1
|
Rozman A, Grabczak EM, George V, Marc Malovrh M, Novais Bastos H, Trojnar A, Graffen S, Tenda ED, Hardavella G. Interventional bronchoscopy in lung cancer treatment. Breathe (Sheff) 2024; 20:230201. [PMID: 39193456 PMCID: PMC11348910 DOI: 10.1183/20734735.0201-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/26/2024] [Indexed: 08/29/2024] Open
Abstract
Interventional bronchoscopy has seen significant advancements in recent decades, particularly in the context of lung cancer. This method has expanded not only diagnostic capabilities but also therapeutic options. In this article, we will outline various therapeutic approaches employed through either a rigid or flexible bronchoscope in multimodal lung cancer treatment. A pivotal focus lies in addressing central airway obstruction resulting from cancer. We will delve into the treatment of initial malignant changes in central airways and explore the rapidly evolving domain of early peripheral malignant lesions, increasingly discovered incidentally or through lung cancer screening programmes. A successful interventional bronchoscopic procedure not only alleviates severe symptoms but also enhances the patient's functional status, paving the way for subsequent multimodal treatments and thereby extending the possibilities for survival. Interventional bronchoscopy proves effective in treating initial cancerous changes in patients unsuitable for surgical or other aggressive treatments due to accompanying diseases. The key advantage of interventional bronchoscopy lies in its minimal invasiveness, effectiveness and favourable safety profile.
Collapse
Affiliation(s)
- Ales Rozman
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Elzbieta Magdalena Grabczak
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Vineeth George
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
| | - Mateja Marc Malovrh
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Helder Novais Bastos
- Department of Pulmonology, Centro Hospitalar Universitário São João, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Anna Trojnar
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Simon Graffen
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
| | - Eric Daniel Tenda
- Dr. Cipto Mangunkusumo National General Hospital, Artificial Intelligence and Digital Health Research Group, The Indonesian Medical Education and Research Institute - Faculty of Medicine Universitas Indonesia (IMERI-FMUI), Jakarta, Indonesia
| | - Georgia Hardavella
- 4th–9th Department of Respiratory Medicine, ‘Sotiria’ Athens’ Chest Diseases Hospital, Athens, Greece
| |
Collapse
|
2
|
Sun W, Zhang Q, Wang X, Jin Z, Cheng Y, Wang G. Clinical Practice of Photodynamic Therapy for Non-Small Cell Lung Cancer in Different Scenarios: Who Is the Better Candidate? Respiration 2024; 103:193-204. [PMID: 38354707 PMCID: PMC10997268 DOI: 10.1159/000535270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/05/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a relatively safe and highly selectivity antitumor treatment, which might be increasingly used as a supplement to conventional therapies. A clinical overview and detailed comparison of how to select patients and lesions for PDT in different scenarios are urgently needed to provide a basis for clinical treatment. SUMMARY This review demonstrates the highlights and obstacles of applying PDT for lung cancer and underlines points worth considering when planning to initiate PDT. The aim was to make out the appropriate selection and help PDT develop efficacy and precision through a better understanding of its clinical use. KEY MESSAGES Increasing evidence supports the feasibility and safety of PDT in the treatment of non-small cell lung cancer. It is important to recognize the factors that influence the efficacy of PDT to develop individualized management strategies and implement well-designed procedures. These important issues should be worth considering in the present and further research.
Collapse
Affiliation(s)
- Wen Sun
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China,
| | - Qi Zhang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Xi Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Zhou Jin
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Yuan Cheng
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Sansaloni-Pastor S, Lange N. Unleashing the potential of 5-Aminolevulinic acid: Unveiling a promising target for cancer diagnosis and treatment beyond photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 247:112771. [PMID: 37647818 DOI: 10.1016/j.jphotobiol.2023.112771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
The therapeutic properties of 5-aminolevulinic acid (5-ALA) have been extensively studied for cancer detection and treatment using photodynamic therapy (PDT). When administered externally, 5-ALA is converted to protoporphyrin IX (PpIX) in cancer cells, which generates reactive oxygen species (ROS) upon exposure to light. This process enables targeted cell death induction and cancer detection. Given the highly conserved nature of heme biosynthesis over billions of years, we hypothesized that natural mechanisms might exist to prevent excessive accumulation of PpIX or heme resulting from 5-ALA overload. Therefore, we anticipated alterations in protein expression profiles upon exogenous administration of 5-ALA. To understand cellular responses to 5-ALA, we investigated protein expression changes and identified OR1B1 as a promising target in bladder, prostate, lung, and cervical cancer cells. OR1B1 expression was observed only with 5-ALA and ferrous chloride, highlighting the central role of heme in this discovery. Immunofluorescence and electron microscopy confirmed OR1B1's sub-cellular localization. These findings suggest that 5-ALA transformation in cancer cells and OR1B1 expression have potential for enhancing cancer detection and developing alternative treatments, including immunotherapy. This approach overcomes the limitations of PDT and opens new avenues for effective and targeted cancer interventions.
