1
|
Suresh N, Joseph B, Sathyan P, Sweety VK, Waltimo T, Anil S. Photodynamic therapy: An emerging therapeutic modality in dentistry. Bioorg Med Chem 2024; 114:117962. [PMID: 39442490 DOI: 10.1016/j.bmc.2024.117962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Photodynamic Therapy (PDT) is a rapidly evolving, non-invasive treatment modality with considerable promise in dental pharmacotherapeutics. This review article comprehensively examines PDT, beginning with its principles and then delving into its diverse applications in dentistry, including periodontal disease, endodontics, oral cancer, dental implants, and dental caries. Each area presents the latest research and discusses the potential benefits and challenges. The unique advantages of PDT are highlighted, such as selective targeting, broad-spectrum antimicrobial effect, lack of resistance development, and its synergistic effect with other treatments. However, challenges such as photosensitizer delivery, light penetration, oxygen availability, and the need to standardize protocols are also acknowledged. The review further explores future perspectives of PDT in dentistry, including advancements in photosensitizer design, overcoming hypoxic limitations, personalized protocols, integration with other therapies, and standardization and regulation. The potential of advanced technologies, such as nanotechnology and synthetic biology, to improve PDT outcomes is also discussed. The review concludes that while PDT has shown immense potential to revolutionize dental pharmacotherapeutics, further high-quality research is needed to translate this potential into everyday dental practice. The promising future of PDT in dentistry suggests a more effective and less invasive treatment option for a range of dental conditions.
Collapse
Affiliation(s)
- Nandita Suresh
- Department of Oral and Maxillofacial Diseases, Helsinki University and University Hospital, Helsinki, Finland; Pushpagiri Institute of Medical Sciences and Research Centre, Mendicity, Perumthuruthy, Tiruvalla, Kerala, India.
| | - Betsy Joseph
- Department of Oral and Maxillofacial Diseases, Helsinki University and University Hospital, Helsinki, Finland; Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Pradeesh Sathyan
- Department of Oral Pathology, Government Dental College, Kottayam, Kerala, India
| | - Vishnupriya K Sweety
- Pushpagiri Institute of Medical Sciences and Research Centre, Mendicity, Perumthuruthy, Tiruvalla, Kerala, India
| | - Tuomas Waltimo
- Department of Oral and Maxillofacial Diseases, Helsinki University and University Hospital, Helsinki, Finland; Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Sukumaran Anil
- Oral Health Institute, Hamad Medical Corporation, Doha, Qatar; College of Dental Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Etemadi A, Sabri H, Enssi M. Surgical reconstruction of peri-implantitis with adjunctive antimicrobial photodynamic therapy: A case report with 5-year follow-up. Clin Adv Periodontics 2024; 14:185-191. [PMID: 38029379 DOI: 10.1002/cap.10275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Peri-implantitis poses a significant challenge in dental implantology due to its potential to result in the loss of supporting tissue around dental implants. Surgical reconstruction is often recommended for intrabony defects, accompanied by various adjunctive therapies, such as antimicrobial photodynamic therapy (aPDT), for bacterial decontamination. However, the long-term efficacy of such treatments remains unclear. METHODS This clinical report presents a case of peri-implantitis management in a healthy 55-year-old male using guided bone regeneration principles and surface decontamination via aPDT. The patient exhibited peri-implantitis with probing pocket depths (PPD) of 7 mm at buccal sites, 5 mm at palatal sites, and significant bone loss around implant #12. The reconstructive approach involved preservation of the existing implant and following a non-submerged healing protocol. The surgical phase included meticulous debridement, chemical detoxification with hydrogen peroxide, and aPDT using a 670 nm diode laser with methylene blue as the photosensitizer. Xenogenic bone graft and a resorbable collagen membrane were applied and the patient was followed up to through a 5-year period. RESULTS Postsurgery the patient exhibited normal healing, and long-term follow-up at 5 years showed reduced PPD (2 mm buccally, 3 mm mid-palatally), complete intrabony defect fill, and stable bone levels, indicating successful treatment. CONCLUSIONS This case report demonstrates the potential long-term success of a reconstructive approach with adjunctive aPDT in peri-implantitis management. However, it highlights the need for standardized protocols and further clinical trials to establish the clinical benefits of aPDT in surgical reconstruction of peri-implantitis defects, serving as valuable pilot data for future research. KEY POINTS Why is this case new information? Provides a rare 5-year insight into peri-implantitis intrabony defect reconstruction, offering extended success and outcomes not frequently documented. Demonstrates the efficacy of aPDT with a 670-nm diode laser in achieving successful long-term outcomes, contributing valuable evidence to existing literature.Keys to successful management of this case: Success involves initial non-surgical debridement followed by a reconstructive strategy, incorporating guided bone regeneration and surface decontamination via aPDT. Long-term success hinges on patient compliance with routine oral hygiene, emphasizing the importance of adherence to preventive measures post-reconstruction to minimize recurrence risk.What are the primary limitations to success in this case? Variability in photosensitizer uptake, and potential risks such as tissue damage and bacterial resistance pose challenges to the effectiveness of aPDT. The existing literature on aPDT in peri-implantitis treatment lacks standardization in methodology, laser parameters, and follow-up durations, making it challenging to establish a universally accepted protocol.
