1
|
Cozzens JW, Lokaitis BC, Delfino K, Hoeft A, Moore BE, Fifer AS, Amin DV, Espinosa JA, Jones BA, Acakpo-Satchivi L. A Phase 2 Sensitivity and Selectivity Study of High-Dose 5-Aminolevulinic Acid in Adult Patients Undergoing Resection of a Newly Diagnosed or Recurrent Glioblastoma. Oper Neurosurg (Hagerstown) 2024:01787389-990000000-01394. [PMID: 39526779 DOI: 10.1227/ons.0000000000001417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The utility of oral 5-aminolevulinic acid (5-ALA)/protoporphyrin fluorescence for the resection of high-grade gliomas is well documented, but the problem of false-negative observations remains. This study compares high-grade glioma visualization with low/standard dose 5-ALA (<30 mg/kg) to high-dose 5-ALA (>40 mg/kg) to see if by using this higher dose, it is possible to reduce the rate of false-negative observations without increasing the rate of false-positive (FP) observations and therefore increase the sensitivity. METHODS This is a prospective study of consecutive patients with radiological evidence of presumed high-grade glioma. We reviewed the data from patients who received preoperative low/standard doses and patients who received a preoperative high dose of 5-ALA. Adverse events, dose to observation time, intensity of tumor fluorescence, and results of biopsies in areas of tumor and tumor bed under deep blue light were recorded. RESULTS A total of 22 patients with high-grade glioma received a dose >40 mg/kg (high-dose) and 9 patients received <30 mg/kg (low/standard dose). There were no serious adverse events related to 5-ALA in any subject. There was a very high sensitivity and specificity of 5-ALA for the presence of tumor in both groups. There were no FP observations (fluorescence with no tumor) in either group. The specificity and the positive predictive value were 100% in both groups. The sensitivity and the negative predictive value were 53.3% and 30.0% in the low/standard dose group and 59.5% and 31.8% in the high-dose group, respectively. CONCLUSION High-dose oral 5-aminolevulinic/protoporphyrin fluorescence is a safe and effective aid to the intraoperative detection of high-grade gliomas with high sensitivity and specificity. False-negative observations with a high dose do not seem to be less than that with a low/standard dose. The rate of FP observations with both groups remains very low.
Collapse
Affiliation(s)
- Jeffrey W Cozzens
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Barbara C Lokaitis
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Kristin Delfino
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Ava Hoeft
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Brian E Moore
- Department of Pathology, Boston University Medical Center, Boston, Massachusetts, USA
| | - Amber S Fifer
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Devin V Amin
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - José A Espinosa
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Breck A Jones
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Leslie Acakpo-Satchivi
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Springfield Clinic, Springfield, Illinois, USA
| |
Collapse
|
2
|
Cossu G, Le Van T, Kerherve L, Houidi SA, Morlaix E, Bonneville F, Chapon R, Baland O, Cao C, Lleu M, Farah W, El Cadhi A, Beaurain J, Picart T, Xu B, Berhouma M. Enlightening the invisible: Applications, limits and perspectives of intraoperative fluorescence in neurosurgery. BRAIN & SPINE 2024; 4:103928. [PMID: 39823065 PMCID: PMC11735926 DOI: 10.1016/j.bas.2024.103928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 01/19/2025]
Abstract
Introduction The introduction of intraoperative fluorophores represented a significant advancement in neurosurgical practice. Nowadays they found different applications: in oncology to improve the visualization of tumoral tissue and optimize resection rates and in vascular neurosurgery to assess the exclusion of vascular malformations or the permeability of bypasses, with real-time intraoperative evaluations. Research question A comprehensive knowledge of how fluorophores work is crucial to maximize their benefits and to incorporate them into daily neurosurgical practice. We would like to revise here their applications and clinical relevance. Material and methods A focused literature review of relevant articles dealing with the versatile applications of fluorophores in neurosurgery was performed. Results The fundamental mechanisms of action of intraoperative fluorophores are enlightened, examining their interactions with target tissues and the principles driving fluorescence-guided surgery. The clinical applications of the principal fluorophores, namely fluorescein sodium, 5-ALA and indocyanine green, are detailed, in regards to the management of vascular malformations, brain tumors and pathologies treated through endoscopic endonasal approaches. Discussion and conclusion Future perspective dealing with the development of new technologies or of new molecules are discussed. By critically assessing the efficacy and applications of the different fluorophores, as well as charting their potential future uses, this paper seeks to guide clinicians in their practice and provide insights for driving innovation and progress in fluorescence-based surgery and research.
Collapse
Affiliation(s)
- Giulia Cossu
- Department of Neurosurgery, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Tuan Le Van
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Luc Kerherve
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Sayda A. Houidi
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Edouard Morlaix
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Florent Bonneville
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Renan Chapon
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Olivier Baland
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Catherine Cao
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Maxime Lleu
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Walid Farah
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Ahmed El Cadhi
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Jacques Beaurain
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Thiebaud Picart
- Department of Neurosurgery, Groupe Hospitalier Est, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
- Université Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, Villeurbanne, France
- Cancer Research Centre of Lyon (CRCL), INSERM 1052, CNRS 5286, 28 Rue Laennec, Lyon, France
| | - Bin Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Moncef Berhouma
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
- Functional and Molecular Imaging Team (CNRS 6302), Molecular Chemistry Institute (ICMUB), University of Burgundy, France
| |
Collapse
|
3
|
Schusteff RA, Slavin KV, Roth S. 5-Aminolevulonic Acid, a New Tumor Contrast Agent: Anesthesia Considerations in Patients Undergoing Craniotomy. J Neurosurg Anesthesiol 2024; 36:294-302. [DOI: 10.1097/ana.0000000000000941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/26/2023] [Indexed: 01/03/2025]
Abstract
5-aminolevulinic acid (ALA) is used during resection of malignant gliomas due to its fluorescence properties and has been shown to render resection more effective than resection without ALA guidance. The aim of this narrative review is to categorize the adverse effects of ALA relevant to anesthesia providers. Intraoperative hypotension, porphyria-related side effects, alterations in blood chemistry and coagulation, photosensitivity, and increased levels of liver enzymes have all been reported. We also sought to examine the impact of dosage and timing of oral administration on efficacy of ALA and on these side effects. Twenty-seven studies met our inclusion criteria of patients undergoing craniotomy for glioma resection using ALA and occurrence of at least one adverse effect. The results of these studies showed that there was heterogeneity in levels of intraoperative hypotension, with some reporting an incidence as high as 32%, and that hypotension was associated with antihypertensive medication use. Clinical symptoms of porphyria, such as gastrointestinal disturbance, were less commonly reported. Photosensitivity of the skin after 5-ALA administration was well documented particularly in patients exposed to light; however, adverse effects on the eye were not adequately studied. Elevation in liver enzymes was a common finding postoperatively but was often clinically insignificant. The timing of oral administration presents practical issues for the preoperative management of patients undergoing resection with ALA. We provide guidance for perioperative management of patients who receive ALA for brain tumor resection. Controlled studies with adequate statistical power are required to further understand and prevent the adverse effects of ALA.