Collapse
Affiliation(s)
- Sara Sansaloni-Pastor
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Norbert Lange
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| |
Collapse
|
4
|
Crous A, Abrahamse H. Photodynamic therapy of lung cancer, where are we? Front Pharmacol 2022; 13:932098. [PMID: 36110552 PMCID: PMC9468662 DOI: 10.3389/fphar.2022.932098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer remains the leading threat of death globally, killing more people than colon, breast, and prostate cancers combined. Novel lung cancer treatments are being researched because of the ineffectiveness of conventional cancer treatments and the failure of remission. Photodynamic therapy (PDT), a cancer treatment method that is still underutilized, is a sophisticated cancer treatment that shows selective destruction of malignant cells via reactive oxygen species production. PDT has been extensively studied in vitro and clinically. Various PDT strategies have been shown to be effective in the treatment of lung cancer. PDT has been shown in clinical trials to considerably enhance the quality of life and survival in individuals with incurable malignancies. Furthermore, PDT, in conjunction with the use of nanoparticles, is currently being researched for use as an effective cancer treatment, with promising results. PDT and the new avenue of nanoPDT, which are novel treatment options for lung cancer with such promising results, should be tested in clinical trials to determine their efficacy and side effects. In this review, we examine the status and future potentials of nanoPDT in lung cancer treatment.
Collapse
|
5
|
Photodynamic therapy for primary tracheobronchial malignancy in Northwestern China. Photodiagnosis Photodyn Ther 2021; 37:102701. [PMID: 34954091 DOI: 10.1016/j.pdpdt.2021.102701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) has been increasingly performed to treat tracheobronchial malignancy. However, the experience in tracheobronchial adenoid cystic carcinoma (ACC) and peripheral lung cancer is still insufficient. This study aimed to share the experience of PDT for patients with primary tracheobronchial malignancy, especially the adenoid cystic carcinoma and peripheral lung cancer, and evaluated the efficacy and safety of PDT in Northwestern Chinese patients. METHODS This study retrospectively analyzed the clinical data of 23 patients with primary tracheobronchial malignancy receiving PDT in our center. The short-term effect was evaluated by the objective tumor response and the clinical response. The long-term effect was estimated by recurrence-free survival (RFS). RESULTS Of 23 patients, SR was achieved in 18 patients and MR in 3 patients. The clinical symptoms and the quality of life were significantly improved after PDT (P<0.05). And the mean RFS was 8.9 ± 1.9 months. SR for 6 cases of ACC were achieved with significant improvement of clinical symptoms and quality of life. No procedure-related complications appeared. And PDT was successfully performed for the peripheral lung cancer with the guidance of electromagnetic navigation bronchoscopy (ENB). CONCLUSIONS This study demonstrated that PDT achieved satisfactory efficacy and safety for Northwestern Chinese patients with primary tracheobronchial malignancy. Patients with ACC can benefit from PDT. And ENB-guided PDT is a novel and available option for the peripheral lung cancer. In short, this study accumulated valuable experience for the application of PDT in Chinese patients with primary tracheobronchial malignancy.