Collapse
Affiliation(s)
- Ardavan Etemadi
- Department of Periodontics, Tehran Islamic Azad University School of Dentistry, Tehran, Iran
| | - Hamoun Sabri
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Center for Clinical Research and Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Ann Arbor, Michigan, USA
| | - Mahsa Enssi
- Department of Periodontics, Tehran Islamic Azad University School of Dentistry, Tehran, Iran
| |
Collapse
|
3
|
Konishi D, Hirata E, Takano Y, Maeda Y, Ushijima N, Yudasaka M, Yokoyama A. Near-infrared light-boosted antimicrobial activity of minocycline/hyaluronan/carbon nanohorn composite toward peri-implantitis treatments. NANOSCALE 2024; 16:13425-13434. [PMID: 38913014 DOI: 10.1039/d4nr01036a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Dental implant therapy is a reliable treatment for replacing missing teeth. However, as dental implants become more widely used, peri-implantitis increasingly has become a severe complication, making successful treatment more difficult. As a result, the development of effective drug delivery systems (DDSs) and treatments for peri-implantitis are urgently needed. Carbon nanohorns (CNHs) are carbon nanomaterials that have shown promise for use in DDSs and have photothermal effects. The present study exploited the unique properties of CNHs to develop a phototherapy employing a near-infrared (NIR) photoresponsive composite of minocycline, hyaluronan, and CNH (MC/HA/CNH) for peri-implantitis treatments. MC/HA/CNH demonstrated antibacterial effects that were potentiated by NIR-light irradiation, a property that was mediated by photothermal-mediated drug release from HA/CNH. These antibacterial effects persisted even following 48 h of dialysis, a promising indication for the clinical use of this material. We propose that the treatment of peri-implantitis using NIR and MC/HA/CNH, in combination with surgical procedures, might be employed to target relatively deep affected areas in a timely and efficacious manner. We envision that this innovative approach will pave the way for future developments in implant therapy.
Collapse
Affiliation(s)
- Daisuke Konishi
- Department of Oral Functional Prosthodontics, Faculty of Dental Medicine, Graduate school of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Sapporo 060-8586, Japan.
| | - Eri Hirata
- Department of Oral Functional Prosthodontics, Faculty of Dental Medicine, Graduate school of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Sapporo 060-8586, Japan.
| | - Yuta Takano
- Research Institute for Electronic Science, Hokkaido University, Kita-20, Nishi-10, Sapporo 001-0020, Japan.
- Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Sapporo 060-0810, Japan
| | - Yukari Maeda
- Department of Oral Functional Prosthodontics, Faculty of Dental Medicine, Graduate school of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Sapporo 060-8586, Japan.
| | - Natsumi Ushijima
- Support Section for Education and Research, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Masako Yudasaka
- Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Meijo University, Graduate School of Science and Technology, 1-501, Shiogamaguchi, Tenpaku, Nagoya 468-8502, Japan
| | - Atsuro Yokoyama
- Department of Oral Functional Prosthodontics, Faculty of Dental Medicine, Graduate school of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Sapporo 060-8586, Japan.
| |
Collapse
|
4
|
Alasqah MN. Efficacy of Adjunctive Fotoenticine Photodynamic Therapy and Sapindus mukorossi Therapy on Clinical, Radiographic, and Cytokine Profile of Diabetics with Peri-Implantitis. Photobiomodul Photomed Laser Surg 2024; 42:174-181. [PMID: 38301210 DOI: 10.1089/photob.2023.0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Objective: To evaluate effectiveness of Fotoenticine (FTC)-mediated photodynamic therapy (PDT) and Sapindus mukorossi (SM) as adjunct to mechanical debridement (MD) on peri-implant clinical parameters and levels of proinflammatory cytokines among diabetics. Background: FTC has exhibited robust photodynamic impact against Streptococcus mutans (i.e., an established caries-associated bacterium); however, its efficacy against periodontal pathogens is not known. Methods: One hundred six diabetics with peri-implantitis were randomly categorized into three groups: Group I consisted of 37 participants who were treated with only MD; group II comprised 35 participants who were treated with FTC-mediated PDT, in addition to MD; and group III consisted of 34 participants who were treated with SM, in addition to MD. Peri-implant clinical parameters [plaque index (PI), bleeding on probing (BOP), and probing depth (PD)] and radiographic outcomes [crestal bone loss (CBL)] (PI, BOP, and PD), together with peri-implant sulcular fluid (PISF) interleukin (IL)-1β and IL-6 levels were measured at baseline and 6-month follow-up. Results: In group I (n = 37; 24 males +13 females), group II (n = 35; 20 males +15 females), and group III (n = 34; 17 males +17 females), the mean age of participants was 54.3 ± 4.6, 52.0 ± 5.5, and 50.8 ± 4.5 years, respectively. Significant improvement was observed in the scores of peri-implant PI (p = 0.01), BOP (p = 0.01), and PD (p = 0.02) at the 6-month follow-up among all study groups. Significant improvement in peri-implant CBL among group I subjects at 6-month follow-up compared to baseline (p < 0.05) was observed. PISF levels of IL-1β and IL-6 improved at 6 months. Conclusions: As an adjunct to conventional MD, FTC-mediated PDT and SM might be used as potential therapeutic modalities among diabetics with peri-implantitis.