Collapse
Affiliation(s)
- Rachel A. Schusteff
- Department of Anesthesiology, University of Illinois at Chicago College of Medicine
| | - Konstantin V. Slavin
- Department of Neurosurgery, University of Illinois at Chicago College of Medicine, and Neurology Section, Jesse Brown Veterans Administration Medical Center, Chicago, IL
| | - Steven Roth
- Department of Anesthesiology, University of Illinois at Chicago College of Medicine
| |
Collapse
|
4
|
Gautheron A, Bernstock JD, Picart T, Guyotat J, Valdés PA, Montcel B. 5-ALA induced PpIX fluorescence spectroscopy in neurosurgery: a review. Front Neurosci 2024; 18:1310282. [PMID: 38348134 PMCID: PMC10859467 DOI: 10.3389/fnins.2024.1310282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
The review begins with an overview of the fundamental principles/physics underlying light, fluorescence, and other light-matter interactions in biological tissues. It then focuses on 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) fluorescence spectroscopy methods used in neurosurgery (e.g., intensity, time-resolved) and in so doing, describe their specific features (e.g., hardware requirements, main processing methods) as well as their strengths and limitations. Finally, we review current clinical applications and future directions of 5-ALA-induced protoporphyrin IX (PpIX) fluorescence spectroscopy in neurosurgery.
Collapse
Affiliation(s)
- A. Gautheron
- Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire Hubert Curien UMR 5516, Saint-Étienne, France
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France
| | - J. D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - T. Picart
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
- Université Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - J. Guyotat
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - P. A. Valdés
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, United States
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
| | - B. Montcel
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France
| |
Collapse
|
5
|
Wårdell K, Klint E, Milos P, Richter J. One-Insertion Stereotactic Brain Biopsy Using In Vivo Optical Guidance-A Case Study. Oper Neurosurg (Hagerstown) 2023; 25:176-182. [PMID: 37083519 PMCID: PMC10313274 DOI: 10.1227/ons.0000000000000722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/21/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Stereotactic neurosurgical brain biopsies are afflicted with risks of inconclusive results and hemorrhage. Such complications can necessitate repeated trajectories and prolong surgical time. OBJECTIVE To develop and introduce a 1-insertion stereotactic biopsy kit with direct intraoperative optical feedback and to evaluate its applicability in 3 clinical cases. METHODS An in-house forward-looking probe with optical fibers was designed to fit the outer cannula of a side-cutting biopsy kit. A small aperture was made at the tip of the outer cannula and the edges aligned with the optical probe inside. Stereotactic biopsies were performed using the Leksell Stereotactic System. Optical signals were measured in millimeter steps along the preplanned trajectory during the insertion. At the region with the highest 5-aminolevulinic acid (5-ALA)-induced fluorescence, the probe was replaced by the inner cannula, and tissue samples were taken. The waiting time for pathology diagnosis was noted. RESULTS Measurements took 5 to 10 minutes, and the surgeon received direct visual feedback of intraoperative 5-ALA fluorescence, microcirculation, and tissue gray-whiteness. The 5-ALA fluorescence corroborated with the pathological findings which had waiting times of 45, 50, and 75 minutes. Because only 1 trajectory was required and the patient could be prepared for the end of surgery immediately after sampling, this shortened the total surgical time. CONCLUSION A 1-insertion stereotactic biopsy procedure with real-time optical guidance has been presented and successfully evaluated in 3 clinical cases. The method can be modified for frameless navigation and thus has great potential to improve safety and diagnostic yield for both frameless and frame-based neurosurgical biopsy procedures.
Collapse
Affiliation(s)
- Karin Wårdell
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Elisabeth Klint
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Peter Milos
- Department of Neurosurgery and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan Richter
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Department of Neurosurgery and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Suero Molina E, Black D, Kaneko S, Müther M, Stummer W. Double dose of 5-aminolevulinic acid and its effect on protoporphyrin IX accumulation in low-grade glioma. J Neurosurg 2022; 137:943-952. [PMID: 35213830 DOI: 10.3171/2021.12.jns211724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/20/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Administration of 5-aminolevulinic acid (5-ALA) does not regularly elicit fluorescence in low-grade glioma (LGG) at currently established doses and timing of administration. One explanation may be differences in blood-brain barrier (BBB) integrity compared to high-grade glioma. The authors hypothesized that for a BBB semipermeable to 5-ALA there might be a relationship between plasma 5-ALA concentration and its movement into the brain. A higher dose would elicit more 5-ALA conversion into protoporphyrin IX (PPIX). The authors present a case series of patients harboring LGG who received higher doses of 5-ALA. METHODS Patients undergoing surgery for indeterminate glioma later diagnosed as LGG were included in this study. 5-ALA was administered at a standard dose of 20 mg/kg body weight (bw) 4 hours prior to induction of anesthesia. A subgroup of patients received a higher dose of 40 mg/kg bw. Fluorescence was evaluated visually and PPIX concentration (cPPIX) was determined ex vivo by hyperspectral measurements in freshly extracted tissue. All adverse events were recorded. RESULTS A total of 23 patients harboring diffuse low-grade astrocytomas (n = 19) and oligodendrogliomas (n = 4) were analyzed. Thirteen patients received 20 mg/kg bw, and 10 patients received 40 mg/kg bw of 5-ALA. In the 20 mg/kg group, 30.8% (4 of 13) of tumors harbored areas of visible fluorescence, compared to 60% of cases (n = 6 of 10) with 40 mg/kg bw. The threshold to visibility was 1 μg/ml in both groups. Measured over all biopsies, the mean cPPIX was significantly higher in the double-dose group (1.8 vs 0.45 μg/ml; p < 0.001). In non-visibly fluorescent tissue the mean cPPIX was 0.146 μg/ml in the 20 mg/kg and 0.347 μg/ml in the 40 mg/kg group, indicating an increase of 138% (p < 0.001). CONCLUSIONS These observations demonstrate different regions with different levels of PPIX accumulation in LGG. With higher 5-ALA doses cPPIX increases, leading to more regions surpassing the visibility threshold of 1 μg/ml. These observations can be explained by the fact that the BBB in LGG is semipermeable to 5-ALA. Higher 5-ALA doses result in more PPIX conversion, an observation with implications for future dosing in LGG.
