1
|
Liu L, Zhao X. Preparation of environmentally responsive PDA&DOX@LAC live drug carrier for synergistic tumor therapy. Sci Rep 2024; 14:15927. [PMID: 38987493 PMCID: PMC11236969 DOI: 10.1038/s41598-024-66966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
The development of intelligent, environmentally responsive and biocompatible photothermal system holds significant importance for the photothermal combined therapy of tumors. In this study, inspired by Lactobacillus (LAC), we prepared a biomimetic nanoplatform PDA&DOX@LAC for tumor photothermal-chemotherapy by integrating the chemotherapeutic drug doxorubicin (DOX) with dopamine through oxidative polymerization to form polydopamine (PDA) on the surface of LAC. The PDA&DOX@LAC nanoplatform not only achieves precise and controlled release of DOX based on the slightly acidic microenvironment of tumor tissues, but also exhibits enzyme-like properties to alleviate tumor hypoxia. Under near-infrared light irradiation, it effectively induces photothermal ablation of tumor cells, enhances cellular uptake of DOX with increasing temperature, and thus efficiently inhibits tumor cell growth. Moreover, it is further confirmed in vivo experiments that photothermal therapy combined with PDA&DOX@LAC induces tumor cells apoptosis, releases tumor-associated antigens, which is engulfed by dendritic cells to activate cytotoxic T lymphocytes, thereby effectively suppressing tumor growth and prolonging the survival period of 4T1 tumor-bearing mice. Therefore, the PDA&DOX@LAC nanoplatform holds immense potential in precise tumor targeting as well as photothermal combined therapy and provides valuable insights and theoretical foundations for the development of novel tumor treatment strategies based on endogenous substances within the body.
Collapse
Affiliation(s)
- Lu Liu
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No. 62, Huaihai Road (S.), Huai'an, 223002, People's Republic of China
| | - Xuefen Zhao
- Northern Jiangsu People's Hospital, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
2
|
Shanazarov NA, Zare A, Mussin NM, Albayev RK, Kaliyev AA, Iztleuov YM, Smailova SB, Tamadon A. Photodynamic therapy of cervical cancer: a scoping review on the efficacy of various molecules. Ther Adv Chronic Dis 2024; 15:20406223241233206. [PMID: 38440782 PMCID: PMC10910886 DOI: 10.1177/20406223241233206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Background Cervical cancer poses a considerable worldwide health issue, where infection with the human papillomavirus (HPV) plays a vital role as a risk factor. Photodynamic therapy (PDT) is a minimally invasive treatment for HPV-related cervical lesions, which uses photosensitizers and light to selectively destroy abnormal cells. Objectives Our objective is to present a comprehensive overview of the different types of molecules employed in PDT to reduce the occurrence and fatality rates associated with cervical cancer. Design Scoping review and bibliometric analysis. Methods The article explores clinical trials investigating the efficacy of PDT in treating low-grade squamous intraepithelial lesion and high-grade squamous intraepithelial lesion, as well as preclinical approaches utilizing various molecules for PDT in cervical cancer. Furthermore, the article sheds light on potential molecules for PDT enhancement, examining their properties through computer modeling simulations, molecular docking, and assessing their advantages and disadvantages. Results Our findings demonstrate that PDT holds promise as a therapeutic approach for treating cervical lesions associated with HPV and cervical cancer. Additionally, we observe that the utilization of diverse dye classes enhances the anticancer effects of PDT. Conclusion Among the various molecules employed in PDT, functionalized fullerene exhibits a notable inclination toward overexpressed receptors in cervical cancer cells, making it a potential candidate for intensified use in PDT. However, further research is needed to evaluate its long-term effectiveness and safety.
