040338. [PMID: 32283871 PMCID: PMC7238042 DOI: 10.3390/pharmaceutics12040338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
To improve the in vivo stability of poly(ε-caprolactone)-b-poly(ethylene glycol) (PCL-PEG)-based micelles and cargo retention by π-π stacking interactions, pendant aromatic rings were introduced by copolymerization of ε-caprolactone with benzyl 5-methyl-2-oxo-1,3-dioxane-5-carboxylate (TMC-Bz). It was shown that the incorporation of aromatic rings yielded smaller micelles (18–30 nm) with better colloidal stability in PBS than micelles without aromatic groups. The circulation time of i.v. injected micelles containing multiple pendant aromatic groups was longer (t½-α: ~0.7 h; t½-β: 2.9 h) than that of micelles with a single terminal aromatic group (t½ < 0.3 h). In addition, the in vitro partitioning of the encapsulated photosensitizer (meta-tetra(hydroxyphenyl)chlorin, mTHPC) between micelles and human plasma was favored towards micelles for those that contained the pendant aromatic groups. However, this was not sufficient to fully retain mTHPC in the micelles in vivo, as indicated by similar biodistribution patterns of micellar mTHPC compared to free mTHPC, and unequal biodistribution patterns of mTHPC and the host micelles. Our study points out that more detailed in vitro methods are necessary to more reliably predict in vivo outcomes. Furthermore, additional measures beyond π-π stacking are needed to stably incorporate mTHPC in micelles in order to benefit from the use of micelles as targeted delivery systems.
Collapse
Affiliation(s)
- Yanna Liu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Marcel H.A.M. Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Bo Lou
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Nicky C.H. van Kronenburg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Roel F.M. Maas-Bakker
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Robbert J. Kok
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Sabrina Oliveira
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
- Correspondence: ; Tel.: +31-620274607
| |
Collapse
|
2
|
Yakavets I, Millard M, Zorin V, Lassalle HP, Bezdetnaya L. Current state of the nanoscale delivery systems for temoporfin-based photodynamic therapy: Advanced delivery strategies. J Control Release 2019; 304:268-287. [PMID: 31136810 DOI: 10.1016/j.jconrel.2019.05.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022]
Abstract
Enthusiasm for photodynamic therapy (PDT) as a promising technique to eradicate various cancers has increased exponentially in recent decades. The majority of clinically approved photosensitizers are hydrophobic in nature, thus, the effective delivery of photosensitizers at the targeted site is the main hurdle associated with PDT. Temoporfin (mTHPC, medicinal product name: Foscan®), is one of the most potent clinically approved photosensitizers, is not an exception. Successful temoporfin-PDT requires nanoscale delivery systems for selective delivery of photosensitizer. Over the last 25 years, the number of papers on nanoplatforms developed for mTHPC delivery such as conjugates, host-guest inclusion complexes, lipid-and polymer-based nanoparticles and carbon nanotubes is burgeoning. However, none of them appeared to be "ultimate". The present review offers the description of different challenges and achievements in nanoparticle-based mTHPC delivery focusing on the synergetic combination of various nano-platforms to improve temoporfin delivery at all stages of biodistribution. Furthermore, the association of different nanoparticles in one nanoplatform might be considered as an advanced strategy allowing the combination of several treatment modalities.
Collapse
Affiliation(s)
- Ilya Yakavets
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France; Laboratory of Biophysics and Biotechnology, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus.
| | - Marie Millard
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | - Vladimir Zorin
- Laboratory of Biophysics and Biotechnology, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus; International Sakharov Environmental Institute, Belarusian State University, Dauhabrodskaja 23, 220030 Minsk, Belarus.
| | - Henri-Pierre Lassalle
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
3
|
Gheewala T, Skwor T, Munirathinam G. Photosensitizers in prostate cancer therapy. Oncotarget 2018; 8:30524-30538. [PMID: 28430624 PMCID: PMC5444762 DOI: 10.18632/oncotarget.15496] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/06/2017] [Indexed: 01/17/2023] Open
Abstract
The search for new therapeutics for the treatment of prostate cancer is ongoing with a focus on the balance between the harms and benefits of treatment. New therapies are being constantly developed to offer treatments similar to radical therapies, with limited side effects. Photodynamic therapy (PDT) is a promising strategy in delivering focal treatment in primary as well as post radiotherapy prostate cancer. PDT involves activation of a photosensitizer (PS) by appropriate wavelength of light, generating transient levels of reactive oxygen species (ROS). Several photosensitizers have been developed with a focus on treating prostate cancer like mTHPC, motexafin lutetium, padoporfin and so on. This article will review newly developed photosensitizers under clinical trials for the treatment of prostate cancer, along with the potential advantages and disadvantages in delivering focal therapy.