Collapse
|
6
|
Wang Y, Chen E. Interventional bronchoscopic treatment of lung cancer. LAPAROSCOPIC, ENDOSCOPIC AND ROBOTIC SURGERY 2021. [DOI: 10.1016/j.lers.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
Blum NT, Fu LH, Lin J, Huang P. When Chemodynamic Therapy Meets Photodynamic Therapy: A Synergistic Combination of Cancer Treatments. IEEE NANOTECHNOLOGY MAGAZINE 2021. [DOI: 10.1109/mnano.2021.3081755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Kniese CM, Musani AI. Bronchoscopic treatment of inoperable nonsmall cell lung cancer. Eur Respir Rev 2020; 29:29/158/200035. [PMID: 33153988 DOI: 10.1183/16000617.0035-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/24/2020] [Indexed: 11/05/2022] Open
Abstract
Patients with unresectable lung cancer range from those with early-stage or pre-invasive disease with comorbidities that preclude surgery to those with advanced stage disease in whom surgery is contraindicated. In such cases, a multidisciplinary approach to treatment is warranted, and may involve medical specialties including medical oncology, radiation oncology and interventional pulmonology. In this article we review bronchoscopic approaches to surgically unresectable lung cancer, including photodynamic therapy, brachytherapy, endoscopic ablation techniques and airway stenting. Current and past literature is reviewed to provide an overview of the topic, including a highlight of potential emerging approaches.
Collapse
Affiliation(s)
- Christopher M Kniese
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ali I Musani
- Division of Pulmonary Sciences and Critical Care, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
9
|
Cai P, Yang W, He Z, Jia H, Wang H, Zhao W, Gao L, Zhang Z, Gao F, Gao X. A chlorin-lipid nanovesicle nucleus drug for amplified therapeutic effects of lung cancer by internal radiotherapy combined with the Cerenkov radiation-induced photodynamic therapy. Biomater Sci 2020; 8:4841-4851. [PMID: 32776056 DOI: 10.1039/d0bm00778a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Traditional photodynamic therapy (PDT) requires external light excitation to produce reactive oxygen species (ROSs) for the treatment of tumors. Due to problems of light penetration, traditional PDT is limited by the location and depth of the tumor. In this study, we rationally designed and constructed a novel strategy to amplify the therapeutic effect of PDT. We prepared a chlorin-lipid nanovesicle based on the conjugates of chlorin e6 (Ce 6) and phospholipids, with the surface conjugating the aptamer for lung cancer targeting, GLT21.T. 131I-labeled bovine serum albumin (131I-BSA) was loaded into the chlorin-lipid nanovesicle cavity (131I-BSA@LCN-Apt). 131I not only plays a role in radiotherapy, but its Cerenkov radiation (CR), as an internal light source, can also stimulate Ce6 to produce ROSs without external light excitation. The in vitro and in vivo therapeutic effects in subcutaneous lung tumor models and orthotopic lung tumor models indicated that 131I-BSA@LCN-Apt produced a powerful anti-tumor effect through synergistic radiotherapy and CR-PDT, which almost caused complete tumor growth regression. After treatment, the survival time of the mice was significantly prolonged. During the treatment, no obvious side effects were found by histopathology of important organs, hematology and biochemistry analysis except the decrease of the white blood cell count (WBC). The study provides a major tool for deep-seated tumors to obtain amplified therapeutic effects by synergistic radiotherapy and CR-PDT without the use of any external light source.
Collapse
Affiliation(s)
- Pengju Cai
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang Q, He J, Yu W, Li Y, Liu Z, Zhou B, Liu Y. A promising anticancer drug: a photosensitizer based on the porphyrin skeleton. RSC Med Chem 2020; 11:427-437. [PMID: 33479647 PMCID: PMC7460723 DOI: 10.1039/c9md00558g] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive combination of treatments that treat tumors and other diseases by using photosensitizers, light and oxygen to produce cytotoxic reactive oxygen species (ROS) inducing tumor cell apoptosis. Photosensitizers are the key part of PDT for clinical application and experimental research, and most of them are porphyrin compounds at present. Due to their unique affinity for tumor tissues, porphyrins are not only excellent photosensitizers, but also good carriers to transport other active drugs into tumor tissues, which can exert synergistic anticancer effects of PDT and chemotherapy. This article reviews the clinical development of porphyrin photosensitizers and the research status of porphyrin containing bioactive groups. Finally, future perspectives and the current challenges of photosensitizers based on the porphyrin skeleton are discussed.
Collapse
Affiliation(s)
- Qizhi Zhang
- Institute of Pharmacy & Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang City , Hunan Province 421001 , P.R. China .
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research , 28 Western Changshen Road , Hengyang City , Hunan Province 421001 , P.R. China
| | - Jun He
- Institute of Chemistry & Chemical Engineering , University of South China , Hengyang City , Hunan Province 421001 , P.R. China
| | - Wenmei Yu
- Institute of Pharmacy & Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang City , Hunan Province 421001 , P.R. China .