Collapse
Affiliation(s)
- Nasrulla Abdullaevich Shanazarov
- Department of Oncology, Medical Centre Hospital of President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | | | | | - Rustam Kuanyshbekovich Albayev
- Department of Cardiosurgery, Medical Centre Hospital of President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | | | | | - Sandugash Bakhytbekovna Smailova
- Department of Radiology, Medical Centre Hospital of President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Department for Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Amin Tamadon
- PerciaVista R&D Co. Shiraz, Iran
- Department for Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Maresyev St, Aktobe 030019, Kazakhstan
| |
Collapse
|
3
|
Sekar R, Basavegowda N, Thathapudi JJ, Sekhar MR, Joshi P, Somu P, Baek KH. Recent Progress of Gold-Based Nanostructures towards Future Emblem of Photo-Triggered Cancer Theranostics: A Special Focus on Combinatorial Phototherapies. Pharmaceutics 2023; 15:pharmaceutics15020433. [PMID: 36839754 PMCID: PMC9963714 DOI: 10.3390/pharmaceutics15020433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer is one of the most dangerous health problems in the millennium and it is the third foremost human cause of death in the universe. Traditional cancer treatments face several disadvantages and cannot often afford adequate outcomes. It has been exhibited that the outcome of several therapies can be improved when associated with nanostructures. In addition, a modern tendency is being developed in cancer therapy to convert single-modal into multi-modal therapies with the help of existing various nanostructures. Among them, gold is the most successful nanostructure for biomedical applications due to its flexibility in preparation, stabilization, surface modifications, less cytotoxicity, and ease of bio-detection. In the past few decades, gold-based nanomaterials rule cancer treatment applications, currently, gold nanostructures were the leading nanomaterials for synergetic cancer therapies. In this review article, the synthesis, stabilization, and optical properties of gold nanostructures have been discussed. Then, the surface modifications and targeting mechanisms of gold nanomaterials will be described. Recent signs of progress in the application of gold nanomaterials for synergetic cancer therapies such as photodynamic and photo-thermal therapies in combination with other common interventions such as radiotherapy, chemotherapy, and will be reviewed. Also, a summary of the pharmacokinetics of gold nanostructures will be delivered. Finally, the challenges and outlooks of the gold nanostructures in the clinics for applications in cancer treatments are debated.
Collapse
Affiliation(s)
- Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Chengalpattu 603308, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jesse Joel Thathapudi
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641114, India
- Correspondence: (J.J.T.); (K.-H.B.); Tel.: +82-52-810-3029 (K.-H.B.)
| | - Medidi Raja Sekhar
- Department of Chemistry, College of Natural Sciences, Kebri Dehar University, Korahe Zone, Somali Region, Kebri Dehar 3060, Ethiopia
| | - Parinita Joshi
- SDM College of Medical Science and Hospital, Manjushree Nagar, Sattur, Dharwad 580009, India
| | - Prathap Somu
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 600124, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Correspondence: (J.J.T.); (K.-H.B.); Tel.: +82-52-810-3029 (K.-H.B.)
| |
Collapse
|
4
|
Latest Innovations and Nanotechnologies with Curcumin as a Nature-Inspired Photosensitizer Applied in the Photodynamic Therapy of Cancer. Pharmaceutics 2021; 13:pharmaceutics13101562. [PMID: 34683855 PMCID: PMC8539945 DOI: 10.3390/pharmaceutics13101562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
In the context of the high incidence of cancer worldwide, state-of-the-art photodynamic therapy (PDT) has entered as a usual protocol of attempting to eradicate cancer as a minimally invasive procedure, along with pharmacological resources and radiation therapy. The photosensitizer (PS) excited at certain wavelengths of the applied light source, in the presence of oxygen releases several free radicals and various oxidation products with high cytotoxic potential, which will lead to cell death in irradiated cancerous tissues. Current research focuses on the potential of natural products as a superior generation of photosensitizers, which through the latest nanotechnologies target tumors better, are less toxic to neighboring tissues, but at the same time, have improved light absorption for the more aggressive and widespread forms of cancer. Curcumin incorporated into nanotechnologies has a higher intracellular absorption, a higher targeting rate, increased toxicity to tumor cells, accelerates the activity of caspases and DNA cleavage, decreases the mitochondrial activity of cancer cells, decreases their viability and proliferation, decreases angiogenesis, and finally induces apoptosis. It reduces the size of the primary tumor, reverses multidrug resistance in chemotherapy and decreases resistance to radiation therapy in neoplasms. Current research has shown that the use of PDT and nanoformulations of curcumin has a modulating effect on ROS generation, so light or laser irradiation will lead to excessive ROS growth, while nanocurcumin will reduce the activation of ROS-producing enzymes or will determine the quick removal of ROS, seemingly opposite but synergistic phenomena by inducing neoplasm apoptosis, but at the same time, accelerating the repair of nearby tissue. The latest curcumin nanoformulations have a huge potential to optimize PDT, to overcome major side effects, resistance to chemotherapy, relapses and metastases. All the studies reviewed and presented revealed great potential for the applicability of nanoformulations of curcumin and PDT in cancer therapy.