Collapse
Affiliation(s)
| | - David Black
- 2Carl Zeiss Meditec AG, Oberkochen, Germany
- 3Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Sadahiro Kaneko
- 1Department of Neurosurgery, University Hospital of Münster
- 4Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Michael Müther
- 1Department of Neurosurgery, University Hospital of Münster
| | - Walter Stummer
- 1Department of Neurosurgery, University Hospital of Münster
| |
Collapse
|
7
|
Harada Y, Murayama Y, Takamatsu T, Otsuji E, Tanaka H. 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence Imaging for Tumor Detection: Recent Advances and Challenges. Int J Mol Sci 2022; 23:ijms23126478. [PMID: 35742921 PMCID: PMC9223645 DOI: 10.3390/ijms23126478] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/18/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is a natural amino acid and a precursor of heme and chlorophyll. Exogenously administered 5-ALA is metabolized into protoporphyrin IX (PpIX). PpIX accumulates in cancer cells because of the low activity of ferrochelatase, an enzyme that metabolizes PpIX to heme. High expression of 5-ALA influx transporters, such as peptide transporters 1/2, in cancer cells also enhances PpIX production. Because PpIX radiates red fluorescence when excited with blue/violet light, 5-ALA has been used for the visualization of various tumors. 5-ALA photodynamic diagnosis (PDD) has been shown to improve the tumor removal rate in high-grade gliomas and non-muscular invasive bladder cancers. However, 5-ALA PDD remains a challenge as a diagnostic method because tissue autofluorescence interferes with PpIX signals in cases where tumors emit only weak signals, and non-tumorous lesions, such as inflammatory sites, tend to emit PpIX fluorescence. Here, we review the current outline of 5-ALA PDD and strategies for improving its diagnostic applicability for tumor detection, focusing on optical techniques and 5-ALA metabolic pathways in both viable and necrotic tumor tissues.
Collapse
Affiliation(s)
- Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan;
- Correspondence: ; Tel.: +81-75-251-5322
| | - Yasutoshi Murayama
- Division of Digestive Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan; (Y.M.); (E.O.)
| | - Tetsuro Takamatsu
- Department of Medical Photonics, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan;
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan; (Y.M.); (E.O.)
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan;
| |
Collapse
|
8
|
Yahanda AT, Dunn GP, Chicoine MR. Photosensitivity Reaction From Operating Room Lights After Oral Administration of 5-Aminolevulinic Acid for Fluorescence-Guided Resection of a Malignant Glioma. Cureus 2021; 13:e13442. [PMID: 33758722 PMCID: PMC7978397 DOI: 10.7759/cureus.13442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Orally administered 5-aminolevulinic acid (5-ALA), which was approved in the United States in 2017, is preferentially metabolized by malignant glioma cells into protoporphyrin IX and enhances tumor visualization when using a blue light filter on an operating microscope. Photosensitivity after 5-ALA administration is a known side effect, but a photosensitivity reaction from operating room lights has not yet been documented. We report the case of a 56-year-old man with a history of previous resection of a grade II astrocytoma who presented with imaging concerning for tumor recurrence and possible malignant transformation. Repeat surgical resection utilized 5-ALA. Soon after the surgery, he developed reddening of his skin, particularly over the right side of his head and neck, with blistering and peeling in a distribution that was particularly exposed to operating room lights during surgery. No other areas of his skin experienced the same redness, blistering, or peeling. Topical lotions were applied and the skin changes resolved spontaneously over weeks. Significant photosensitivity after administration of oral 5-ALA is a rare complication, but neurosurgeons who perform fluorescence-guided tumor resection should remain cognizant of its potential association with exposure to intense light, including in the operating room. Phototoxicity typically is self-limited, but awareness is important to minimize its occurrence.
Collapse
Affiliation(s)
- Alexander T Yahanda
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, USA
| | - Gavin P Dunn
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, USA
| | - Michael R Chicoine
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, USA
| |
Collapse
|
9
|
Akshulakov SK, Kerimbayev TT, Biryuchkov MY, Urunbayev YA, Farhadi DS, Byvaltsev VA. Current Trends for Improving Safety of Stereotactic Brain Biopsies: Advanced Optical Methods for Vessel Avoidance and Tumor Detection. Front Oncol 2019; 9:947. [PMID: 31632903 PMCID: PMC6783564 DOI: 10.3389/fonc.2019.00947] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/09/2019] [Indexed: 01/06/2023] Open
Abstract
Stereotactic brain needle biopsies are indicated for deep-seated or multiple brain lesions and for patients with poor prognosis in whom the risks of resection outweigh the potential outcome benefits. The main goal of such procedures is not to improve the resection extent but to safely acquire viable tissue representative of the lesion for further comprehensive histological, immunohistochemical, and molecular analyses. Herein, we review advanced optical techniques for improvement of safety and efficacy of stereotactic needle biopsy procedures. These technologies are aimed at three main areas of improvement: (1) avoidance of vessel injury, (2) guidance for biopsy acquisition of the viable diagnostic tissue, and (3) methods for rapid intraoperative assessment of stereotactic biopsy specimens. The recent technological developments in stereotactic biopsy probe design include the incorporation of fluorescence imaging, spectroscopy, and label-free imaging techniques. The future advancements of stereotactic biopsy procedures in neuro-oncology include the incorporation of optical probes for real-time vessel detection along and around the biopsy needle trajectory and in vivo confirmation of the diagnostic tumor tissue prior to sample acquisition.
Collapse
Affiliation(s)
- Serik K Akshulakov
- Department of Neurosurgery, JSC "National Center for Neurosurgery", Nur-Sultan, Kazakhstan
| | - Talgat T Kerimbayev
- Department of Neurosurgery, JSC "National Center for Neurosurgery", Nur-Sultan, Kazakhstan
| | - Michael Y Biryuchkov
- Department of Neurosurgery and Traumatology, West Kazakhstan Marat Ospanov State Medical University, Aktobe, Kazakhstan
| | - Yermek A Urunbayev
- Department of Neurosurgery, JSC "National Center for Neurosurgery", Nur-Sultan, Kazakhstan
| | - Dara S Farhadi
- University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Vadim A Byvaltsev
- Department of Neurosurgery, JSC "National Center for Neurosurgery", Nur-Sultan, Kazakhstan.,Department of Neurosurgery and Innovative Medicine, Irkutsk State Medical University, Irkutsk, Russia
| |
Collapse
|
10
|
Picart T, Berhouma M, Dumot C, Pallud J, Metellus P, Armoiry X, Guyotat J. Optimization of high-grade glioma resection using 5-ALA fluorescence-guided surgery: A literature review and practical recommendations from the neuro-oncology club of the French society of neurosurgery. Neurochirurgie 2019; 65:164-177. [PMID: 31125558 DOI: 10.1016/j.neuchi.2019.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/17/2019] [Accepted: 04/28/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND When feasible, the surgical resection is the standard first step of the management of high-grade gliomas. 5-ALA fluorescence-guided-surgery (5-ALA-FGS) was developed to ease the intra-operative delineation of tumor borders in order to maximize the extent of resection. METHODS A Medline electronic database search was conducted. English language studies from January 1998 until July 2018 were included, following the PRISMA guidelines. RESULTS 5-ALA can be considered as a specific tool for the detection of tumor remnant but has a weaker sensibility (level 2). 5-ALA-FGS is associated with a significant increase in the rate of gross total resection reaching more than 90% in some series (level 1). Consistently, 5-ALAFGS improves progression-free survival (level 1). However, the gain in overall survival is more debated. The use of 5-ALA-FGS in eloquent areas is feasible but requires simultaneous intraoperative electrophysiologic functional brain monitoring to precisely locate and preserve eloquent areas (level 2). 5-ALA is usable during the first resection of a glioma but also at recurrence (level 2). From a practical standpoint, 5-ALA is orally administered 3 hours before the induction of anesthesia, the recommended dose being 20 mg/kg. Intra-operatively, the procedure is performed as usually with a central debulking and a peripheral dissection during which the surgeon switches from white to blue light. Provided that some precautions are observed, the technique does not expose the patient to particular complications. CONCLUSION Although 5-ALA-FGS contributes to improve gliomas management, there are still some limitations. Future methods will be developed to improve the sensibility of 5-ALA-FGS.