Collapse
Affiliation(s)
- Mohammed N Alasqah
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Jao Y, Ding SJ, Chen CC. Antimicrobial photodynamic therapy for the treatment of oral infections: A systematic review. J Dent Sci 2023; 18:1453-1466. [PMID: 37799910 PMCID: PMC10548011 DOI: 10.1016/j.jds.2023.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/30/2023] [Indexed: 10/07/2023] Open
Abstract
Oral infection is a common clinical symptom. While antibiotics are widely employed as the primary treatment for oral diseases, the emergence of drug-resistant bacteria has necessitated the exploration of alternative therapeutic approaches. One such modality is antimicrobial photodynamic therapy (aPDT), which utilizes light and photosensitizers. Indeed, aPDT has been used alone or in combination with other treatment options dealing with periodontal disease for the elimination of biofilms from bacterial community to achieve bone formation and/or tissue regeneration. In this review article, in addition to factors affecting the efficacy of aPDT, various photosensitizers, the latest technology and perspectives on aPDT are discussed in detail. More importantly, the article emphasizes the novel design and clinical applications of photosensitizers, as well as the synergistic effects of chemical and biomolecules with aPDT to achieve the complete eradication of biofilms and even enhance the biological performance of tissues surrounding the treated oral area.
Collapse
Affiliation(s)
- Ying Jao
- Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan
| | - Shinn-Jyh Ding
- Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Cheng Chen
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Anti-biofilm and bystander effects of antimicrobial photo-sonodynamic therapy against polymicrobial periopathogenic biofilms formed on coated orthodontic mini-screws with zinc oxide nanoparticles. Photodiagnosis Photodyn Ther 2023; 41:103288. [PMID: 36640857 DOI: 10.1016/j.pdpdt.2023.103288] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND The present study evaluated the anti-biofilm and bystander effects of antimicrobial photo-sonodynamic therapy (aPSDT) on the polymicrobial periopathogenic biofilms formed on mini-screws coated with zinc oxide nanoparticles (ZnONPs). MATERIALS AND METHODS Thirty orthodontic identical mini-screws were divided into 6 groups (n = 5) as follows: 1. negative control: uncoated mini-screw + phosphate-buffered saline (PBS), 2. positive control: uncoated mini-screw + 0.2% CHX, 3. coating control: coated mini-screw + PBS, 4. antimicrobial photodynamic therapy (aPDT): coated mini-screw+light emitting diode (LED), 5. Antimicrobial sonodynamic therapy (aSDT): coated mini-screw+ultrasound waves, and 6. aPSDT: coated mini-screw+LED+ultrasound waves. Electrostatic spray-assisted vapor deposition was employed to coat ZnONPs on titanium mini-screws. The biofilm inhibition test was used to assess the anti-biofilm efficacy against polymicrobial periopathogenic biofilms including Porphyromonas gingivitis, Prevotella intermedia, and Aggregatibacter actinomycetemcomitans, and the results were shown as the percent reduction of Log10 colony-forming unit (CFU)/mL. Following each treatment, the gene expression levels of TNF-α, IL-1β, and IL-6 were evaluated on human gingival fibroblast (HGF) cells via quantitative real-time polymerase chain reaction (qRT-PCR) to reveal the bystander effects of aPSDT on HGF cells. RESULTS A significant reduction in log10 CFU/mL of periopathogens was observed in groups treated with aPDT, aSDT, aPSDT, and 0.2% CHX up to 6.81, 6.63, 5.02, and 4.83 log, respectively, when compared with control groups (P<0.05). 0.2% CHX and aPSDT groups demonstrated significantly higher capacity in eliminating the periopathogen biofilm compared with other groups (P<0.05). The qRT-PCR showed that the expression level of inflammatory cytokines was significantly down regulated in aPDT, aSDT, and aPSDT groups (P<0.05). CONCLUSION It was found that the ZnONPs-mediated aPSDT could significantly reduce periopathogen biofilm as well as the expression level of inflammatory cytokines.