Collapse
|
5
|
Lange N, Szlasa W, Saczko J, Chwiłkowska A. Potential of Cyanine Derived Dyes in Photodynamic Therapy. Pharmaceutics 2021; 13:818. [PMID: 34072719 PMCID: PMC8229084 DOI: 10.3390/pharmaceutics13060818] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022] Open
Abstract
Photodynamic therapy (PDT) is a method of cancer treatment that leads to the disintegration of cancer cells and has developed significantly in recent years. The clinically used photosensitizers are primarily porphyrin, which absorbs light in the red spectrum and their absorbance maxima are relatively short. This review presents group of compounds and their derivatives that are considered to be potential photosensitizers in PDT. Cyanine dyes are compounds that typically absorb light in the visible to near-infrared-I (NIR-I) spectrum range (750-900 nm). This meta-analysis comprises the current studies on cyanine dye derivatives, such as indocyanine green (so far used solely as a diagnostic agent), heptamethine and pentamethine dyes, squaraine dyes, merocyanines and phthalocyanines. The wide array of the cyanine derivatives arises from their structural modifications (e.g., halogenation, incorporation of metal atoms or organic structures, or synthesis of lactosomes, emulsions or conjugation). All the following modifications aim to increase solubility in aqueous media, enhance phototoxicity, and decrease photobleaching. In addition, the changes introduce new features like pH-sensitivity. The cyanine dyes involved in photodynamic reactions could be incorporated into sets of PDT agents.
Collapse
Affiliation(s)
- Natalia Lange
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (N.L.); (W.S.)
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (N.L.); (W.S.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Agnieszka Chwiłkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
6
|
Dolat E, Salarabadi SS, Layegh P, Jaafari MR, Sazgarnia S, Sazgarnia A. The effect of UV radiation in the presence of TiO2-NPs on Leishmania major promastigotes. Biochim Biophys Acta Gen Subj 2020; 1864:129558. [DOI: 10.1016/j.bbagen.2020.129558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 10/25/2022]
|
7
|
Multicomponent Nanocomposites for Complex Anticancer Therapy: Effect of Aggregation Processes on Their Efficacy. INT J POLYM SCI 2020. [DOI: 10.1155/2020/9627954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Multicomponent nanocomposites for anticancer therapy were prepared, characterized, and tested for their antitumor efficacy. The water-soluble star-like dextran-graft-polyacrylamide copolymer was used as a nanoplatform for the creation of polymer-based multicomponent drug delivery systems for photodynamic and combined (photodynamic+chemotherapy) antitumor therapy. The three-component nanocomposites with incorporated gold nanoparticles and photosensitizer and the four-component ones additionally loaded by Doxorubicin into polymer nanoplatform were studied at 25 and 37°C by transmission electron microscopy and dynamic light scattering. Nanocomposites were tested for their photodynamic cytotoxicity for the cell line of breast cancer MCF-7/S. Three-component nanocomposites demonstrated higher efficacy than the four-component ones. The decrease in the activity of the four-component systems is explained by the aggregation process caused by the introduction of an additional component, which leads to a decrease in the hydrophilic-hydrophobic balance of the polymer macromolecule.
Collapse
|
8
|
Colazzo L, Mohammed MSG, Gallardo A, Abd El-Fattah ZM, Pomposo JA, Jelínek P, de Oteyza DG. Controlling the stereospecific bonding motif of Au-thiolate links. NANOSCALE 2019; 11:15567-15575. [PMID: 31402370 DOI: 10.1039/c9nr04383g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the last decades, organosulfur compounds at the interface of noble metals have proved to be extremely versatile systems for both fundamental and applied research. However, the anchoring of thiols to gold remained an object of controversy for a long time. The RS-Au-SR linkage, in particular, is a robust bonding configuration that displays interesting properties. It is generated spontaneously at room temperature and can be used for the production of extended molecular nanostructures. In this work we explore the behavior of 1,4-bis(4-mercaptophenyl)benzene (BMB) on the Au(111) surface, which results in the formation of 2D crystalline metal-organic assemblies stabilized by this type of Au-thiolate bonds. We show how to control the thiolate's stereospecific bonding motif and thereby choose whether to form ordered arrays of Au3BMB3 units with embedded triangular nanopores or linearly stacked metal-organic chains. The former turn out to be thermodynamically favored structures and display confinement of the underneath Au(111) surface state. The electronic properties of single molecules as well as of the 2D crystalline self-assemblies have been characterized both on the metal-organic backbone and inside the associated pores.