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research , 28 Western Changshen Road , Hengyang City , Hunan Province 421001 , P.R. China
| | - Yanchun Li
- Institute of Pharmacy & Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang City , Hunan Province 421001 , P.R. China .
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research , 28 Western Changshen Road , Hengyang City , Hunan Province 421001 , P.R. China
| | - Zhenhua Liu
- Institute of Pharmacy & Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang City , Hunan Province 421001 , P.R. China .
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research , 28 Western Changshen Road , Hengyang City , Hunan Province 421001 , P.R. China
| | - Binning Zhou
- Institute of Pharmacy & Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang City , Hunan Province 421001 , P.R. China .
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research , 28 Western Changshen Road , Hengyang City , Hunan Province 421001 , P.R. China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang City , Hunan Province 421001 , P.R. China .
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research , 28 Western Changshen Road , Hengyang City , Hunan Province 421001 , P.R. China
| |
Collapse
|
11
|
|
12
|
Almeida EDP, Dipieri LV, Rossetti FC, Marchetti JM, Bentley MVLB, Nunes RDS, Sarmento VHV, Valerio MEG, Rodrigues Júnior JJ, Montalvão MM, Correa CB, Lira AAM. Skin permeation, biocompatibility and antitumor effect of chloroaluminum phthalocyanine associated to oleic acid in lipid nanoparticles. Photodiagnosis Photodyn Ther 2018; 24:262-273. [PMID: 30290231 DOI: 10.1016/j.pdpdt.2018.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/29/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022]
Abstract
The objective of this study was to develop and characterize lipid nanoparticles (LNs) containing chloroaluminum phthalocyanine (ClAlPc) to reduce the aggregation of the drug and improve its skin penetration and its antitumor effect. LNs were prepared and characterized by using stearic acid (SA) as solid lipid and oleic acid (OA) as liquid lipid in different proportions. in vitro and in vivo skin penetration was evaluated using modified Franz diffusion cells and fluorescence microscopy, respectively. in vitro biocompatibility and Photodynamic Therapy (PDT) were performed using L929-fibroblasts cell line and A549 cancer cell line and melanoma BF16-F10, respectively. OA promoted the increase in the encapsulation efficiency and drug loading, reaching values of 95.8% and 4%, respectively. The formulation with 40% OA (NLC 40) showed a significantly higher (p < 0.01) amount of drug retained in the skin compared to other formulations. All formulations developed were considered biocompatible. PDT evidenced the antitumor efficacy of NLC 40 with reduced cell viability for approximately 10% of cancer cells, demonstrating that the presence of OA in the NLC seems to potentialize this antitumor effect. PDT in BF16-F10 melanoma using NLC 40 resulted in a reduction in mean cell viability of approximately 99%. According to the results obtained, the systems developed may be promising for the incorporation of ClAlPc in the treatment of skin cancer by photodynamic therapy.
Collapse
Affiliation(s)
- Ellen Denise P Almeida
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-00, Brazil
| | - Lívia V Dipieri
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Fábia C Rossetti
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Juliana M Marchetti
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Maria Vitória L B Bentley
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Rogéria de S Nunes
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-00, Brazil
| | - Víctor Hugo V Sarmento
- Departament of Chemistry, Federal University of Sergipe, Itabaiana, Sergipe, 49500-000, Brazil
| | - Mário Ernesto G Valerio
- Departament of Physics, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-000, Brazil
| | | | - Monalisa M Montalvão
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Cristiane B Correa
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Ana Amélia M Lira
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-00, Brazil.
