1
|
Bhattacharya S, Prajapati BG, Singh S, Anjum MM. Nanoparticles drug delivery for 5-aminolevulinic acid (5-ALA) in photodynamic therapy (PDT) for multiple cancer treatment: a critical review on biosynthesis, detection, and therapeutic applications. J Cancer Res Clin Oncol 2023; 149:17607-17634. [PMID: 37776358 DOI: 10.1007/s00432-023-05429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment that kills cancer cells selectively by stimulating reactive oxygen species generation with photosensitizers exposed to specific light wavelengths. 5-aminolevulinic acid (5-ALA) is a widely used photosensitizer. However, its limited tumour penetration and targeting reduce its therapeutic efficacy. Scholars have investigated nano-delivery techniques to improve 5-ALA administration and efficacy in PDT. This review summarises recent advances in biological host biosynthetic pathways and regulatory mechanisms for 5-ALA production. The review also highlights the potential therapeutic efficacy of various 5-ALA nano-delivery modalities, such as nanoparticles, liposomes, and gels, in treating various cancers. Although promising, 5-ALA nano-delivery methods face challenges that could impair targeting and efficacy. To determine their safety and biocompatibility, extensive preclinical and clinical studies are required. This study highlights the potential of 5-ALA-NDSs to improve PDT for cancer treatment, as well as the need for additional research to overcome barriers and improve medical outcomes.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| | - Bhuphendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gujarat, Kherva, 384012, India.
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Md Meraj Anjum
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| |
Collapse
|
2
|
Kawczyk-Krupka A, Bartusik-Aebisher D, Latos W, Cieślar G, Sieroń K, Kwiatek S, Oleś P, Kwiatek B, Aebisher D, Krupka M, Wiench R, Skaba D, Olek M, Kasperski J, Czuba Z, Sieroń A. Clinical Trials and Basic Research in Photodynamic Diagnostics and Therapies from the Center for Laser Diagnostics and Therapy in Poland. Photochem Photobiol 2020; 96:539-549. [PMID: 32112419 DOI: 10.1111/php.13243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
The purpose of this review is to present an overview of the development of photodiagnostic and photodynamic therapy (PDD and PDT) techniques in Poland. The paper discusses the principles of PDD, including fluorescent techniques in determining precancerous conditions and cancers of the skin, digestive tract, bladder and respiratory tract. Methods of PDT of cancer will be discussed and the current state of knowledge as well as future trends in the development of photodynamic techniques will be presented, including the possibility of using photodynamic antimicrobial therapy. Research pioneers in photodynamic medicine such as Thomas Dougherty are an inspiration for the development of methods of PDD and PDT in our Clinic. The Center for Laser Diagnostics and Therapy in Bytom, Poland, promotes the propagation of PDD and PDT through the training of clinicians and raising awareness among students in training and the general public. Physicians at the Center are engaged in photomedical research aimed at clinical implementation and exploration of new avenues in photomedicine while optimizing existing modalities. The Center promotes dissemination of clinical results from a wide range of topics in PDD and PDT and serving as representative authorities of photodynamic medicine in Poland and Europe.
Collapse
Affiliation(s)
- Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | | | - Wojciech Latos
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Karolina Sieroń
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland.,Department of Physical Medicine, Chair of Physiotherapy, Medical University of Silesia, Katowice, Poland
| | - Sebastian Kwiatek
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Piotr Oleś
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Beata Kwiatek
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - David Aebisher
- Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Magdalena Krupka
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Dariusz Skaba
- Department of Periodontal Diseases and Oral Mucosa Diseases, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Marcin Olek
- Department of Prosthetic Dentistry, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Jacek Kasperski
- Department of Prosthetic Dentistry, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Aleksander Sieroń
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland.,Department of Physiotherapy, Jan Dlugosz University in Częstochowa, Częstochowa, Poland
| |
Collapse
|
3
|
Abdulrehman G, Xv K, Li Y, Kang L. Effects of meta-tetrahydroxyphenylchlorin photodynamic therapy on isogenic colorectal cancer SW480 and SW620 cells with different metastatic potentials. Lasers Med Sci 2018; 33:1581-1590. [PMID: 29796953 PMCID: PMC6133037 DOI: 10.1007/s10103-018-2524-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/22/2018] [Indexed: 01/10/2023]
Abstract
The aim of this study is to investigate the antitumor effects and possible mechanisms of meta-tetrahydroxyphenylchlorin-mediated photodynamic therapy (m-THPC-PDT) on human primary (SW480) and metastatic (SW620) colon cancer cell lines. SW480 and SW620 cells were incubated with various concentrations of m-THPC, followed by photodynamic irradiation. Subcellular localization of m-THPC in cells was observed with confocal laser scanning microscopy (CLSM). Photocytotoxicity of m-THPC in the two cells was investigated by using MTT assay. The flow cytometry was employed to detect the cell apoptosis. The migration and long-term recovery ability were determined by scratch test and colony formation assay respectively. CLSM showed that m-THPC was mainly distributed within the endoplasmic reticulum (ER) and lysosome of SW480 cells and within the lysosome and mitochondria of SW620 cells. m-THPC-PDT induced a dose-dependent and light energy-dependent cytotoxicity in SW480 and SW620 cells. Apoptosis rate was approximately 65 and 25% in SW480 and SW620 respectively when the concentration of m-THPC increased to 11.76 μM. However, the rate of necrotic cells had no significant changes in two cell lines. The colony formation and migration ability of the two cell lines were decreased with m-THPC-PDT treatment in a dose-dependent manner. PDT with m-THPC not only could effectively inhibit cell proliferation and decrease migration ability and colony formation ability, but also could effectively kill SW480 and SW620 cells in a dose-dependent manner in vitro. These results suggest that m-THPC is a promising sensitizer that warrants further development and extensive studies towards clinical use of colorectal cancer.