Collapse
|
7
|
Gholami L, Shahabi S, Jazaeri M, Hadilou M, Fekrazad R. Clinical applications of antimicrobial photodynamic therapy in dentistry. Front Microbiol 2023; 13:1020995. [PMID: 36687594 PMCID: PMC9850114 DOI: 10.3389/fmicb.2022.1020995] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
Given the emergence of resistant bacterial strains and novel microorganisms that globally threaten human life, moving toward new treatment modalities for microbial infections has become a priority more than ever. Antimicrobial photodynamic therapy (aPDT) has been introduced as a promising and non-invasive local and adjuvant treatment in several oral infectious diseases. Its efficacy for elimination of bacterial, fungal, and viral infections and key pathogens such as Streptococcus mutans, Porphyromonas gingivalis, Candida albicans, and Enterococcus faecalis have been investigated by many invitro and clinical studies. Researchers have also investigated methods of increasing the efficacy of such treatment modalities by amazing developments in the production of natural, nano based, and targeted photosensitizers. As clinical studies have an important role in paving the way towards evidence-based applications in oral infection treatment by this method, the current review aimed to provide an overall view of potential clinical applications in this field and summarize the data of available randomized controlled clinical studies conducted on the applications of aPDT in dentistry and investigate its future horizons in the dental practice. Four databases including PubMed (Medline), Web of Science, Scopus and Embase were searched up to September 2022 to retrieve related clinical studies. There are several clinical studies reporting aPDT as an effective adjunctive treatment modality capable of reducing pathogenic bacterial loads in periodontal and peri-implant, and persistent endodontic infections. Clinical evidence also reveals a therapeutic potential for aPDT in prevention and reduction of cariogenic organisms and treatment of infections with fungal or viral origins, however, the number of randomized clinical studies in these groups are much less. Altogether, various photosensitizers have been used and it is still not possible to recommend specific irradiation parameters due to heterogenicity among studies. Reaching effective clinical protocols and parameters of this treatment is difficult and requires further high quality randomized controlled trials focusing on specific PS and irradiation parameters that have shown to have clinical efficacy and are able to reduce pathogenic bacterial loads with sufficient follow-up periods.
Collapse
Affiliation(s)
- Leila Gholami
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Shiva Shahabi
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Jazaeri
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Hadilou
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran,*Correspondence: Reza Fekrazad,
| |
Collapse
|
8
|
Khorramdel A, Pourabbas R, Sadighi M, Kashefimehr A, Mousavi S. Effect of photodynamic therapy as an adjunctive to mechanical debridement on the nonsurgical treatment of peri-implant mucositis: A randomized controlled clinical trial. Dent Res J (Isfahan) 2023. [DOI: 10.4103/1735-3327.367900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
9
|
Atieh MA, Fadhul I, Shah M, Hannawi H, Alsabeeha NHM. Diode Laser as an Adjunctive Treatment for Peri-implant Mucositis: A Systematic Review and Meta-analysis. Int Dent J 2022; 72:735-745. [PMID: 35931559 PMCID: PMC9676556 DOI: 10.1016/j.identj.2022.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
The early detection and management of peri-implant mucositis may help in reducing inflammatory parameters and arrest disease progression to peri-implantitis. The potential therapeutic benefits of different adjunctive therapies, such as the diode laser, are still not completely understood. The objective of this systematic review and meta-analyses was to assess the outcomes of using diode laser on the management of peri-implant mucositis in terms of changes in periodontal parameters. Electronic databases were searched to identify randomised controlled trials (RCTs) that compared the combined use of mechanical debridement and diode laser with mechanical debridement alone. A specific risk-of-bias tool was used to assess the risk of bias. Data were analysed using a statistical software programme. In total, 149 studies were found. A meta-analysis of 3 RCTs showed no statistically significant differences in probing pocket depths (mean difference [MD], -0.36; 95% confidence interval [CI], -0.88 to 0.16; P = .18) or bleeding on probing (MD, -0.71; 95% CI, 1.58-0.16; P = .11) between the 2 groups at 3 months. In the management of peri-implant mucositis, the combined use of diode laser and mechanical debridement did not provide any additional clinical advantage over mechanical debridement alone. Long-term, well-designed RCTs are still needed.
Collapse
Affiliation(s)
- Momen A Atieh
- Mohammed Bin Rashid University of Medicine and Health Sciences, Hamdan Bin Mohammed College of Dental Medicine, Dubai Healthcare City, Dubai, United Arab Emirates; Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Israa Fadhul
- Mohammed Bin Rashid University of Medicine and Health Sciences, Hamdan Bin Mohammed College of Dental Medicine, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Maanas Shah
- Mohammed Bin Rashid University of Medicine and Health Sciences, Hamdan Bin Mohammed College of Dental Medicine, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Haifa Hannawi
- Mohammed Bin Rashid University of Medicine and Health Sciences, Hamdan Bin Mohammed College of Dental Medicine, Dubai Healthcare City, Dubai, United Arab Emirates; Dental Services Department, Emirates Health Services, Dubai, United Arab Emirates
| | - Nabeel H M Alsabeeha
- Dental Services Department, Emirates Health Services, Dubai, United Arab Emirates
| |
Collapse
|
10
|
Al-Qahtani MA. Efficacy of antimicrobial photodynamic therapy in disinfection of Candida biofilms on acrylic dentures: A systematic review. Photodiagnosis Photodyn Ther 2022; 40:102980. [PMID: 35809827 DOI: 10.1016/j.pdpdt.2022.102980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aim of this systematic review was to critically analyze and summarize the currently available scientific evidence concerning antifungal efficacy of aPDT against Candida on acrylic surface. METHODS The focused question was: '"Is aPDT effective in minimizing the counts of Candida on acrylic dentures". A literature search was conducted interpedently on the following electronic research databases: PubMED/MEDLINE, Cochrane, Google Scholar and Embase. The MeSH terms used were: ((antimicrobial photodynamic therapy) OR (light) OR (laser) OR (photodynamic)) AND ((Candida) OR (denture stomatitis)) AND ((denture) OR (acrylic) OR (polymethylmethacrylate) OR (dental prosthesis)). Data was extracted from the studies and quality assessment was carried out using a modified version of the CONSORT checklist. RESULTS Eighteen in-vitro anti-microbial studies and 5 clinical studies were included. Twenty-two studies suggested that aPDT was effective in reducing the Candida count on acrylic dentures and one study did not have a significant effect. 19 out of 23 studies were graded as having 'medium' quality and 4 studies were graded as 'high'. Several photosensitizers, including methylene blue, porphyrin derivatives, toluidine blue-O and others were used. LED was the most popular light source used for photo-activation of the photosensitizers. CONCLUSION Within the limitations of this review, aPDT is effective in reducing Candida growth on acrylic dentures and may prove to be clinical effective in preventing or treating denture stomatitis. However, more long-term clinical research is required before its clinical efficacy can be determined.
