1
|
Krupka-Olek M, Bożek A, Czuba ZP, Kłósek M, Cieślar G, Kawczyk-Krupka A. Cytotoxic and Immunomodulatory Effects of Hypericin as a Photosensitizer in Photodynamic Therapy Used on Skin Cell Cultures. Pharmaceutics 2024; 16:696. [PMID: 38931819 PMCID: PMC11207107 DOI: 10.3390/pharmaceutics16060696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Determination of the hypericin-photodynamic (HY-PDT) effect on the secretion of cytokines secreted by the skin cells, may be the basis for using the immunomodulatory effect of photodynamic action in the treatment of inflammatory skin diseases. The study aimed to evaluate the cytotoxic and immunomodulatory effects of hypericin (HY) in photodynamic therapy (PDT) performed in vitro on cultures of selected skin cell lines. The study used two human cell lines, primary dermal fibroblast (HDFa) and primary epidermal keratinocytes (HEKa). The MTT test was used to define the metabolic activity of treated cells. Cell supernatants subjected to sublethal PDT were assessed to determine the interleukins: IL-2, IL-8, IL-10, IL-11, IL-19, IL-22, and metalloproteinase 1 (MMP-1). The results confirm the destructive effect of HY-PDT and the immunomodulatory effects of sublethal doses on the selected skin cells, depending on the concentration of HY and the light doses. No statistically significant differences were noted in IL-2 and IL-10 concentration after HY-PDT for HEKa and HDFa lines. After using HY-PDT, the concentration of IL-8, MMP-1, IL-22, and IL-11 significantly decreased in the HEKa line. Moreover, the concentration of IL-19 and MMP-1 significantly decreased in the HDFa line. The concentration of IL-11 in the HDFa line after using only the HY, without the light, increased but decreased after HY-PDT. Our experiment confirmed that HY-PDT has not only a cytotoxic effect but, used in sublethal doses, also presents immunomodulatory properties. These may be an advantage of HY-PDT when used in the treatment of persistent skin inflammation, connected with the release of pro-inflammatory cytokines resistant to conventional treatment methods.
Collapse
Affiliation(s)
- Magdalena Krupka-Olek
- Doctoral School of the Medical University of Silesia, 40-055 Katowice, Poland
- Clinical Department of Internal Diseases and Geriatrics, Chair of Internal Diseases, Dermatology and Allergology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Andrzej Bożek
- Clinical Department of Internal Diseases and Geriatrics, Chair of Internal Diseases, Dermatology and Allergology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Zenon P. Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Z.P.C.); (M.K.)
| | - Małgorzata Kłósek
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Z.P.C.); (M.K.)
| | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
2
|
Thirumal D, Sindhu RK, Goyal S, Sehgal A, Kumar A, Babu MA, Kumar P. Pathology and Treatment of Psoriasis Using Nanoformulations. Biomedicines 2023; 11:1589. [PMID: 37371684 DOI: 10.3390/biomedicines11061589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Psoriasis (PSO) is an inflammatory skin condition that causes a variety of diseases and significantly decreases the life characteristics of patients, and substantially diminishes patients' quality of life. PSO usually impairs the skin and is linked to various disorders. Inflammation pathology does not only damage psoriatic skin; it shows how PSO impinges other body parts. Many variables interact with one another and can impact the etiology of psoriasis directly or indirectly. PSO has an effect on approximately 2% of the world's population, and significant progress has been made in comprehending and treating the alternative PSO by novel drug delivery systems. Topical, systemic, biological, biomaterials, and phototherapy are some of the useful therapies for PSO. Nonetheless, topical treatments remain the gold standard for treating moderate PSO. The applicability of several nanocarrier systems, such as lipid nanoparticles, metallic nanoparticles, and certain phytocompounds, has been briefly explored. The present review focuses mainly on traditional therapeutic strategies as well as on breakthroughs in nanoformulations and drug delivery methods for several anti-psoriatic drugs.