| |
Collapse
|
13
|
Kim H, Kim SW, Seok KH, Hwang CW, Ahn JC, Jin JO, Kang HW. Hypericin-assisted photodynamic therapy against anaplastic thyroid cancer. Photodiagnosis Photodyn Ther 2018; 24:15-21. [PMID: 30118906 DOI: 10.1016/j.pdpdt.2018.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/10/2018] [Accepted: 08/13/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Hypericin (HYP) extracted from St. John's wort (Hypericum perforatum L.) is a natural photosensitizer in clinical photodynamic therapy (PDT). PDT is one of the powerful methods for cancer treatments because of its excellent tumoritropic characteristics and photosensitizing properties. However, limited reports on the efficacy of PDT on anaplastic thyroid cancer (ATC) have been published. Especially HYP-associated PDT has not been investigated in vitro and in vivo. In this study, we evaluated the effect of HYP for PDT against FRO ATC cells. METHODS The activities of HYP-assisted PDT were investigated in ATC cells. The ATC FRO cells were treated with a combination of HYP dose and laser power. The viability of FRO cells was measured by MTT assay, and Trypan blue staining was performed to monitor cell death. Detection reactive oxygen species (ROS) and mitochondrial membrane potential after HYP-assisted PDT were analyzed by confocal microscopy. For in vivo study, FRO cells were injected into nude mice. After intravenous injection of HYP, Laser was irradiated and nude mice were monitored in Day 4, 7, 14. RESULTS AND CONCLUSIONS The rate of FRO cell death was increased by applying HYP dose and laser power dependent. Moreover, HYP and laser irradiation induced FRO cell death was mediated by the intracellular ROS generation and mitochondrial damage. Finally, the HYP-assisted PDT eliminated FRO cell tumor from the mouse in vivo. These data demonstrate that HYP could be an effective photosensitizer for human ATC therapy.
Collapse
Affiliation(s)
- Hyejin Kim
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan, Republic of Korea
| | - Kwang Hyuk Seok
- Department of Biochemistry, Kosin University College of Medicine, Busan, Republic of Korea
| | - Chi Woo Hwang
- Department of Molecular Biology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Jin-Chul Ahn
- Department of Bio-Medical Science and Beckman Laser Institute Korea, Dankook University, Cheonan, Republic of Korea
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Hyun Wook Kang
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Republic of Korea; Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK 21 Plus), Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
14
|
Almeida J, Silva AMN, Rebelo SLH, Cunha-Silva L, Rangel M, de Castro B, Leite A, Silva AMG. Synthesis and coordination studies of 5-(4′-carboxyphenyl)-10,15,20-tris(pentafluorophenyl)porphyrin and its pyrrolidine-fused chlorin derivative. NEW J CHEM 2018. [DOI: 10.1039/c7nj05165d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An efficient strategy was developed to obtain carboxyphenyl porphyrin, chlorins and metal complexes, with potential applications in photonics and biology.
Collapse
Affiliation(s)
- José Almeida
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica, Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
- Portugal
| | - André M. N. Silva
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica, Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
- Portugal
| | - Susana L. H. Rebelo
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica, Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
- Portugal
| | - Luís Cunha-Silva
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica, Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
- Portugal
| | - Maria Rangel
- LAQV/REQUIMTE
- Instituto de Ciências Biomédicas de Abel Salazar
- 4099-003 Porto
- Portugal
| | - Baltazar de Castro
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica, Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
- Portugal
| | - Andreia Leite
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica, Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
- Portugal
| | - Ana M. G. Silva
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica, Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
- Portugal
| |
Collapse
|
15
|
Lu Q, Sun Y, Tian D, Xiang S, Gao L. Effects of Photodynamic Therapy on the Growth and Antifungal Susceptibility of Scedosporium and Lomentospora spp. Mycopathologia 2017; 182:1037-1043. [PMID: 28836110 DOI: 10.1007/s11046-017-0195-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/18/2017] [Indexed: 01/08/2023]
Abstract
Scedosporium and Lomentospora species are the second most frequent colonizing, allergenic, or invasive fungal pathogens in patients with cystic fibrosis, and are responsible for infections varying from cutaneous and subcutaneous tissue infections caused by traumatic inoculation to severe systemic diseases in immunocompromised patients. The clinical relevance of fungal airway colonization for individual patients harboring Scedosporium and Lomentospora species is still an underestimated issue. The high resistance of Scedosporium and Lomentospora species to antifungal drugs has highlighted the need for alternative treatment modalities, and antimicrobial photodynamic therapy may be one such alternative. In this study, methylene blue was applied as a photosensitizing agent to 6 type strains of Scedosporium and Lomentospora species, and we irradiated the strains using a light-emitting diode (635 ± 10 nm, 12 J/cm2). We evaluated the effects of photodynamic therapy on strain growth and on the in vitro susceptibility of the strains to itraconazole, voriconazole, posaconazole, and amphotericin B. A colony-forming unit reduction of up to 5.2 log10 was achieved. Minimal inhibitory concentration ranges also decreased significantly with photoinactivation. Photodynamic therapy improved both the inactivation rates and the antifungal susceptibility profile of all fungal isolates tested.