Collapse
Affiliation(s)
- T Picart
- Service de neurochirurgie D, hospices civils de Lyon, hôpital neurologique Pierre-Wertheimer, 59, boulevard Pinel, 69677 Bron, France; Inserm 1052, UMR 5286,Team ATIP/AVENIR Transcriptomic diversity of stem cells, centre de cancérologie de Lyon, centre Léon-Bérard, 69008 Lyon, France.
| | - M Berhouma
- Service de neurochirurgie D, hospices civils de Lyon, hôpital neurologique Pierre-Wertheimer, 59, boulevard Pinel, 69677 Bron, France; CREATIS Laboratory, Inserm U1206, UMR 5220, université de Lyon, 69100 Villeurbanne, France
| | - C Dumot
- Service de neurochirurgie D, hospices civils de Lyon, hôpital neurologique Pierre-Wertheimer, 59, boulevard Pinel, 69677 Bron, France; CREATIS Laboratory, Inserm U1206, UMR 5220, université de Lyon, 69100 Villeurbanne, France
| | - J Pallud
- Département de neurochirurgie, hôpital Sainte-Anne, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75005 Paris, France; IMA-Brain, Inserm U894, institut de psychiatrie et neurosciences de Paris, 7013 Paris, France
| | - P Metellus
- Hôpital Privé Clairval, Ramsay général de santé, 13009 Marseille, France; UMR 7051, institut de neurophysiopathologie, université d'Aix-Marseille, 13344 Marseille, France
| | - X Armoiry
- MATEIS (Team I2B), University of Lyon, Lyon school of pharmacy, 69008 Lyon, France; Édouard-Herriot Hospital, Pharmacy Department, 69008 Lyon, France; University of Warwick, Warwick Medical School, Coventry, UK
| | - J Guyotat
- Service de neurochirurgie D, hospices civils de Lyon, hôpital neurologique Pierre-Wertheimer, 59, boulevard Pinel, 69677 Bron, France
| |
Collapse
|
11
|
Ji SY, Kim JW, Park CK. Experience Profiling of Fluorescence-Guided Surgery I: Gliomas. Brain Tumor Res Treat 2019; 7:98-104. [PMID: 31686440 PMCID: PMC6829086 DOI: 10.14791/btrt.2019.7.e38] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/23/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
Background Numerous studies reported a usefulness of 5-aminolevulinic acid (5-ALA) fluorescence-guided surgery (FGS) in high grade gliomas. However, fluorescence patterns and intensities are variable among gliomas. In this study, we report our extensive experience with FGS in various gliomas, focusing on epidemiological data of fluorescence patterns. Methods A total of 827 histologically proven glioma patients out of 900 brain tumor patients who had undergone FGS using 5-ALA during the period of 8.5 years between July 2010 and January 2019 were analyzed. Indications of FGS in glioma surgery are evidence for possible high-grade foci in putative gliomas in preoperative MRI. Results Among the 827 gliomas, the number of cases corresponding to 2016 World Health Organization (WHO) grade IV, III, II, and I are 528 (58.7%), 193 (21.4%), 87 (9.7%) and 19 (2.1%), respectively. In terms of fluorescence rate, grade IV gliomas showed positive fluorescence in 95.4% of cases including strong intensity in 85.6%. Grade III gliomas showed fluorescence in about half of cases (55.0%), but 45.0% of the cases showed no fluorescence at all. Anaplastic oligodendroglioma had a higher positive rate (63.9%) than anaplastic astrocytoma (46.2%). Both grade II and I gliomas still showed positive fluorescence in about one-fourth of cases (24.1% and 26.3% respectively). Among them ependymoma and pilocytic astrocytoma were fluorescence-prone tumors. Conclusion This epidemiological data of 5-ALA fluorescence in various grades of glioma provides a basic reference to the clinical application of FGS with 5-ALA in glioma surgery.
Collapse
Affiliation(s)
- So Young Ji
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Jin Wook Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Chul Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
Chang SW, Donoho DA, Zada G. Use of optical fluorescence agents during surgery for pituitary adenomas: current state of the field. J Neurooncol 2018; 141:585-593. [PMID: 30523607 DOI: 10.1007/s11060-018-03062-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/24/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Differentiation of normal pituitary from abnormal tumor tissue remains a surgical challenge despite improvements in optical visualization technology for pituitary adenoma (PA) surgery. During neurosurgical procedures for other tumor types, 5-aminolevulinic acid (5-ALA) has become a focus of investigation based on its high specificity in differentiating tumor tissue. However, the role of 5-ALA and other optical fluorescent agents in PA surgery remains less clear. OBJECTIVE To perform a systematic review on the use of various optical fluorescent agents in PA surgery. METHOD Using PRISMA guidelines, a systematic literature review to identify reports describing 5-ALA and other optical agents for fluorescence-guided surgery for PA was performed. Eleven research studies met inclusion criteria and were reviewed. RESULTS In two studies, 5-ALA was not shown to be effective in aiding PA resection using standard neurosurgical endoscopic/microscopic approaches. 5-ALA photodynamic therapy was evaluated in two in-vitro models with inconsistent results. Intraoperative use of indocyanine green (ICG) concluded with varying results, but showed a tendency towards improved differentiation of functional PA. OTL38 showed potential for intraoperative identification of nonfunctioning PA, particularly in tumors with high folate receptor expression. One study reported clinically useful fluorescence following sodium fluorescein administration. CONCLUSION We conclude that selected optical fluorescent agents, including ICG and folate receptors, are most likely to hold promise for clinical use in differentiating PA from normal tissue.
Collapse
Affiliation(s)
- Stephanie W Chang
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel A Donoho
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gabriel Zada
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Haj-Hosseini N, Richter JCO, Milos P, Hallbeck M, Wårdell K. 5-ALA fluorescence and laser Doppler flowmetry for guidance in a stereotactic brain tumor biopsy. BIOMEDICAL OPTICS EXPRESS 2018; 9:2284-2296. [PMID: 29760987 PMCID: PMC5946788 DOI: 10.1364/boe.9.002284] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/27/2018] [Accepted: 04/09/2018] [Indexed: 05/21/2023]
Abstract
A fiber optic probe was developed for guidance during stereotactic brain biopsy procedures to target tumor tissue and reduce the risk of hemorrhage. The probe was connected to a setup for the measurement of 5-aminolevulinic acid (5-ALA) induced fluorescence and microvascular blood flow. Along three stereotactic trajectories, fluorescence (n = 109) and laser Doppler flowmetry (LDF) (n = 144) measurements were done in millimeter increments. The recorded signals were compared to histopathology and radiology images. The median ratio of protoporphyrin IX (PpIX) fluorescence and autofluorescence (AF) in the tumor was considerably higher than the marginal zone (17.3 vs 0.9). The blood flow showed two high spots (3%) in total. The proposed setup allows simultaneous and real-time detection of tumor tissue and microvascular blood flow for tracking the vessels.