Collapse
Affiliation(s)
- Divya Thirumal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Shuchi Goyal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Aayush Sehgal
- Department of Pharmacology, G.H.G. Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana 141014, Punjab, India
| | - Ashok Kumar
- Department of Cardiology, Sadbhwana Hospital, Fatehabad 125050, Haryana, India
| | | | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
3
|
Photodynamic therapy for treating infected skin wounds: A systematic review and meta-analysis from randomized clinical trials. Photodiagnosis Photodyn Ther 2022; 40:103118. [PMID: 36109003 DOI: 10.1016/j.pdpdt.2022.103118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Infected skin wounds represent a public health problem that effects 20 million people worldwide. Photodynamic therapy (PDT) is a treatment option with excellent results against several infections. OBJECTIVE This study aimed to perform a systematic review and meta-analysis on PDT efficacy for treating infected wounds based on randomized clinical trials (RCTs). METHODS PubMed, Scopus, Web of Science, SciELO, and the Cochrane library were searched. The Delphi List criteria and the Revised Cochrane risk-of-bias (Rob 2) were used for evaluating the quality of clinical trials. Meta-analyses were performed with the random-effect model. The odds ratio was the effect measure for binary outcomes, while the standard mean difference was used for continuous outcomes. The trim-and-fill method was used to detect small-study effects. The quality of evidence was verified for each outcome. RESULTS Only four out of 573 articles were selected for the qualitative and quantitative analyses. The most frequent cause of infected wounds was impaired venous circulation (75%). All studies used red LED light. PDT reduced healing time and improved the healing process and wound oxygenation. Patients treated with PDT showed 15% to 17% (p = 0.0003/ I2=0%) lower microbial cell viability in the wound and a significantly smaller wound size (0.72 cm2/p = 0.0187/I2=0%) than patients treated with placebo or red-light exposure. There was a high level of evidence for each meta-analysis outcome. CONCLUSION PDT can be an excellent alternative treatment for infected skin wounds, though larger trials are needed.
Collapse
|
4
|
Doroshenko A, Tomkova S, Kozar T, Stroffekova K. Hypericin, a potential new BH3 mimetic. Front Pharmacol 2022; 13:991554. [PMID: 36267274 PMCID: PMC9577225 DOI: 10.3389/fphar.2022.991554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Many types of cancer such as prostate cancer, myeloid leukemia, breast cancer, glioblastoma display strong chemo resistance, which is supported by enhanced expression of multiple anti-apoptotic Bcl-2, Bcl-XL and Mcl-1 proteins. The viable anti-cancer strategies are based on developing anti-apoptotic Bcl-2 proteins inhibitors, BH3 mimetics. Our focus in past years has been on the investigating a new potential BH3 mimetic, Hypericin (Hyp). Hyp is a naturally occurring photosensitive compound used in photodynamic therapy and diagnosis. We have demonstrated that Hyp can cause substantial effects in cellular ultrastructure, mitochondria function and metabolism, and distribution of Bcl2 proteins in malignant and non-malignant cells. One of the possible mechanisms of Hyp action could be the direct interactions between Bcl-2 proteins and Hyp. We investigated this assumption by in silico computer modelling and in vitro fluorescent spectroscopy experiments with the small Bcl2 peptide segments designed to correspond to Bcl2 BH3 and BH1 domains. We show here that Hyp interacts with BH3 and BH1 peptides in concentration dependent manner, and shows the stronger interactions than known BH3 mimetics, Gossypol (Goss) and ABT-263. In addition, interactions of Hyp, Goss and ABT263, with whole purified proteins Bcl-2 and Mcl-1 by fluorescence spectroscopy show that Hyp interacts stronger with the Bcl-2 and less with Mcl-1 protein than Goss or ABT-263. This suggest that Hyp is comparable to other BH3 mimetics and could be explore as such. Hyp cytotoxicity was low in human U87 MG glioma, similar to that of ABT263, where Goss exerted sufficient cytotoxicity, suggesting that Hyp acts primarily on Bcl-2, but not on Mcl-1 protein. In combination therapy, low doses of Hyp with Goss effectively decreased U87 MG viability, suggesting a possible synergy effect. Overall, we can conclude that Hyp as BH3 mimetic acts primarily on Bcl-2 protein and can be explored to target cells with Bcl-2 over-expression, or in combination with other BH3 mimetics, that target Mcl-1 or Bcl-XL proteins, in dual therapy.