Collapse
Affiliation(s)
- Luciano Colazzo
- Donostia International Physics Center, 20018 San Sebastián, Spain. and Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Mohammed S G Mohammed
- Donostia International Physics Center, 20018 San Sebastián, Spain. and Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Aurelio Gallardo
- Institute of Physics, The Czech Academy of Sciences, 162 00 Prague, Czech Republic and Faculty of Mathematics and Physics, Charles University, 180 00 Prague, Czech Republic
| | | | - José A Pomposo
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain and Ikerbasque, Basque Foundation for Science, Bilbao, Spain and Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, E-20800 San Sebastián, Spain
| | - Pavel Jelínek
- Institute of Physics, The Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Dimas G de Oteyza
- Donostia International Physics Center, 20018 San Sebastián, Spain. and Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain and Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
9
|
Wang Q, Zhang X, Sun Y, Wang L, Ding L, Zhu WH, Di W, Duan YR. Gold-caged copolymer nanoparticles as multimodal synergistic photodynamic/photothermal/chemotherapy platform against lethality androgen-resistant prostate cancer. Biomaterials 2019; 212:73-86. [PMID: 31108274 DOI: 10.1016/j.biomaterials.2019.05.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 01/25/2023]
Abstract
Given that there is no effective treatment method for lethality androgen-resistant prostate cancers (ARPC), herein we report a multifunctional gold-caged nanoparticle (PTX-PP@Au NPs) against ARPC through integrating functional organic/inorganic materials to exploit the superiors of gold particles such as photothermal effects (PTT), generating reactive oxygen species (photodynamic effects, PDT), carrying chemotherapeutic agents (chemotherapy effects, CT), and inhibiting ion channel. This synergistic PTT/PDT/CT platform consists of three components: i) the Pluronic-polyethylenimine assembling into micelles to encapsulate drugs and providing reduction sites for gold cage formation through a "green" method, ii) the gold cage with surface plasmon resonance peak at near-infrared (NIR) region in a broad window qualifying the PTT/PDT potentiality, iii) a chemotherapeutic agent paclitaxel (PTX) arresting the tumor cell cycle. As demonstrated, the system has remarkable performance on controlling drug release, blocking TRPV6 cation channel, enhancing cell cycle arrest, elevating temperature and generating ROS, thus improving cellular toxicity along with apoptosis, enhancing tumor targeting, and achieving the therapy to ARPC with low toxicity on liver function and minimal side effects to normal organs. Notably, both PTT and PDT effect are generated under single irradiation situation because of the broad absorbance window, along with limited skin damages. As a specific synergistic platform creatively integrating multiple treatment protocols with negative toxicity, PTX-PP@Au NPs provide a facile, effective, and broadly applicable strategy to deadly ARPC.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China; Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiangyu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Liting Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Li Ding
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Wen Di
- Department of Obstetrics and Gynecology, Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - You-Rong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Li M, Wang Y, Lin H, Qu F. Hollow CuS nanocube as nanocarrier for synergetic chemo/photothermal/photodynamic therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:591-598. [DOI: 10.1016/j.msec.2018.11.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/09/2018] [Accepted: 11/17/2018] [Indexed: 12/14/2022]
|
11
|
|
12
|
García Calavia P, Bruce G, Pérez-García L, Russell DA. Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem Photobiol Sci 2018; 17:1534-1552. [PMID: 30118115 DOI: 10.1039/c8pp00271a] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gold nanoparticles (AuNPs) have been extensively studied within biomedicine due to their biocompatibility and low toxicity. In particular, AuNPs have been widely used to deliver photosensitiser agents for photodynamic therapy (PDT) of cancer. Here we review the state-of-the-art for the functionalisation of the gold nanoparticle surface with both photosensitisers and targeting ligands for the active targeting of cancer cell surface receptors. From the initial use of the AuNPs as a simple carrier of the photosensitiser for PDT, the field has significantly advanced to include: the use of PEGylated modification to provide aqueous compatibility and stealth properties for in vivo use; gold metal-surface enhanced singlet oxygen generation; functionalisation of the AuNP surface with biological ligands to specifically target over-expressed receptors on the surface of cancer cells and; the creation of nanorods and nanostars to enable combined PDT and photothermal therapies. These versatile AuNPs have significantly enhanced the efficacy of traditional photosensitisers for both in vitro and in vivo cancer therapy. From this review it is apparent that AuNPs have an important future in the treatment of cancer.