Collapse
Affiliation(s)
| | - Johan C. O. Richter
- Department of Biomedical Engineering, Linköping University, Sweden
- Department of Neurosurgery, Linköping University Hospital, County Council Östergötland, Linköping, Sweden
| | - Peter Milos
- Department of Neurosurgery, Linköping University Hospital, County Council Östergötland, Linköping, Sweden
| | - Martin Hallbeck
- Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, Sweden
| |
Collapse
|
14
|
Belykh E, Miller EJ, Hu D, Martirosyan NL, Woolf EC, Scheck AC, Byvaltsev VA, Nakaji P, Nelson LY, Seibel EJ, Preul MC. Scanning Fiber Endoscope Improves Detection of 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence at the Boundary of Infiltrative Glioma. World Neurosurg 2018; 113:e51-e69. [PMID: 29408716 PMCID: PMC5924630 DOI: 10.1016/j.wneu.2018.01.151] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Fluorescence-guided surgery with protoporphyrin IX (PpIX) as a photodiagnostic marker is gaining acceptance for resection of malignant gliomas. Current wide-field imaging technologies do not have sufficient sensitivity to detect low PpIX concentrations. We evaluated a scanning fiber endoscope (SFE) for detection of PpIX fluorescence in gliomas and compared it to an operating microscope (OPMI) equipped with a fluorescence module and to a benchtop confocal laser scanning microscope (CLSM). METHODS 5-Aminolevulinic acid-induced PpIX fluorescence was assessed in GL261-Luc2 cells in vitro and in vivo after implantation in mouse brains, at an invading glioma growth stage, simulating residual tumor. Intraoperative fluorescence of high and low PpIX concentrations in normal brain and tumor regions with SFE, OPMI, CLSM, and histopathology were compared. RESULTS SFE imaging of PpIX correlated to CLSM at the cellular level. PpIX accumulated in normal brain cells but significantly less than in glioma cells. SFE was more sensitive to accumulated PpIX in fluorescent brain areas than OPMI (P < 0.01) and dramatically increased imaging time (>6×) before tumor-to-background contrast was diminished because of photobleaching. CONCLUSIONS SFE provides new endoscopic capabilities to view PpIX-fluorescing tumor regions at cellular resolution. SFE may allow accurate imaging of 5-aminolevulinic acid labeling of gliomas and other tumor types when current detection techniques have failed to provide reliable visualization. SFE was significantly more sensitive than OPMI to low PpIX concentrations, which is relevant to identifying the leading edge or metastasizing cells of malignant glioma or to treating low-grade gliomas. This new application has the potential to benefit surgical outcomes.
Collapse
MESH Headings
- Administration, Oral
- Aminolevulinic Acid/administration & dosage
- Aminolevulinic Acid/pharmacokinetics
- Animals
- Biotransformation
- Brain Neoplasms/chemistry
- Brain Neoplasms/diagnostic imaging
- Brain Neoplasms/pathology
- Cell Line, Tumor
- Female
- Fiber Optic Technology/instrumentation
- Fluorescent Dyes/analysis
- Genes, Reporter
- Glioma/chemistry
- Glioma/diagnostic imaging
- Glioma/pathology
- Mice
- Mice, Inbred C57BL
- Microscopy, Confocal/instrumentation
- Microscopy, Confocal/methods
- Microscopy, Fluorescence/instrumentation
- Microscopy, Fluorescence/methods
- Neoplasm Grading
- Neoplasm Invasiveness
- Neoplasm Transplantation
- Neuroendoscopes
- Neuroendoscopy/instrumentation
- Neuroendoscopy/methods
- Photobleaching
- Photosensitizing Agents/analysis
- Protoporphyrins/analysis
- Protoporphyrins/biosynthesis
- Single-Cell Analysis
- Surgery, Computer-Assisted/instrumentation
- Surgery, Computer-Assisted/methods
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA; Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Eric J Miller
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Danying Hu
- Biorobotics Laboratory, Department of Electrical Engineering, University of Washington, Seattle, Washington, USA
| | - Nikolay L Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Eric C Woolf
- Department of Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Adrienne C Scheck
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA; Department of Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Vadim A Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Leonard Y Nelson
- Human Photonics Laboratory, Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Eric J Seibel
- Human Photonics Laboratory, Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.
| |
Collapse
|
15
|
Cozzens JW, Lokaitis BC, Moore BE, Amin DV, Espinosa JA, MacGregor M, Michael AP, Jones BA. A Phase 1 Dose-Escalation Study of Oral 5-Aminolevulinic Acid in Adult Patients Undergoing Resection of a Newly Diagnosed or Recurrent High-Grade Glioma. Neurosurgery 2018; 81:46-55. [PMID: 28498936 DOI: 10.1093/neuros/nyw182] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/25/2017] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The utility of oral 5-aminolevulinic acid (5-ALA)/protoporphyrin fluorescence for the resection of high-grade gliomas is well documented. This drug has received regulatory approval in Europe but awaits approval in the United States. OBJECTIVE To identify the appropriate dose and toxicity or harms of 5-ALA used for enhanced intraoperative visualization of malignant brain tumors, reported from a single medical center in the United States. METHODS Prior to craniotomy for resection of a presumed high-grade glioma, individuals were given oral 5-ALA as part of a rapid dose-escalation scheme. At least 3 patients were selected for each dose level from 10 to 50 mg/kg in 10 mg/kg increments. Adverse events, intensity of tumor fluorescence, and results of biopsies in areas of tumor and the tumor bed under white light and deep blue light were recorded. RESULTS A total of 19 patients were studied in this phase 1 study. Serious adverse events were unrelated to the ingestion of 5-ALA. At the highest dose level studied (50 mg/kg), 2 out of 6 patients were observed to have transient dermatologic redness and peeling. These were grade 1 adverse events, which were not serious enough to be dose limiting. Patients at higher dose levels (>40 mg/kg) were more likely to have strong tumor fluorescence. There were no instances of false positive fluorescence. CONCLUSION The use of 5-ALA for brain tumor fluorescence is safe and effective to a dose of 50 mg/kg. Dose-limiting toxicity was not reached in this study.