Collapse
Affiliation(s)
- Qiaoyun Lu
- Department of Dermatology, Central Hospital of Xiangyang, Hubei College of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, People's Republic of China.
| | - Yi Sun
- Department of Dermatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, 434100, People's Republic of China
| | - Dingdan Tian
- Department of Dermatology, Hospital of Wuhan University, Wuhan, 430000, People's Republic of China
| | - Shoubao Xiang
- Department of Dermatology, Central Hospital of Xiangyang, Hubei College of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, People's Republic of China
| | - Lujuan Gao
- Department of Dermatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
16
|
Soumya M, Gayathri Devi D, Shafeekh K, Das S, Abraham A. Photodynamic therapeutic efficacy of symmetrical diiodinated squaraine in in vivo skin cancer models. Photodiagnosis Photodyn Ther 2017; 18:302-309. [DOI: 10.1016/j.pdpdt.2017.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/31/2017] [Accepted: 03/13/2017] [Indexed: 11/15/2022]
|
17
|
van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers (Basel) 2017; 9:cancers9020019. [PMID: 28218708 PMCID: PMC5332942 DOI: 10.3390/cancers9020019] [Citation(s) in RCA: 578] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved cancer therapy, based on a photochemical reaction between a light activatable molecule or photosensitizer, light, and molecular oxygen. When these three harmless components are present together, reactive oxygen species are formed. These can directly damage cells and/or vasculature, and induce inflammatory and immune responses. PDT is a two-stage procedure, which starts with photosensitizer administration followed by a locally directed light exposure, with the aim of confined tumor destruction. Since its regulatory approval, over 30 years ago, PDT has been the subject of numerous studies and has proven to be an effective form of cancer therapy. This review provides an overview of the clinical trials conducted over the last 10 years, illustrating how PDT is applied in the clinic today. Furthermore, examples from ongoing clinical trials and the most recent preclinical studies are presented, to show the directions, in which PDT is headed, in the near and distant future. Despite the clinical success reported, PDT is still currently underutilized in the clinic. We also discuss the factors that hamper the exploration of this effective therapy and what should be changed to render it a more effective and more widely available option for patients.
Collapse
Affiliation(s)
- Demian van Straten
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Vida Mashayekhi
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Henriette S de Bruijn
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| | - Sabrina Oliveira
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
- Pharmaceutics, Department of Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht 3584 CG, The Netherlands.
| | - Dominic J Robinson
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| |
Collapse
|
18
|
Xiong W, Wang X, Hu J, Liu Y, Liu Q, Wang P. Comparative study of two kinds of repeated photodynamic therapy strategies in breast cancer by using a sensitizer, sinoporphyrin sodium. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 160:299-305. [PMID: 27162175 DOI: 10.1016/j.jphotobiol.2016.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 01/10/2023]
Abstract
Sinoporphyrin sodium (DVDMS) is a newly identified photosensitizer that was isolated from Photofrin. Experimental and clinical results have demonstrated that repeated application of PDT greatly improved the therapeutic efficacy. Here, we comparatively studied two kinds of photodynamic therapy (PDT) strategies by using DVDMS (2mg/kg) in murine breast cancer 4T1 xenograft model to provide evidence which strategy exerts a better antitumor effect. Regimen (1): DVDMS was injected one time into tumor-bearing mice, which were then repeatedly exposed to 50J/cm(2) light 24h, 30h and 36h later. Regimen (2): DVDMS was injected 3 times and mice exposed to 50J/cm(2) light 24h after each injection, with 5days intervals between each DVDMS injection. On day 21 after the tumor cell injection, in regimen (1) the tumor volume inhibition ratio was reached to 85.75±7.60%. While at the same day the inhibition ratio was 65.74±8.64% of regimen (2). Additionally, regimen (1) appeared to more effectively initiate tumor tissue destruction and cancer cell apoptosis, inhibit lung metastasis, suppress cancer cell proliferation and angiogenesis. Moreover, no obvious effect on body weight and other side effects were observed in the treated mice. These results suggest that regimen (1) might be a potentially efficient strategy against breast cancer.
Collapse
Affiliation(s)
- Wenli Xiong
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Jianmin Hu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Yichen Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| |
Collapse
|
19
|
Li Z, Grant KB. DNA photo-cleaving agents in the far-red to near-infrared range – a review. RSC Adv 2016. [DOI: 10.1039/c5ra28102d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ideal photonucleases for clinical applications cleave DNA upon activation with deeply penetrating far-red to near-infrared light.