Collapse
Affiliation(s)
- Taher Gheewala
- Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL, USA
| | - Troy Skwor
- Department of Chemical and Biological Sciences, Rockford University, Rockford, IL, USA
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL, USA
| |
Collapse
|
4
|
Appold M, Mari C, Lederle C, Elbert J, Schmidt C, Ott I, Stühn B, Gasser G, Gallei M. Multi-stimuli responsive block copolymers as a smart release platform for a polypyridyl ruthenium complex. Polym Chem 2017. [DOI: 10.1039/c6py02026g] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient protocol for the preparation of poly(N,N-dimethylaminoethyl methacrylate)(PDMAEMA)-based multi-stimuli responsive block copolymers (BCPs) with poly(methyl methacrylate) (PMMA)viaanionic polymerization protocols is presented.
Collapse
Affiliation(s)
- Michael Appold
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Chemistry
- Technische Universität Darmstadt
- D-64287 Darmstadt
- Germany
| | - Cristina Mari
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - Christina Lederle
- Institute of Condensed Matter Physics
- Technische Universität Darmstadt
- D-64289 Darmstadt
- Germany
| | - Johannes Elbert
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Chemistry
- Technische Universität Darmstadt
- D-64287 Darmstadt
- Germany
| | - Claudia Schmidt
- Institute of Medicinal and Pharmaceutical Chemistry
- Technische Universität Braunschweig
- Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry
- Technische Universität Braunschweig
- Germany
| | - Bernd Stühn
- Institute of Condensed Matter Physics
- Technische Universität Darmstadt
- D-64289 Darmstadt
- Germany
| | - Gilles Gasser
- Chimie ParisTech
- PSL Research University
- Laboratory for Inorganic Chemical Biology
- F-75005 Paris
- France
| | - Markus Gallei
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Chemistry
- Technische Universität Darmstadt
- D-64287 Darmstadt
- Germany
| |
Collapse
|
5
|
Immunocytochemical studies on the nuclear ubiquitous casein and cyclin-dependent kinases substrate following 5-aminolevulinicacid-mediated photodynamic therapy on MCF-7 cells. Photodiagnosis Photodyn Ther 2013; 10:518-25. [PMID: 24284105 DOI: 10.1016/j.pdpdt.2013.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND Recent data indicates that nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) may play role in tumor growth. In present study authors examined whether photodynamic therapy with 5-aminolevulinic acid (5-ALA) induces NUCKS expression in breast cancer cell line, MCF-7. METHODS In the experiment concentration of 5-ALA was 6.5mM. Excitation wavelength was 630 ± 20 nm, total light dose of light 5 or 10 J/cm(2) and irradiance 60 mW/cm(2) was used. Cells were collected at established time points and Western blot and immunocytochemical studies were performed using antibody against NUCKS. RESULTS Studies proved strong cytotoxic effects in cells following PDT with 6.5mM of precursor and 10 J/cm(2). Western blot analysis revealed the strongest expression of NUCKS at 7h after PDT. At next time points, 18 and 24h, expression of NUCKS decreased and became similar to that of control group. Further immunocytochemical studies showed very strong expression of NUCKS following PDT with 5-ALA and light irradiation of 5 J/cm(2). Early, at 0 h, that expression was predominantly seen in nuclei, while at 7h expression of NUCKS was observed in disseminated manner within entire cells in both nuclei and cytoplasm, with prevalence of cytoplasmic staining. CONCLUSIONS Authors suggest that NUCKS is involved in cellular responses following PDT, and since parallel induction of NUCKS and proapoptotic marker Bax and inhibition of anti-apoptotic Bcl-2 was observed, this protein might also be involved in induction of apoptosis following PDT.