Collapse
Affiliation(s)
- Mohammed Ayedh Al-Qahtani
- Prosthetic Dental Science department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia.
| |
Collapse
|
11
|
Rahman B, Acharya AB, Siddiqui R, Verron E, Badran Z. Photodynamic Therapy for Peri-Implant Diseases. Antibiotics (Basel) 2022; 11:antibiotics11070918. [PMID: 35884171 PMCID: PMC9311944 DOI: 10.3390/antibiotics11070918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Peri-implant diseases are frequently presented in patients with dental implants. This category of inflammatory infections includes peri-implant mucositis and peri-implantitis that are primarily caused by the oral bacteria that colonize the implant and the supporting soft and hard tissues. Other factors also contribute to the pathogenesis of peri-implant diseases. Based on established microbial etiology, mechanical debridement has been the standard management approach for peri-implant diseases. To enhance the improvement of therapeutic outcomes, adjunctive treatment in the form of antibiotics, probiotics, lasers, etc. have been reported in the literature. Recently, the use of photodynamic therapy (PDT)/antimicrobial photodynamic therapy (aPDT) centered on the premise that a photoactive substance offers benefits in the resolution of peri-implant diseases has gained attention. Herein, the reported role of PDT in peri-implant diseases, as well as existing observations and opinions regarding PDT, are discussed.
Collapse
Affiliation(s)
- Betul Rahman
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.R.); (A.B.A.)
| | - Anirudh Balakrishna Acharya
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.R.); (A.B.A.)
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, University City, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - Elise Verron
- CNRS, UMR 6230, CEISAM, UFR Sciences et Techniques, Université de Nantes, 2, rue de la Houssinière, BP 92208, CEDEX 3, 44322 Nantes, France;
| | - Zahi Badran
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.R.); (A.B.A.)
- Correspondence:
| |
Collapse
|
12
|
Alresheedi B, Alazmi S. Disinfection of implant abutment connection using antimicrobial photodynamic therapy and 0.2% chlorhexidine gel applications immediately before prosthesis delivery: Clinical and radiographic status at 1-year of follow-up. Photodiagnosis Photodyn Ther 2022; 38:102790. [PMID: 35245672 DOI: 10.1016/j.pdpdt.2022.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of this 1-year follow-up randomized control trial was to compare the clinicoradiographic status of implants that were disinfected with antimicrobial photodynamic therapy (aPDT) and 0.2% chlorhexidine gel immediately before prosthesis delivery. METHODS Forty-five partially edentulous patients with implants placed in the region of missing mandibular first molars and a history of periodontal diseases were included. Immediately before prosthesis delivery, patients were divided into three groups. In groups 1 and 2, implant abutment disinfection (IAD) was performed using aPDT and 0.2% chlorhexidine immediately before prosthesis delivery. In Group-3, IAD was performed using a steaming protocol. Peri-implant modified plaque index (mPI), modified gingival index (mGI), probing depth (PD) and crestal bone loss (CBL) were assessed at 1 year of follow-up. Power analysis was done and group comparisons were done. Logistic regression analysis was done to corelate clinical parameters with demographic variables. P<0.01 was considered statistically significant. RESULTS In total, 15, 15, and 15 implants were present among patients in groups 1, 2 and 3, respectively. There was no statistically significant difference in peri-implant mPI, mBoP, PD and CBL in all groups (Table 2). None of the patients had periodontal disease and there was no statistically significant correlation between peri-implant clinicoradiographic parameters with age, toothbrushing and flossing habits, and duration of implants in function. Eighty percent, 86.7% and 100% individuals in groups 1, 2 and 3, respectively reported that they were brushing teeth twice daily. Flossing of interproximal spaces once daily was reported by 66.7%, 73.3% and 66.7% individuals in groups 1, 2 and 3, respectively. CONCLUSION As long as oral hygiene is stringently maintained after implant prosthesis delivery, IAD can be performed using aPDT, 0.2% CHX gel or steam-disinfection.