Collapse
Affiliation(s)
- Paula García Calavia
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Gordon Bruce
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Lluïsa Pérez-García
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - David A Russell
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
13
|
Ghorbani F, Imanparast A, Hataminia F, Sazgarnia A. A novel nano-superparamagnetic agent for photodynamic and photothermal therapies: An in-vitro study. Photodiagnosis Photodyn Ther 2018; 23:314-324. [PMID: 30016753 DOI: 10.1016/j.pdpdt.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/27/2018] [Accepted: 07/13/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND In this study, iron oxide nanoparticles (SPIONs) were synthesized and coated by GA (SG) and then SG was encapsulated by ICG (SGI). After identifying specifications and cytotoxicity of the agents, the potential of SGI for photodynamic therapy (PDT) and photothermal therapy (PTT) was studied. METHODS An SGI size of 12-13 nm was determined by TEM images and its zeta potential was measured at -23.8 ± 5.8 mV. MCF-7 and HT-29 cells were exposed to a non-coherent light source at a wavelength of 730 nm and a range of 3.9-124.8 J/cm2 under two different concentrations of agents. The viability of treated cells was determined via MTT assay. To analyze the effects of different irradiation conditions, some indices such as Coefficient of Light Effect, Synergism Index, Addition Ratio, Treatment Efficacy and ED50 were defined. RESULTS Cell survival at the highest power of irradiation in the absence of any agent was decreased to 93% and 73% for HT-29 and MCF-7, respectively. In both cell lines, the cellular survival dropped by increasing the light source intensity. The maximum cell death recorded for SG, ICG and SGI was 63 ± 2%, 63 ± 2% and 21 ± 2% for MCF-7 cells and 67 ± 2%, 78 ± 1% and 53 ± 1% for HT-29 cells, respectively. CONCLUSION SGI had a significant photodynamic and photothermal effect on cells. This is a promising outcome, which can help enhance the effectiveness of a minimally invasive treatment. Moreover, SPIONs can be used to apply magnetic hyperthermia or act as a contrast agent in MRI images.
Collapse
Affiliation(s)
- Farzaneh Ghorbani
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Armin Imanparast
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Ameneh Sazgarnia
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Han YH, Kankala RK, Wang SB, Chen AZ. Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E360. [PMID: 29882932 PMCID: PMC6027497 DOI: 10.3390/nano8060360] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 01/09/2023]
Abstract
In recent times, photo-induced therapeutics have attracted enormous interest from researchers due to such attractive properties as preferential localization, excellent tissue penetration, high therapeutic efficacy, and minimal invasiveness, among others. Numerous photosensitizers have been considered in combination with light to realize significant progress in therapeutics. Along this line, indocyanine green (ICG), a Food and Drug Administration (FDA)-approved near-infrared (NIR, >750 nm) fluorescent dye, has been utilized in various biomedical applications such as drug delivery, imaging, and diagnosis, due to its attractive physicochemical properties, high sensitivity, and better imaging view field. However, ICG still suffers from certain limitations for its utilization as a molecular imaging probe in vivo, such as concentration-dependent aggregation, poor in vitro aqueous stability and photodegradation due to various physicochemical attributes. To overcome these limitations, much research has been dedicated to engineering numerous multifunctional polymeric composites for potential biomedical applications. In this review, we aim to discuss ICG-encapsulated polymeric nanoconstructs, which are of particular interest in various biomedical applications. First, we emphasize some attractive properties of ICG (including physicochemical characteristics, optical properties, metabolic features, and other aspects) and some of its current limitations. Next, we aim to provide a comprehensive overview highlighting recent reports on various polymeric nanoparticles that carry ICG for light-induced therapeutics with a set of examples. Finally, we summarize with perspectives highlighting the significant outcome, and current challenges of these nanocomposites.
Collapse
Affiliation(s)
- Ya-Hui Han
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China.
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China.
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China.
| |
Collapse
|
15
|
Hong SH, Kim H, Choi Y. Indocyanine green-loaded hollow mesoporous silica nanoparticles as an activatable theranostic agent. NANOTECHNOLOGY 2017; 28:185102. [PMID: 28393763 DOI: 10.1088/1361-6528/aa66b0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Here we report indocyanine green (ICG)-loaded hollow mesoporous silica nanoparticles (ICG@HMSNP) as an activatable theranostic platform. Near-infrared fluorescence and singlet oxygen generation of ICG@HMSNP was effectively quenched (i.e. turned off) in its native state because of the fluorescence resonance energy transfer between ICG molecules. Therefore, ICG@HMSNP was nonfluorescent and nonphototoxic in the extracellular region. After the nanoparticles entered the cancer cells via endocytosis, they became highly fluorescent and phototoxic. In addition, intracellular uptake of ICG@HMSNP was 2.75 times higher than that of free ICG, resulting in an enhanced phototherapy of cancer.
Collapse
Affiliation(s)
- Suk Ho Hong
- Molecular Imaging & Therapy Branch, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | | | | |
Collapse
|