Collapse
|
6
|
Skupin-Mrugalska P, Piskorz J, Goslinski T, Mielcarek J, Konopka K, Düzgüneş N. Current status of liposomal porphyrinoid photosensitizers. Drug Discov Today 2013; 18:776-84. [PMID: 23591149 DOI: 10.1016/j.drudis.2013.04.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/02/2013] [Accepted: 04/09/2013] [Indexed: 10/27/2022]
Abstract
The complete eradication of various targets, such as infectious agents or cancer cells, while leaving healthy host cells untouched, is still a great challenge faced in the field of medicine. Photodynamic therapy (PDT) seems to be a promising approach for anticancer treatment, as well as to combat various dermatologic and ophthalmic diseases and microbial infections. The application of liposomes as delivery systems for porphyrinoids has helped overcome many drawbacks of conventional photosensitizers and facilitated the development of novel effective photosensitizers that can be encapsulated in liposomes. The development, preclinical studies and future directions for liposomal delivery of conventional and novel photosensitizers are reviewed.
Collapse
Affiliation(s)
- Paulina Skupin-Mrugalska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
7
|
Vranic S, Boggetto N, Contremoulins V, Mornet S, Reinhardt N, Marano F, Baeza-Squiban A, Boland S. Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Part Fibre Toxicol 2013; 10:2. [PMID: 23388071 PMCID: PMC3599262 DOI: 10.1186/1743-8977-10-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/03/2013] [Indexed: 01/08/2023] Open
Abstract
Background The uptake of nanoparticles (NPs) by cells remains to be better characterized in order to understand the mechanisms of potential NP toxicity as well as for a reliable risk assessment. Real NP uptake is still difficult to evaluate because of the adsorption of NPs on the cellular surface. Results Here we used two approaches to distinguish adsorbed fluorescently labeled NPs from the internalized ones. The extracellular fluorescence was either quenched by Trypan Blue or the uptake was analyzed using imaging flow cytometry. We used this novel technique to define the inside of the cell to accurately study the uptake of fluorescently labeled (SiO2) and even non fluorescent but light diffracting NPs (TiO2). Time course, dose-dependence as well as the influence of surface charges on the uptake were shown in the pulmonary epithelial cell line NCI-H292. By setting up an integrative approach combining these flow cytometric analyses with confocal microscopy we deciphered the endocytic pathway involved in SiO2 NP uptake. Functional studies using energy depletion, pharmacological inhibitors, siRNA-clathrin heavy chain induced gene silencing and colocalization of NPs with proteins specific for different endocytic vesicles allowed us to determine macropinocytosis as the internalization pathway for SiO2 NPs in NCI-H292 cells. Conclusion The integrative approach we propose here using the innovative imaging flow cytometry combined with confocal microscopy could be used to identify the physico-chemical characteristics of NPs involved in their uptake in view to redesign safe NPs.