Collapse
Affiliation(s)
- Bandar Alresheedi
- Department of Prosthetic Dental Sciences, College of Dentistry, Qassim University, Qassim, Saudi Arabia.
| | - Saad Alazmi
- Department of Periodontology and Oral Medicine, College of Dentistry, Qassim University, Qassim, Saudi Arabia.
| |
Collapse
|
13
|
Antimicrobial and Antibiofilm Coating of Dental Implants—Past and New Perspectives. Antibiotics (Basel) 2022; 11:antibiotics11020235. [PMID: 35203837 PMCID: PMC8868456 DOI: 10.3390/antibiotics11020235] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Regarded as one of the best solutions to replace missing teeth in the oral cavity, dental implants have been the focus of plenty of studies and research in the past few years. Antimicrobial coatings are a promising solution to control and prevent bacterial infections that compromise the success of dental implants. In the last few years, new materials that prevent biofilm adhesion to the surface of titanium implants have been reported, ranging from improved methods to already established coating surfaces. The purpose of this review is to present the developed antimicrobial and antibiofilm coatings that may have the potential to reduce bacterial infections and improve the success rate of titanium dental implants. All referred coating surfaces showed high antimicrobial properties with effectiveness in biofilm control, while maintaining implant biocompatibility. We expect that by combining the use of oligonucleotide probes as a covering material with novel peri-implant adjuvant therapies, we will be able to avoid the downsides of other covering materials (such as antibiotic resistance), prevent bacterial infections, and raise the success rate of dental implants. The existing knowledge on the optimal coating material for dental implants is limited, and further research is needed before more definitive conclusions can be drawn.
Collapse
|
14
|
Photosensitizers attenuate LPS-induced inflammation: implications in dentistry and general health. Lasers Med Sci 2020; 36:913-926. [PMID: 33150475 DOI: 10.1007/s10103-020-03180-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) is a complementary therapeutic modality for periodontal and endodontic diseases, in which Gram-negative bacteria are directly involved. Currently, there are few evidences regarding the effects of aPDT on bacterial components such as lipopolysaccharide (LPS) and it would represent a major step forward in the clinical use of this therapy. In this context, this study aimed to evaluate the efficacy of different photosensitizers (PSs) used in aPDT in LPS inhibition. Four PSs were used in this study: methylene blue (MB), toluidine blue (TBO), new methylene blue (NMB), and curcumin (CUR). Different approaches to evaluate LPS interaction with PSs were used, such as spectrophotometry, Limulus amebocyte lysate (LAL) test, functional assays using mouse macrophages, and an in vivo model of LPS injection. Spectrophotometry showed that LPS decreased the absorbance of all PSs used, indicating interactions between the two species. LAL assay revealed significant differences in LPS concentrations upon pre-incubation with the different PSs. Interestingly, the inflammatory potential of LPS decreased after previous treatment with the four PSs, resulting in decreased secretion of inflammatory cytokines by macrophages. In vivo, pre-incubating curcumin with LPS prevented animals from undergoing septic shock within the established time. Using relevant models to study the inflammatory activity of LPS, we found that all PSs used in this work decreased LPS-induced inflammation, with a more striking effect observed for NMB and curcumin. These data advance the understanding of the mechanisms of LPS inhibition by PSs.
Collapse
|
15
|
Saneja R, Bhattacharjee B, Bhatnagar A, Kumar PGN, Verma A. Efficacy of different lasers of various wavelengths in treatment of peri-implantitis and peri-implant mucositis: A systematic review and meta-analysis. J Indian Prosthodont Soc 2020; 20:353-362. [PMID: 33487962 PMCID: PMC7814680 DOI: 10.4103/jips.jips_144_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/22/2020] [Accepted: 09/02/2020] [Indexed: 12/31/2022] Open
Abstract
Aim Peri implant diseases lead to pathological changes in the peri implant tissues and loss of osseointegration. The purpose of this analysis is to evaluate the effect of various lasers and photodynamic therapy (PDT) on peri implant diseases compared to conventional procedures. Setting and Design This meta analysis was conducted as per the Preferred Reporting Items for Systematic Reviews and Meta Analyses guidelines. Materials and Methods A systematic search of the electronic databases such as PubMed, ICTRP, CT.gov, Embase, and Cochrane Library was done additional to manual search of peer review article on peri-implant diseases. Eleven randomized control clinical trials were included in which laser therapy and PDT were used as an interventional procedure. Results and Statistical Analysis Used Review Manager 5.03 (RevMan, Nordic Cochrane Center, Copenhagen, Denmark), and random effects model were used to assess mean difference (MD). Bivariate differential mean statistic was used in intergroup estimate with 95% confidence interval (CI). I2 test statistics was applied for heterogenity and P < 0.05 was considered significant statistically. The literature search yielded a total of 113 articles among which 11 articles were included for quantitative analysis. The selected outcome PD reported MD -0.01 with 95% CI (-0.13, 0.16), P = 0.84, and CAL reported MD -0.09 with 95% CI (-0.32, 0.14), P = 0.45, respectively. Conclusion Laser treatment as an adjunctive therapy or monotherapy in peri implantitis does not show any superior effects than conventional measures as per evidence. However, cases with peri implant mucositis have shown far more promising results with laser therapy compared to peri implantitis.