Collapse
Affiliation(s)
- Gulinur Abdulrehman
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Xinyi District, Urumqi, Xinjiang, China
| | - Kaiyue Xv
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Xinyi District, Urumqi, Xinjiang, China
| | - Yuhua Li
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Xinyi District, Urumqi, Xinjiang, China
| | - Ling Kang
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Xinyi District, Urumqi, Xinjiang, China.
| |
Collapse
|
4
|
Sönnichsen R, Hennig L, Blaschke V, Winter K, Körfer J, Hähnel S, Monecke A, Wittekind C, Jansen-Winkeln B, Thieme R, Gockel I, Grosser K, Weimann A, Kubick C, Wiechmann V, Aigner A, Bechmann I, Lordick F, Kallendrusch S. Individual Susceptibility Analysis Using Patient-derived Slice Cultures of Colorectal Carcinoma. Clin Colorectal Cancer 2017; 17:e189-e199. [PMID: 29233603 DOI: 10.1016/j.clcc.2017.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/18/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Nonresponse to chemotherapy in colorectal carcinoma (CRC) is still a clinical problem. For most established treatment regimens, no predictive biomarkers are available. Patient-derived tumor slice culture may be a promising ex vivo technology to assess the drug susceptibility in individual tumors. METHODS Patient-derived slice cultures of CRC specimens were prepared according to a standardized protocol and treated with different concentrations of 5-fluorouracil (5-FU) and an adapted FOLFOX regimen (5-FU and oxaliplatin) to investigate histologic response. Additionally, a semi-automatized readout using fluorescent stain-specific segmentation algorithms for Image J was established to quantify changes in tumor proliferation. Nonresponse to chemotherapy was defined as persisting tumor cell proliferation. RESULTS Slices treated with 5-FU showed lower tumor cell fractions and dose-dependent alterations of proliferating tumor cells compared with controls (1 μM, Δ +3%; 10 μM, Δ -9%; 100 μM, Δ -15%). Individual tumor samples were examined and differences in chemotherapy susceptibility could be observed. Untreated slice cultures contained an average tumor cell fraction of 31% ± 7%. For all samples, the histopathologic characteristics exhibited some degree of intratumoral heterogeneity with regard to tumor cell morphology and distribution. The original tumor matched the features found in slices at baseline and after 3 days of cultivation. CONCLUSIONS Patient-derived slice cultures may help to predict response to clinical treatment in individual patients with CRC. Future studies need to address the problem of tumor heterogeneity and evolution. Prospective correlation of ex vivo results with the clinical course of treated patients is warranted.
Collapse
Affiliation(s)
- Rasmus Sönnichsen
- Institute of Anatomy, University of Leipzig, Leipzig, Germany; University Cancer Center Leipzig, University Hospital Leipzig, Leipzig, Germany.
| | - Laura Hennig
- Institute of Anatomy, University of Leipzig, Leipzig, Germany; University Cancer Center Leipzig, University Hospital Leipzig, Leipzig, Germany
| | - Vera Blaschke
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Justus Körfer
- Institute of Anatomy, University of Leipzig, Leipzig, Germany; University Cancer Center Leipzig, University Hospital Leipzig, Leipzig, Germany
| | - Susann Hähnel
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Astrid Monecke
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | | | - Boris Jansen-Winkeln
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - René Thieme
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Ines Gockel
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Kerstin Grosser
- Department of General and Visceral Surgery, St. Georg Hospital, Leipzig, Germany
| | - Arved Weimann
- Department of General and Visceral Surgery, St. Georg Hospital, Leipzig, Germany
| | | | | | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Florian Lordick
- University Cancer Center Leipzig, University Hospital Leipzig, Leipzig, Germany
| | | |
Collapse
|
5
|
Assessment of in vivo experiments: The newly synthesized porphyrin with proper light source enhanced effectiveness of PDT comparing to 5-ALA-mediated PDT. Photodiagnosis Photodyn Ther 2017; 18:179-184. [DOI: 10.1016/j.pdpdt.2017.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/07/2017] [Accepted: 02/26/2017] [Indexed: 01/02/2023]
|