Collapse
Affiliation(s)
- Ziyi Li
- Department of Chemistry
- Georgia State University
- Atlanta
- USA
| | | |
Collapse
|
20
|
A new sensitizer DVDMS combined with multiple focused ultrasound treatments: an effective antitumor strategy. Sci Rep 2015; 5:17485. [PMID: 26631871 PMCID: PMC4668354 DOI: 10.1038/srep17485] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/29/2015] [Indexed: 12/30/2022] Open
Abstract
Sonodynamic therapy (SDT) was developed as a promising noninvasive approach. The present study investigated the antitumor effect of a new sensitizer (sinoporphyrin sodium, referred to as DVDMS) combined with multiple ultrasound treatments on sarcoma 180 both in vitro and in vivo. The combined treatment significantly suppressed cell viability, potentiated apoptosis, and markedly inhibited angiogenesis in vivo. In vivo, the tumor weight inhibition ratio reached 89.82% fifteen days after three sonication treatments plus DVDMS. This effect was stronger than one ultrasound alone (32.56%) and than one round of sonication plus DVDMS (59.33%). DVDMS combined with multiple focused ultrasound treatments initiated tumor tissue destruction, induced cancer cell apoptosis, inhibited tumor angiogenesis, suppressed cancer cell proliferation, and decreased VEGF and PCNA expression levels. Moreover, the treatment did not show obvious signs of side effects or induce a drop in body weight. These results indicated that DVDMS combined with multiple focused ultrasounds may be a promising strategy against solid tumor.
Collapse
|
21
|
Pulmonary Endogenous Fluorescence Allows the Distinction of Primary Lung Cancer from the Perilesional Lung Parenchyma. PLoS One 2015; 10:e0134559. [PMID: 26244637 PMCID: PMC4526534 DOI: 10.1371/journal.pone.0134559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 07/11/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Pre-therapeutic pathological diagnosis is a crucial step of the management of pulmonary nodules suspected of being non small cell lung cancer (NSCLC), especially in the frame of currently implemented lung cancer screening programs in high-risk patients. Based on a human ex vivo model, we hypothesized that an embedded device measuring endogenous fluorescence would be able to distinguish pulmonary malignant lesions from the perilesional lung tissue. METHODS Consecutive patients who underwent surgical resection of pulmonary lesions were included in this prospective and observational study over an 8-month period. Measurements were performed back table on surgical specimens in the operative room, both on suspicious lesions and the perilesional healthy parenchyma. Endogenous fluorescence signal was characterized according to three criteria: maximal intensity (Imax), wavelength, and shape of the signal (missing, stable, instable, photobleaching). RESULTS Ninety-six patients with 111 suspicious lesions were included. Final pathological diagnoses were: primary lung cancers (n = 60), lung metastases of extra-thoracic malignancies (n = 27) and non-tumoral lesions (n = 24). Mean Imax was significantly higher in NSCLC targeted lesions when compared to the perilesional lung parenchyma (p<0,0001) or non-tumoral lesions (p<0,0001). Similarly, photobleaching was more frequently found in NSCLC than in perilesional lung (p<0,0001), or in non-tumoral lesions (p<0,001). Respective associated wavelengths were not statistically different between perilesional lung and either primary lung cancers or non-tumoral lesions. Considering lung metastases, both mean Imax and wavelength of the targeted lesions were not different from those of the perilesional lung tissue. In contrast, photobleaching was significantly more frequently observed in the targeted lesions than in the perilesional lung (p≤0,01). CONCLUSION Our results demonstrate that endogenous fluorescence applied to the diagnosis of lung nodules allows distinguishing NSCLC from the surrounding healthy parenchyma and from non-tumoral lesions. Inconclusive results were found for lung metastases due to the heterogeneity of this population.