Collapse
Affiliation(s)
- Ritu Saneja
- Department of Prosthodontics, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Bappaditya Bhattacharjee
- Department of Prosthodontics, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Atul Bhatnagar
- Department of Prosthodontics, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - P G Naveen Kumar
- Department of Public Health Dentistry, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Arju Verma
- Department of Prosthodontics, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
16
|
Influence of body fat in patients with dental implant rehabilitation treated with adjunctive photodynamic therapy. Photodiagnosis Photodyn Ther 2020; 31:101831. [DOI: 10.1016/j.pdpdt.2020.101831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/28/2022]
|
17
|
Yang R, Guo S, Xiao S, Ding Y. Enhanced wound healing and osteogenic potential of photodynamic therapy on human gingival fibroblasts. Photodiagnosis Photodyn Ther 2020; 32:101967. [PMID: 32835879 DOI: 10.1016/j.pdpdt.2020.101967] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) has shown ideal antibacterial effects in clinical treatment of periodontal diseases. However, little is known about the specific potential of PDT on human gingival fibroblasts (HGFs) especially cells in the inflamed state, which may contribute to the repairi of periodontal tissue. METHODS The effect of PDT with different concentrations of methylene blue (5 μM, 10 μM, 20 μM) on cell vitality of healthy and inflamed human gingival fibroblasts was evaluated by CCK-8, and cell migration was assessed by cell scratching assay. The gene expression of interleukin-6 (IL-6), interleukin-8 (IL-8), type I collagen (Col I), fibronectin (FN) and basic fibroblast growth factor (bFGF) were measured with real-time fluorescent quantitative polymerase chain reaction. The alkaline phosphatase (ALP) production and alizarin red staining of mineralized nodules in healthy and inflamed human gingival fibroblasts was evaluated to explore the effect on osteogenic differentiation. RESULTS PDT with relatively low concentration of methylene blue (5 μM) inhibited the cell vitality of inflamed human gingival fibroblasts (I-HGFs) slightly (P < 0.05), but had no adverse effect on healthy human gingival fibroblasts (H-HGFs) (P > 0.05). As the concentration increased, PDT with 20 μM methylene blue had significantly negative effect on both healthy and inflamed cells. Further, PDT with 5 μM methylene blue was observed to be able to promote the migration of HGFs especially the healthy state, and increases the expression of wound healing related genes including IL-6, COL1, FN, bFGF in healthy and inflamed HGFs (P < 0.05). PDT with 5 μM methylene blue was also capable of increasing the production of ALP and mineralized nodules (P < 0.05), although the better effect was observed in the laser treatment group. CONCLUSIONS The relatively low concentration of methylene blue mediated PDT is conducive to the growth of H-HGFs while inhibiting the I-HGFs, and it also has the potential to promote the wound healing and osteogenic related functions of both healthy and inflamed HGFs.
Collapse
Affiliation(s)
- Ruqian Yang
- Department of Periodontics, West China College of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Shujuan Guo
- Department of Periodontics, West China College of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Shimeng Xiao
- Department of Periodontics, West China College of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Yi Ding
- Department of Periodontics, West China College of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Ohba S, Sato M, Noda S, Yamamoto H, Egahira K, Asahina I. Assessment of safety and efficacy of antimicrobial photodynamic therapy for peri-implant disease. Photodiagnosis Photodyn Ther 2020; 31:101936. [PMID: 32791295 DOI: 10.1016/j.pdpdt.2020.101936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND There is no reliable treatment procedure for peri-implant disease, despite the rise in its incidence. This study sought to evaluate the short-term safety and efficacy of antimicrobial photodynamic therapy (a-PDT) on peri-implantitis by assessing the volume of pus discharge after a-PDT. METHODS Patients with pus discharge from a peri-implant pocket were recruited from December 1st, 2019 to April 30th, 2020. The enrolled implants were randomly assigned to one of two groups, the irrigation and a-PDT groups. Their peri-implant pocket was irrigated with normal saline in the irrigation group, and a saline irrigation and subsequent a-PDT with toluidine blue (TB) was performed in the a-PDT group. The safety and efficacy of a-PDT were assessed 7 days after treatment. RESULTS Twenty-five implants in 21 patients (irrigation group; 13 implants, a-PDT group; 12 implants) were registered. No complication was observed after a-PDT. Pus discharge was decreased in 7 of 12 implants (58.3 %) in the a-PDT group, and in 2 of 13 implants (15.4 %) in the irrigation group. According to Fisher's exact test, a-PDT resulted in a statistically significant decrease in pus discharge compared to irrigation alone (p = 0.0414). CONCLUSIONS a-PDT was confirmed to be a safe treatment for peri-implantitis, and the short-term efficacy of a-PDT with TB on peri-implantitis was clarified. Nevertheless, its efficacy remains restricted, and a new combination therapy of a-PDT and decontamination procedures is expected to be developed in future.