Collapse
Affiliation(s)
- Sandra Vranic
- Univ Paris Diderot, Sorbonne Paris Cité, Laboratory of Molecular and Cellular Responses to Xenobiotics, Unit of Functional and Adaptive Biology (BFA) EAC CNRS 4413, 5 rue Thomas Mann, Paris 75 013, France.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Comparative characterization of the cellular uptake and photodynamic efficiency of Foscan® and Fospeg in a human prostate cancer cell line. Photodiagnosis Photodyn Ther 2012. [DOI: 10.1016/j.pdpdt.2012.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Effects of hypericin and a chlorin based photosensitizer alone or in combination in squamous cell carcinoma cells in the dark. Photodiagnosis Photodyn Ther 2012. [DOI: 10.1016/j.pdpdt.2012.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Gyenge EB, Lüscher D, Forny P, Antoniol M, Geisberger G, Walt H, Patzke G, Maake C. Photodynamic mechanisms induced by a combination of hypericin and a chlorin based-photosensitizer in head and neck squamous cell carcinoma cells. Photochem Photobiol 2012; 89:150-62. [PMID: 22882495 DOI: 10.1111/j.1751-1097.2012.01217.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 07/30/2012] [Accepted: 08/02/2012] [Indexed: 01/16/2023]
Abstract
The aim of this study was to elucidate photodynamic therapy (PDT) effects mediated by hypericin and a liposomal meso-tetrahydroxyphenyl chlorin (mTHPC) derivative, with focus on their 1:1 mixture, on head and neck squamous cell carcinoma cell lines. Absorption, excitation and photobleaching were monitored using fluorescence spectrometry, showing the same spectral patterns for the mixture as measured for single photosensitizers. In the mixture mTHPC showed a prolonged photo-stability. Singlet oxygen yield for light-activated mTHPC was Φ(Δ) = 0.66, for hypericin Φ(Δ) = 0.25 and for the mixture Φ(Δ) = ~0.4. A linear increase of singlet oxygen yield for mTHPC and the mixture was found, whereas hypericin achieved saturation after 35 min. Reactive oxygen species fluorescence was only visible after hypericin and mixture-induced PDT. Cell viability was also more affected with these two treatment options under the selected conditions. Examination of death pathways showed that hypericin-mediated cell death was apoptotic, with mTHPC necrotic and the 1:1 mixture showed features of both. Changes in gene expression after PDT indicated strong up-regulation of selected heat-shock proteins. The application of photosensitizer mixtures with the features of reduced dark toxicity and combined apoptotic and necrotic cell death may be beneficial in clinical PDT. This will be the focus of our future investigations.
Collapse
|
11
|
Karwa AS, Poreddy AR, Asmelash B, Lin TS, Dorshow RB, Rajagopalan R. Type 1 phototherapeutic agents, part I: preparation and cancer cell viability studies of novel photolabile sulfenamides. ACS Med Chem Lett 2011; 2:828-33. [PMID: 24900271 DOI: 10.1021/ml2001483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/13/2011] [Indexed: 11/30/2022] Open
Abstract
Novel type 1 phototherapeutic agents based on compounds containing S-N bonds (sulfenamides) were synthesized, assessed for free radical generation, and evaluated in vitro for cell death efficacy in four cancer cell lines (U937, HTC11, KB, and HT29). All of the compounds were found to produce copious free radicals upon photoexcitation with UV-A and/or UV-B light, as determined by electron spin resonance spectroscopy. Among the sulfenamides, the most potent compounds were derived from dibenzazepine 7b and dihydroacridine 8b as determined in all of the four cancer cell lines.
Collapse
Affiliation(s)
- Amolkumar S. Karwa
- Covidien Pharmaceuticals, 675 McDonnell Boulevard, Hazelwood, Missouri 63042, United States
| | - Amruta R. Poreddy
- Covidien Pharmaceuticals, 675 McDonnell Boulevard, Hazelwood, Missouri 63042, United States
| | - Bethel Asmelash
- Covidien Pharmaceuticals, 675 McDonnell Boulevard, Hazelwood, Missouri 63042, United States
| | - Tien-Sung Lin
- Department of Chemistry, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Richard B. Dorshow
- Covidien Pharmaceuticals, 675 McDonnell Boulevard, Hazelwood, Missouri 63042, United States
| | - Raghavan Rajagopalan
- Covidien Pharmaceuticals, 675 McDonnell Boulevard, Hazelwood, Missouri 63042, United States
| |
Collapse
|
12
|
Senge MO. mTHPC--a drug on its way from second to third generation photosensitizer? Photodiagnosis Photodyn Ther 2011; 9:170-9. [PMID: 22594988 DOI: 10.1016/j.pdpdt.2011.10.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/07/2011] [Indexed: 10/15/2022]
Abstract
5,10,15,20-Tetrakis(3-hydroxyphenyl)chlorin (mTHPC, Temoporfin) is a widely investigated second generation photosensitizer. Its initial use in solution form (Foscan®) is now complemented by nanoformulations (Fospeg®, Foslip®) and new chemical derivatives related to the basic hydroxyphenylporphyrin framework. Advances in formulation, chemical modifications and targeting strategies open the way for third generation photosensitizers and give an illustrative example for the developmental process of new photoactive drugs.
Collapse
Affiliation(s)
- Mathias O Senge
- Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland.
| |
Collapse
|