Collapse
Affiliation(s)
- Anastasia Doroshenko
- Department of Biophysics, Faculty of Natural Sciences, PJ Safarik University, Kosice, Slovakia
| | - Silvia Tomkova
- Department of Biophysics, Faculty of Natural Sciences, PJ Safarik University, Kosice, Slovakia
| | - Tibor Kozar
- Center of Interdisciplinary Biosciences, TIP-Safarik University, Kosice, Slovakia
| | - Katarina Stroffekova
- Department of Biophysics, Faculty of Natural Sciences, PJ Safarik University, Kosice, Slovakia
- *Correspondence: Katarina Stroffekova,
| |
Collapse
|
5
|
Importance of Hypericin-Bcl2 interactions for biological effects at subcellular levels. Photodiagnosis Photodyn Ther 2019; 28:38-52. [PMID: 31430575 DOI: 10.1016/j.pdpdt.2019.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/18/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Hypericin (Hyp) is a naturally occurring compound used as photosensitizer in photodynamic therapy and diagnosis. Recently, we have shown that Hyp presence alone, without illumination, resulted in substantial biological effects at several sub-cellular levels. Hyp induced changes in cellular ultrastructure, mitochondria function and metabolism, and distribution of Bcl2 proteins in malignant and non-malignant cells. The molecular mechanisms that underlie Hyp light-independent effects are still elusive. We have hypothesized that Bcl2-Hyp interactions might be one possible mechanism. We performed molecular docking studies to determine the Hyp-Bcl2 interaction profile. Based on the interaction profiles small Bcl2 peptide segments were selected for further study. We designed small peptides corresponding to Bcl2 BH3 and BH1 domains and tested the binding of Hyp and Bcl2 known inhibitor, ABT263, to the peptides in computer modeling and in vitro binding studies. We employed endogenous tryptophan and tyrosine in the BH3 and BH1 peptides, respectively, and their fluorescent properties to show interaction with Hyp and ABT263. Overall, our results indicate that Hyp can interact with Bcl2 protein at its BH3-BH1 hydrophobic groove, and this interaction may trigger changes in intracellular distribution of Bcl2 proteins. In addition, our computer modeling results suggest that Hyp also interacts with other anti-apoptotic members of Bcl2 family similar to the known BH3 mimetics. Our findings are novel and might contribute to understanding Hyp light-independent effects. In addition, they may substantiate the therapeutic use of Hyp as a BH3 mimetic molecule to enhance other cancer treatments.
Collapse
|
6
|
Gomez C, Muangnoi C, Sorasitthiyanukarn FN, Wongpiyabovorn J, Rojsitthisak P, Rojsitthisak P. Synergistic Effects of Photo-Irradiation and Curcumin-Chitosan/Alginate Nanoparticles on Tumor Necrosis Factor-Alpha-Induced Psoriasis-Like Proliferation of Keratinocytes. Molecules 2019; 24:molecules24071388. [PMID: 30970577 PMCID: PMC6479976 DOI: 10.3390/molecules24071388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/30/2019] [Accepted: 04/05/2019] [Indexed: 12/03/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by hyperproliferation of the epidermal cells and is clinically presented as thick, bright red to pink plaques with a silvery scale. Photodynamic therapy (PDT) using visible light has become of increasing interest in the treatment of inflammatory skin diseases. In this study, we demonstrate that a combination of curcumin-loaded chitosan/alginate nanoparticles (Cur-CS/Alg NPs) and blue light emitting diodes (LED) light irradiation effectively suppressed the hyperproliferation of tumor necrosis factor-alpha (TNF-α)-induced cultured human kerlatinocyte (HaCaT) cells. The Cur-CS/Alg NPs were fabricated by emulsification of curcumin in aqueous sodium alginate solution and ionotropic gelation with calcium chloride and chitosan using an optimized formulation derived from a Box-Behnken design. The fabricated Cur-CS/Alg NPs were characterized for their particle size, zeta potential, encapsulation efficiency, and loading capacity. The surrogate 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, to measure the relative number of viable cells, showed that the CS/Alg NPs were nontoxic to normal HaCaT cells, while 0.05 µg/mL and 0.1 µg/mL of free curcumin and Cur-CS/Alg NPs inhibited the hyperproliferation of HaCaT cells induced by TNF-α. However, the Cur-CS/Alg NPs demonstrated a stronger effect than the free curcumin, especially when combined with blue light irradiation (10 J/cm2) from an LED-based illumination device. Therefore, the Cur-CS/Alg NPs with blue LED light could be potentially developed into an effective PDT system for the treatment of psoriasis.
Collapse
Affiliation(s)
- Clinton Gomez
- Biomedicinal Chemistry Program, Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Chawanphat Muangnoi
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand.
| | - Feaungthit Niyamissara Sorasitthiyanukarn
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Jongkonnee Wongpiyabovorn
- Center of Excellence in Immunology and Immune Mediated Diseases, Division of Immunology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pornchai Rojsitthisak
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330 Thailand.