Collapse
Affiliation(s)
| | - Barbara C Lokaitis
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Brian E Moore
- Department of Pathology, University of Colorado/Anshutz Medical Campus, Aurora, Colorado
| | | | | | | | | | | |
Collapse
|
16
|
With a Little Help from My Friends: The Role of Intraoperative Fluorescent Dyes in the Surgical Management of High-Grade Gliomas. Brain Sci 2018; 8:brainsci8020031. [PMID: 29414911 PMCID: PMC5836050 DOI: 10.3390/brainsci8020031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/09/2018] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
High-grade gliomas (HGGs) are the most frequent primary malignant brain tumors in adults, which lead to death within two years of diagnosis. Maximal safe resection of malignant gliomas as the first step of multimodal therapy is an accepted goal in malignant glioma surgery. Gross total resection has an important role in improving overall survival (OS) and progression-free survival (PFS), but identification of tumor borders is particularly difficult in HGGS. For this reason, imaging adjuncts, such as 5-aminolevulinic acid (5-ALA) or fluorescein sodium (FS) have been proposed as superior strategies for better defining the limits of surgical resection for HGG. 5-aminolevulinic acid (5-ALA) is implicated as precursor in the synthetic pathway of heme group. Protoporphyrin IX (PpIX) is an intermediate compound of heme metabolism, which produces fluorescence when excited by appropriate light wavelength. Malignant glioma cells have the capacity to selectively synthesize or accumulate 5-ALA-derived porphyrins after exogenous administration of 5-ALA. Fluorescein sodium (FS), on the other hand, is a fluorescent substance that is not specific to tumor cells but actually it is a marker for compromised blood-brain barrier (BBB) areas. Its effectiveness is confirmed by multicenter phase-II trial (FLUOGLIO) but lack of randomized phase III trial data. We conducted an analytic review of the literature with the objective of identifying the usefulness of 5-ALA and FS in HGG surgery in adult patients.
Collapse
|
17
|
Xie Y, Thom M, Ebner M, Wykes V, Desjardins A, Miserocchi A, Ourselin S, McEvoy AW, Vercauteren T. Wide-field spectrally resolved quantitative fluorescence imaging system: toward neurosurgical guidance in glioma resection. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-14. [PMID: 29139243 PMCID: PMC6742512 DOI: 10.1117/1.jbo.22.11.116006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/26/2017] [Indexed: 05/03/2023]
Abstract
In high-grade glioma surgery, tumor resection is often guided by intraoperative fluorescence imaging. 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) provides fluorescent contrast between normal brain tissue and glioma tissue, thus achieving improved tumor delineation and prolonged patient survival compared with conventional white-light-guided resection. However, commercially available fluorescence imaging systems rely solely on visual assessment of fluorescence patterns by the surgeon, which makes the resection more subjective than necessary. We developed a wide-field spectrally resolved fluorescence imaging system utilizing a Generation II scientific CMOS camera and an improved computational model for the precise reconstruction of the PpIX concentration map. In our model, the tissue's optical properties and illumination geometry, which distort the fluorescent emission spectra, are considered. We demonstrate that the CMOS-based system can detect low PpIX concentration at short camera exposure times, while providing high-pixel resolution wide-field images. We show that total variation regularization improves the contrast-to-noise ratio of the reconstructed quantitative concentration map by approximately twofold. Quantitative comparison between the estimated PpIX concentration and tumor histopathology was also investigated to further evaluate the system.
Collapse
Affiliation(s)
- Yijing Xie
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
- Address all correspondence to: Yijing Xie,
| | - Maria Thom
- University College London, Institute of Neurology, Department of Neuropathology, London, United Kingdom
| | - Michael Ebner
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Victoria Wykes
- University College London, Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Adrien Desjardins
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Anna Miserocchi
- University College London, Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Sebastien Ourselin
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Andrew W. McEvoy
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
- University College London, Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Tom Vercauteren
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| |
Collapse
|
18
|
Black D, Hahn HK, Kikinis R, Wårdell K, Haj-Hosseini N. Auditory display for fluorescence-guided open brain tumor surgery. Int J Comput Assist Radiol Surg 2017; 13:25-35. [PMID: 28929305 DOI: 10.1007/s11548-017-1667-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/07/2017] [Indexed: 02/02/2023]
Abstract
PURPOSE Protoporphyrin (PpIX) fluorescence allows discrimination of tumor and normal brain tissue during neurosurgery. A handheld fluorescence (HHF) probe can be used for spectroscopic measurement of 5-ALA-induced PpIX to enable objective detection compared to visual evaluation of fluorescence. However, current technology requires that the surgeon either views the measured values on a screen or employs an assistant to verbally relay the values. An auditory feedback system was developed and evaluated for communicating measured fluorescence intensity values directly to the surgeon. METHODS The auditory display was programmed to map the values measured by the HHF probe to the playback of tones that represented three fluorescence intensity ranges and one error signal. Ten persons with no previous knowledge of the application took part in a laboratory evaluation. After a brief training period, participants performed measurements on a tray of 96 wells of liquid fluorescence phantom and verbally stated the perceived measurement values for each well. The latency and accuracy of the participants' verbal responses were recorded. The long-term memorization of sound function was evaluated in a second set of 10 participants 2-3 and 7-12 days after training. RESULTS The participants identified the played tone accurately for 98% of measurements after training. The median response time to verbally identify the played tones was 2 pulses. No correlation was found between the latency and accuracy of the responses, and no significant correlation with the musical proficiency of the participants was observed on the function responses. Responses for the memory test were 100% accurate. CONCLUSION The employed auditory display was shown to be intuitive, easy to learn and remember, fast to recognize, and accurate in providing users with measurements of fluorescence intensity or error signal. The results of this work establish a basis for implementing and further evaluating auditory displays in clinical scenarios involving fluorescence guidance and other areas for which categorized auditory display could be useful.
Collapse
Affiliation(s)
- David Black
- Medical Image Computing, University of Bremen, Bremen, Germany.
- Jacobs University, Bremen, Germany.
- Fraunhofer MEVIS, Bremen, Germany.
| | - Horst K Hahn
- Jacobs University, Bremen, Germany
- Fraunhofer MEVIS, Bremen, Germany
| | - Ron Kikinis
- Medical Image Computing, University of Bremen, Bremen, Germany
- Fraunhofer MEVIS, Bremen, Germany
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Neda Haj-Hosseini
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Stummer W, Stepp H, Wiestler OD, Pichlmeier U. Randomized, Prospective Double-Blinded Study Comparing 3 Different Doses of 5-Aminolevulinic Acid for Fluorescence-Guided Resections of Malignant Gliomas. Neurosurgery 2017; 81:230-239. [PMID: 28379547 PMCID: PMC5808499 DOI: 10.1093/neuros/nyx074] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 03/24/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Five-aminolevulinic acid (5-ALA) is used for fluorescence-guided resections of malignant glioma at a dose of 20 mg/kg; yet, it is unknown whether lower doses may also provide efficacy. OBJECTIVE To perform a double-blinded randomized study comparing 3 different doses of 5-ALA. METHODS Twenty-one patients with suspected malignant glioma were randomly assigned to 0.2, 2, or 20 mg/kg 5-ALA. Investigators were unaware of dose. Intraoperatively, regions of interest were first defined in tumor core, margin, and adjacent white matter under white light. Under violet-blue illumination, the surgeon's impression of fluorescence was recorded per region, followed by spectrometry and biopsy. Plasma was collected after administration and analyzed for 5-ALA and protoporphyrin IX (PPIX) content. RESULTS The positive predictive value of fluorescence was 100%. Visual and spectrometric fluorescence assessment showed 20 mg/kg to elicit the strongest fluorescence in tumor core and margins, which correlated with cell density. Spectrometric and visual fluorescence correlated significantly. A 10-fold increase in 5-ALA dose (2-20 mg/kg) resulted in a 4-fold increase of fluorescence contrast between marginal tumor and adjacent brain. t max for 5-ALA was 0.94 h for 20 mg/kg (0.2 kg: 0.50 h, 2 mg/kg: 0.61 h). Integrated PPIX plasma levels were 255.8 and 779.9 mcg*h/l (2 vs 20 mg/kg). Peak plasma concentrations were observed at 1.89 ± 0.71 and 7.83 ± 0.68 h (2 vs 20 mg/kg; average ± Standard Error of Mean [SEM]). CONCLUSION The highest visible and measurable fluorescence was yielded by 20 mg/kg. No fluorescence was elicited at 0.2 mg/kg. Increasing 5-ALA doses did not result in proportional increases in tissue fluorescence or PPIX accumulation in plasma, indicating that doses higher than 20 mg/kg will not elicit useful increases in fluorescence.