Collapse
|
22
|
Wang X, Hu J, Wang P, Zhang S, Liu Y, Xiong W, Liu Q. Analysis of the in vivo and in vitro effects of photodynamic therapy on breast cancer by using a sensitizer, sinoporphyrin sodium. Theranostics 2015; 5:772-86. [PMID: 25897341 PMCID: PMC4402500 DOI: 10.7150/thno.10853] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 03/06/2015] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) is an emerging theranostic modality for various cancers and diseases. Photosensitizers are critical components for PDT. Sinoporphyrin sodium, referred to as DVDMS, is a newly identified photosensitizer that was isolated from Photofrin. Here, we evaluated the effects of DVDMS-mediated PDT (DVDMS-PDT) on tumor cell proliferation and metastasis in the highly metastatic 4T1 cell line and a mouse xenograft model. DVDMS-PDT elicited a potent phototoxic effect in vitro, which was abolished using the reactive oxygen species (ROS) scavenger N-acetylcysteine. In addition, DVDMS-PDT effectively inhibited the migration of 4T1 cells in scratch wound-healing and transwell assays. Using an in vivo mouse model, DVDMS-PDT greatly prolonged the survival time of tumor-bearing mice and inhibited tumor growth and lung metastasis, consistent with in vitro findings. PDT with DVDMS had a greater anti-tumor efficacy than clinically used Photofrin. Moreover, preliminary toxicological results indicate that DVDMS is relatively safe. These results suggest that DVDMS is a promising sensitizer that warrants further development for use in cancer treatment with PDT or other sensitizing agent-based therapies.
Collapse
Affiliation(s)
- Xiaobing Wang
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Jianmin Hu
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Pan Wang
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Shaoliang Zhang
- 2. Qinglong High-Tech Co., Ltd, Yichun, Jiangxi, People's Republic of China
| | - Yichen Liu
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Wenli Xiong
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Quanhong Liu
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
23
|
Highly specific in vivo gene delivery for p53-mediated apoptosis and genetic photodynamic therapies of tumour. Nat Commun 2015; 6:6456. [PMID: 25739372 PMCID: PMC4366491 DOI: 10.1038/ncomms7456] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/29/2015] [Indexed: 12/14/2022] Open
Abstract
Anticancer therapies are often compromised by nonspecific effects and challenged by tumour environments’ inherent physicochemical and biological characteristics. Often, therapeutic effect can be increased by addressing multiple parameters simultaneously. Here we report on exploiting extravasation due to inherent vascular leakiness for the delivery of a pH-sensitive polymer carrier. Tumours’ acidic microenvironment instigates a charge reversal that promotes cellular internalization where endosomes destabilize and gene delivery is achieved. We assess our carrier with an aggressive non-small cell lung carcinoma (NSCLC) in vivo model and achieve >30% transfection efficiency via systemic delivery. Rejuvenation of the p53 apoptotic pathway as well as expression of KillerRed protein for sensitization in photodynamic therapy (PDT) is accomplished. A single administration greatly suppresses tumour growth and extends median animal survival from 28 days in control subjects to 68 days. The carrier has capacity for multiple payloads for greater therapeutic response where inter-individual variability can compromise efficacy. Alterations of p53 are associated with more than half of all human cancers. Here the authors present a new pH-sensitive nanoparticle that is delivered via systemic circulation and combines gene delivery to restore p53 with expression of Killerred protein to induce photosensitization.
Collapse
|
24
|
Hu J, Wang X, Liu Q, Zhang K, Xiong W, Xu C, Wang P, Leung AW. Antitumor Effect of Sinoporphyrin Sodium-Mediated Photodynamic Therapy on Human Esophageal Cancer Eca-109 Cells. Photochem Photobiol 2014; 90:1404-12. [DOI: 10.1111/php.12333] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/13/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Jianmin Hu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry; Ministry of Education; National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China; College of Life Sciences; Shaanxi Normal University; Xi'an Shaanxi China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry; Ministry of Education; National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China; College of Life Sciences; Shaanxi Normal University; Xi'an Shaanxi China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry; Ministry of Education; National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China; College of Life Sciences; Shaanxi Normal University; Xi'an Shaanxi China
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry; Ministry of Education; National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China; College of Life Sciences; Shaanxi Normal University; Xi'an Shaanxi China
| | - Wenli Xiong
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry; Ministry of Education; National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China; College of Life Sciences; Shaanxi Normal University; Xi'an Shaanxi China
| | - Chuanshan Xu
- School of Chinese Medicine; Faculty of Medicine; The Chinese University of Hong Kong; Shatin Hong Kong China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry; Ministry of Education; National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China; College of Life Sciences; Shaanxi Normal University; Xi'an Shaanxi China
- School of Chinese Medicine; Faculty of Medicine; The Chinese University of Hong Kong; Shatin Hong Kong China
| | - Albert Wingnang Leung
- School of Chinese Medicine; Faculty of Medicine; The Chinese University of Hong Kong; Shatin Hong Kong China
| |
Collapse
|