| | - Pranee Rojsitthisak
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
7
|
Hou GR, Zeng K, Lan HM, Wang Q. Juglanin ameliorates UVB‑induced skin carcinogenesis via anti‑inflammatory and proapoptotic effects in vivo and in vitro. Int J Mol Med 2018; 42:41-52. [PMID: 29620254 PMCID: PMC5979868 DOI: 10.3892/ijmm.2018.3601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Ultraviolet (UV) radiation induces skin injury, and is associated with the development and formation of melanoma, which is a highly lethal form of skin cancer. Juglanin is a natural product, which is predominantly extracted from Polygonum aviculare, and is considered a functional component among its various compounds. Juglanin has been reported to exert marked protective effects in various diseases via the inhibition of inflammation and tumor cell growth. The present study aimed to explore the effects of juglanin on human skin cancer induced by UV and to reveal the underlying molecular mechanism. In the present study, immunohistochemical analysis, western blot analysis, RT-qPCR analysis and flow cytometry assays were mainly used in vivo and/or in vitro. The results indicated that in mice, UVB exposure increased susceptibility to carcinogens, and accelerated disease pathogenesis. Conversely, juglanin was able to ameliorate this condition via inhibition of inflammation, suppression of cell proliferation and induction of apoptosis via p38/c‑Jun N‑terminal kinase (JNK) blockage, nuclear factor (NF)‑κB inactivation and caspase stimulation in vivo. In addition, in vitro, the present study demonstrated that treatment of UVB‑stimulated B16F10 melanoma cells with juglanin resulted in a dose‑dependent decrease in cell viability, as well as increased apoptosis via the upregulation of caspase expression and poly (ADP‑ribose) polymerase cleavage. In addition, juglanin markedly attenuated p38/JNK signaling, inactivated the phosphoinositide 3‑kinase/protein kinase B pathway and suppressed UVB‑induced NF‑κB activation. Taken together, these results indicated the possibility of applying juglanin in combination with UVB as a potential therapeutic strategy for preventing skin cancer.
Collapse
Affiliation(s)
- Gui-Rong Hou
- Department of Dermatology, Nanfang Hospital, Nanfang Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Nanfang Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hai-Mei Lan
- Department of Dermatology, Nanfang Hospital, Nanfang Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qi Wang
- Department of Dermatology, Nanfang Hospital, Nanfang Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
8
|
Koizumi N, Harada Y, Beika M, Minamikawa T, Yamaoka Y, Dai P, Murayama Y, Yanagisawa A, Otsuji E, Tanaka H, Takamatsu T. Highly sensitive fluorescence detection of metastatic lymph nodes of gastric cancer with photo-oxidation of protoporphyrin IX. Eur J Surg Oncol 2016; 42:1236-46. [PMID: 27055944 DOI: 10.1016/j.ejso.2016.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/25/2015] [Accepted: 03/04/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The establishment of a precise and rapid method to detect metastatic lymph nodes (LNs) is essential to perform less invasive surgery with reduced gastrectomy along with reduced lymph node dissection. We herein describe a novel imaging strategy to detect 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) fluorescence in excised LNs specifically with reduced effects of tissue autofluorescence based on photo-oxidation of PpIX. We applied the method in a clinical setting, and evaluated its feasibility. METHODS To reduce the unfavorable effect of autofluorescence, we focused on photo-oxidation of PpIX: Following light irradiation, PpIX changes into another substance, photo-protoporphyrin, via an oxidative process, which has a different spectral peak, at 675 nm, whereas PpIX has its spectral peak at 635 nm. Based on the unique spectral alteration, fluorescence spectral imaging before and after light irradiation and subsequent originally-developed image processing was performed. Following in vitro study, we applied this method to a total of 662 excised LNs obtained from 30 gastric cancer patients administered 5-ALA preoperatively. RESULTS Specific visualization of PpIX was achieved in in vitro study. The method allowed highly sensitive detection of metastatic LNs, with sensitivity of 91.9% and specificity of 90.8% in the in vivo clinical trial. Receiver operating characteristic analysis indicated high diagnostic accuracy, with the area under the curve of 0.926. CONCLUSIONS We established a highly sensitive and specific 5-ALA-induced fluorescence imaging method applicable in clinical settings. The novel method has a potential to become a useful tool for intraoperative rapid diagnosis of LN metastasis.
Collapse
Affiliation(s)
- N Koizumi
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan; Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Y Harada
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - M Beika
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan; Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - T Minamikawa
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Y Yamaoka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - P Dai
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Y Murayama
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - A Yanagisawa
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - E Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - H Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - T Takamatsu
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
9
|
Investigation of anti-inflammatory and anti-proliferative activities promoted by photoactivated cationic porphyrin. Photodiagnosis Photodyn Ther 2015; 12:444-58. [DOI: 10.1016/j.pdpdt.2015.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/25/2015] [Accepted: 05/11/2015] [Indexed: 11/24/2022]
|
10
|
Reinhard A, Sandborn WJ, Melhem H, Bolotine L, Chamaillard M, Peyrin-Biroulet L. Photodynamic therapy as a new treatment modality for inflammatory and infectious conditions. Expert Rev Clin Immunol 2015; 11:637-57. [DOI: 10.1586/1744666x.2015.1032256] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|