Collapse
Affiliation(s)
- Walter Stummer
- Department of Neurosurgery, University of Münster, Münster, Germany
| | - Herbert Stepp
- Laser-Research Laboratory, LIFE-Center at University Hospital of Munich, Munich, Germany
| | | | - Uwe Pichlmeier
- Medac GmbH, Gesellschaft für klinische Spezialpräparate mbH, Wedel, Germany
| |
Collapse
|
20
|
Minispectrometer with handheld probe for 5-ALA based fluorescence-guided surgery of brain tumors: Preliminary study for clinical applications. Photodiagnosis Photodyn Ther 2017; 17:147-153. [DOI: 10.1016/j.pdpdt.2016.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/07/2016] [Accepted: 12/21/2016] [Indexed: 11/18/2022]
|
21
|
Rejmstad P, Johansson JD, Haj-Hosseini N, Wårdell K. A method for monitoring of oxygen saturation changes in brain tissue using diffuse reflectance spectroscopy. JOURNAL OF BIOPHOTONICS 2017; 10:446-455. [PMID: 27094015 DOI: 10.1002/jbio.201500334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/26/2016] [Accepted: 03/22/2016] [Indexed: 05/09/2023]
Abstract
Continuous measurement of local brain oxygen saturation (SO2 ) can be used to monitor the status of brain trauma patients in the neurocritical care unit. Currently, micro-oxygen-electrodes are considered as the "gold standard" in measuring cerebral oxygen pressure (pO2 ), which is closely related to SO2 through the oxygen dissociation curve (ODC) of hemoglobin, but with the drawback of slow in response time. The present study suggests estimation of SO2 in brain tissue using diffuse reflectance spectroscopy (DRS) for finding an analytical relation between measured spectra and the SO2 for different blood concentrations. The P3 diffusion approximation is used to generate a set of spectra simulating brain tissue for various levels of blood concentrations in order to estimate SO2 . The algorithm is evaluated on optical phantoms mimicking white brain matter (blood volume of 0.5-2%) where pO2 and temperature is controlled and on clinical data collected during brain surgery. The suggested method is capable of estimating the blood fraction and oxygen saturation changes from the spectroscopic signal and the hemoglobin absorption profile.
Collapse
Affiliation(s)
- Peter Rejmstad
- Department of Biomedical Engineering, Linköping University, 581 83, LINKÖPING, Sweden
| | - Johannes D Johansson
- Department of Biomedical Engineering, Linköping University, 581 83, LINKÖPING, Sweden
| | - Neda Haj-Hosseini
- Department of Biomedical Engineering, Linköping University, 581 83, LINKÖPING, Sweden
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, 581 83, LINKÖPING, Sweden
| |
Collapse
|
22
|
Richter JCO, Haj-Hosseini N, Hallbeck M, Wårdell K. Combination of hand-held probe and microscopy for fluorescence guided surgery in the brain tumor marginal zone. Photodiagnosis Photodyn Ther 2017; 18:185-192. [PMID: 28223144 DOI: 10.1016/j.pdpdt.2017.01.188] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/23/2016] [Accepted: 01/03/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Visualization of the tumor is crucial for differentiating malignant tissue from healthy brain during surgery, especially in the tumor marginal zone. The aim of the study was to introduce a fluorescence spectroscopy-based hand-held probe (HHF-probe) for tumor identification in combination with the fluorescence guided resection surgical microscope (FGR-microscope), and evaluate them in terms of diagnostic performance and practical aspects of fluorescence detection. MATERIAL AND METHODS Eighteen operations were performed on 16 patients with suspected high-grade glioma. The HHF-probe and the FGR-microscope were used for detection of protoporphyrin (PpIX) fluorescence induced by 5-aminolevulinic acid (5-ALA) and evaluated against histopathological analysis and visual grading done through the FGR-microscope by the surgeon. A ratio of PpIX fluorescence intensity to the autofluorescence intensity (fluorescence ratio) was used to quantify the spectra detected by the probe. RESULTS Fluorescence ratio medians (range 0 - 40) measured by the probe were related to the intensity of the fluorescence in the FGR-microscope, categorized as "none" (0.3, n=131), "weak" (1.6, n=34) and "strong" (5.4, n=28). Of 131 "none" points in the FGR-microscope, 88 (67%) exhibited fluorescence with the HHF-probe. For the tumor marginal zone, the area under the receiver operator characteristics (ROC) curve was 0.49 for the FGR-microscope and 0.65 for the HHF-probe. CONCLUSIONS The probe was integrated in the established routine of tumor resection using the FGR-microscope. The HHF-probe was superior to the FGR-microscope in sensitivity; it detected tumor remnants after debulking under the FGR-microscope. The combination of the HHF-probe and the FGR-microscope was beneficial especially in the tumor marginal zone.
Collapse
Affiliation(s)
- Johan C O Richter
- Department of Biomedical Engineering, Linköping University, Sweden; Department of Neurosurgery Linköping University Hospital, Region Östergötland, Linköping, Sweden.
| | | | - Martin Hallbeck
- Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, Sweden
| |
Collapse
|
23
|
Huang Z, Shi S, Qiu H, Li D, Zou J, Hu S. Fluorescence-guided resection of brain tumor: review of the significance of intraoperative quantification of protoporphyrin IX fluorescence. NEUROPHOTONICS 2017; 4:011011. [PMID: 28097209 PMCID: PMC5227178 DOI: 10.1117/1.nph.4.1.011011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/20/2016] [Indexed: 05/07/2023]
Abstract
Surgical removal of tumor mass is a common approach in the management of brain tumors. However, the precise delineation of normal tissue from tumor tissue for a complete resection of tumor mass in brain tumor surgery remains a difficult task for neurosurgeons. Aminolevulinic acid (ALA)-mediated exgogenous fluorescence of protoporphyrin IX (PpIX) is a sensitive approach for tumor imaging. Recent studies suggest that the use of ALA/PpIX-mediated fluorescence-guided resection (FGR) or fluorescence-guided surgery can enable more accurate and complete resection of brain tumors, especially when used in quantitative fashion. This review will highlight the current progress in PpIX-mediated FGR and discuss technical challenges in intraoperative quantification of intracellular PpIX fluorescence during FGR of brain tumor.
Collapse
Affiliation(s)
- Zheng Huang
- Fujian Normal University, MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, 8 Shangsan Road, Fuzhou 350007, China
- Address all correspondence to: Zheng Huang, E-mail:
| | - Songsheng Shi
- Fujian Medical University, Union Hospital, Department of Neurosurgery, 29 Xinquan Road, Fuzhou 350001, China
| | - Haixia Qiu
- Chinese PLA General Hospital, Department of Laser Medicine, 28 Fuxing Road, Beijing 100039, China
| | - Desheng Li
- Affiliated Hospital of Academy of Military Medical Sciences, Department of Neurosurgery, 8 Dongda Avenue, Beijing 100071, China
| | - Jian Zou
- Fujian Normal University, MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, 8 Shangsan Road, Fuzhou 350007, China
| | - Shaoshan Hu
- The Second Affiliated Hospital of Harbin Medical University, Department of Neurosurgery, 246 Xuefu Road, Harbin 150001, China
| |
Collapse
|
24
|
Senders JT, Muskens IS, Schnoor R, Karhade AV, Cote DJ, Smith TR, Broekman MLD. Agents for fluorescence-guided glioma surgery: a systematic review of preclinical and clinical results. Acta Neurochir (Wien) 2017; 159:151-167. [PMID: 27878374 PMCID: PMC5177668 DOI: 10.1007/s00701-016-3028-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/09/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Fluorescence-guided surgery (FGS) is a technique used to enhance visualization of tumor margins in order to increase the extent of tumor resection in glioma surgery. In this paper, we systematically review all clinically tested fluorescent agents for application in FGS for glioma and all preclinically tested agents with the potential for FGS for glioma. METHODS We searched the PubMed and Embase databases for all potentially relevant studies through March 2016. We assessed fluorescent agents by the following outcomes: rate of gross total resection (GTR), overall and progression-free survival, sensitivity and specificity in discriminating tumor and healthy brain tissue, tumor-to-normal ratio of fluorescent signal, and incidence of adverse events. RESULTS The search strategy resulted in 2155 articles that were screened by titles and abstracts. After full-text screening, 105 articles fulfilled the inclusion criteria evaluating the following fluorescent agents: 5-aminolevulinic acid (5-ALA) (44 studies, including three randomized control trials), fluorescein (11), indocyanine green (five), hypericin (two), 5-aminofluorescein-human serum albumin (one), endogenous fluorophores (nine) and fluorescent agents in a pre-clinical testing phase (30). Three meta-analyses were also identified. CONCLUSIONS 5-ALA is the only fluorescent agent that has been tested in a randomized controlled trial and results in an improvement of GTR and progression-free survival in high-grade gliomas. Observational cohort studies and case series suggest similar outcomes for FGS using fluorescein. Molecular targeting agents (e.g., fluorophore/nanoparticle labeled with anti-EGFR antibodies) are still in the pre-clinical phase, but offer promising results and may be valuable future alternatives.
Collapse
Affiliation(s)
- Joeky T Senders
- Department of Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ivo S Muskens
- Department of Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Rosalie Schnoor
- Department of Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Aditya V Karhade
- Department of Neurosurgery, Cushing Neurosurgery Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, 15 Francis Street, Boston, MA, 02115, USA
| | - David J Cote
- Department of Neurosurgery, Cushing Neurosurgery Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, 15 Francis Street, Boston, MA, 02115, USA
| | - Timothy R Smith
- Department of Neurosurgery, Cushing Neurosurgery Outcomes Center, Brigham and Women's Hospital, Harvard Medical School, 15 Francis Street, Boston, MA, 02115, USA
| | - Marike L D Broekman
- Department of Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
25
|
Kairdolf BA, Bouras A, Kaluzova M, Sharma AK, Wang MD, Hadjipanayis CG, Nie S. Intraoperative Spectroscopy with Ultrahigh Sensitivity for Image-Guided Surgery of Malignant Brain Tumors. Anal Chem 2016; 88:858-67. [PMID: 26587976 PMCID: PMC8559335 DOI: 10.1021/acs.analchem.5b03453] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Intraoperative cancer imaging and fluorescence-guided surgery have attracted considerable interest because fluorescence signals can provide real-time guidance to assist a surgeon in differentiating cancerous and normal tissues. Recent advances have led to the clinical use of a natural fluorophore called protoporphyrin IX (PpIX) for image-guided surgical resection of high-grade brain tumors (glioblastomas). However, traditional fluorescence imaging methods have only limited detection sensitivity and identification accuracy and are unable to detect low-grade or diffuse infiltrating gliomas (DIGs). Here we report a low-cost hand-held spectroscopic device that is capable of ultrasensitive detection of protoporphyrin IX fluorescence in vivo, together with intraoperative spectroscopic data obtained from both animal xenografts and human brain tumor specimens. The results indicate that intraoperative spectroscopy is at least 3 orders of magnitude more sensitive than the current surgical microscopes, allowing ultrasensitive detection of as few as 1000 tumor cells. For detection specificity, intraoperative spectroscopy allows the differentiation of brain tumor cells from normal brain cells with a contrast signal ratio over 100. In vivo animal studies reveal that protoporphyrin IX fluorescence is strongly correlated with both MRI and histological staining, confirming that the fluorescence signals are highly specific to tumor cells. Furthermore, ex vivo spectroscopic studies of excised brain tissues demonstrate that the hand-held spectroscopic device is capable of detecting diffuse tumor margins with low fluorescence contrast that are not detectable with current systems in the operating room. These results open new opportunities for intraoperative detection and fluorescence-guided resection of microscopic and low-grade glioma brain tumors with invasive or diffusive margins.
Collapse
Affiliation(s)
- Brad A. Kairdolf
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, Suite E116, Atlanta, Georgia 30322, USA
| | - Alexandros Bouras
- Department of Neurosurgery, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia, 30322, USA
| | - Milota Kaluzova
- Department of Neurosurgery, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia, 30322, USA
| | - Abhinav K. Sharma
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, Suite E116, Atlanta, Georgia 30322, USA
| | - May D. Wang
- Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, UA Whitaker Building 4106, Atlanta, Georgia 30332, USA
| | - Constantinos G. Hadjipanayis
- Department of Neurosurgery, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia, 30322, USA
- Department of Neurosurgery, Icahn School of Medicine, Tisch Cancer Institute at Mount Sinai, New York, NY 10029
| | - Shuming Nie
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, Suite E116, Atlanta, Georgia 30322, USA
| |
Collapse
|