Collapse
Affiliation(s)
- Seigo Ohba
- Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan; Center for Oral and Maxillofacial Implants, Nagasaki University Hospital, Japan.
| | - Mika Sato
- Department of Dental Hygiene, Nagasaki University Hospital, Japan
| | - Sawako Noda
- Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan; Center for Oral and Maxillofacial Implants, Nagasaki University Hospital, Japan
| | - Hideyuki Yamamoto
- Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Kazuhiro Egahira
- Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Izumi Asahina
- Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan; Center for Oral and Maxillofacial Implants, Nagasaki University Hospital, Japan
| |
Collapse
|
19
|
Gao J, Yu S, Zhu X, Yan Y, Zhang Y, Pei D. Does Probiotic Lactobacillus Have an Adjunctive Effect in the Nonsurgical Treatment of Peri-Implant Diseases? A Systematic Review and Meta-analysis. J Evid Based Dent Pract 2020; 20:101398. [PMID: 32381407 DOI: 10.1016/j.jebdp.2020.101398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/11/2019] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate the additional effect of probiotic Lactobacillus in the nonsurgical management of peri-implant diseases (peri-implant mucositis and peri-implantitis). METHODS Six databases were searched up to May 2019 without time and language restrictions. Study selection and data extraction were conducted independently by 2 reviewers. The inclusion criteria for this systematic review were defined based on the participants, intervention, comparison, outcomes, and study design (PICOS) format. Randomized controlled trials comparing nonsurgical treatment combined with probiotic Lactobacillus or placebo agent in patients with peri-implant diseases were included. The methodological quality of retrieved studies was assessed according to the Cochrane Collaboration's Risk of Bias tool, and the quality of evidence was evaluated using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool. Odds ratio and 95% confidence interval (CI) were used to describe dichotomous data, while mean difference and standardized mean difference with 95% CI were used to describe continuous variables. RESULTS Seven randomized controlled trials with 296 implants were included in this meta-analysis. The mean difference of probing pocket depth (PPD) was -0.05 (95% CI: -0.28 to 0.18; P = .67) immediately after treatment termination and -0.17 (95% CI: -1.01 to 0.67, P = .69) at least 2 months after treatment termination. There was a slight reduction of PPD after treatment termination. Compared with placebo, Lactobacillus provided limited benefits in peri-implant mucositis. There were no significant differences in the secondary outcomes of bleeding on probing or plaque index (P > .05). In a narrative synthesis of peri-implantitis, the effect of Lactobacillus on PPD and bleeding on probing remained controversial. CONCLUSIONS This systematic review and meta-analysis showed that probiotic Lactobacillus provide limited benefits to the nonsurgical treatment of peri-implant mucositis or peri-implantitis.
Collapse
Affiliation(s)
- Jinxia Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Shuchen Yu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiufeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yuzhu Yan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
20
|
Efficacy of mechanical debridement with and without adjunct antimicrobial photodynamic therapy in the treatment of peri-implantitis among moderate cigarette-smokers and waterpipe-users. Photodiagnosis Photodyn Ther 2019; 28:153-158. [DOI: 10.1016/j.pdpdt.2019.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023]
|
21
|
Inactivation of oral biofilms using visible light and water-filtered infrared A radiation and indocyanine green. Future Med Chem 2019; 11:1721-1739. [PMID: 31368351 DOI: 10.4155/fmc-2018-0522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: To investigate the antimicrobial photodynamic therapy (aPDT) of visible light and water-filtered infrared A radiation in combination with indocyanine green (ICG) on planktonic oral microorganisms as well as on oral biofilm. Methods: The irradiation was conducted for 5 min in combination with ICG. Treatment with chlorhexidine served as a positive control. The number of colony forming units and bacterial vitality were quantified. Results: All tested bacterial strains and salivary bacteria were killed at a level of 3log10. The colony forming units of the initial mature oral biofilms were strongly reduced. The high bactericidal effect of aPDT was confirmed by live/dead staining. Conclusion: The aPDT using visible light and water-filtered infrared A radiation and ICG has the potential to treat periodontitis and peri-implantitis.
Collapse
|
22
|
Wang H, Li W, Zhang D, Li W, Wang Z. Adjunctive photodynamic therapy improves the outcomes of peri‐implantitis: a randomized controlled trial. Aust Dent J 2019; 64:256-262. [PMID: 31152567 DOI: 10.1111/adj.12705] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Affiliation(s)
- H Wang
- Department of Stomatology Beijing Chao‐Yang Hospital Capital Medical University Beijing China
| | - W Li
- Department of Stomatology Beijing Chao‐Yang Hospital Capital Medical University Beijing China
| | - D Zhang
- Department of Stomatology Beijing Chao‐Yang Hospital Capital Medical University Beijing China
| | - W Li
- Department of Stomatology Beijing Chao‐Yang Hospital Capital Medical University Beijing China
| | - Z Wang
- Department of Stomatology Beijing Chao‐Yang Hospital Capital Medical University Beijing China
| |
Collapse
|
23
|
Huang TC, Chen CJ, Chen CC, Ding SJ. Enhancing osteoblast functions on biofilm-contaminated titanium alloy by concentration-dependent use of methylene blue-mediated antimicrobial photodynamic therapy. Photodiagnosis Photodyn Ther 2019; 27:7-18. [PMID: 31117001 DOI: 10.1016/j.pdpdt.2019.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/07/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023]
Abstract
The concentration of methylene blue (MB) photosensitizer could affect the eradication efficacy of antimicrobial photodynamic therapy (aPDT) in the treatment of contaminated implants, which is linked to the osseointegration of the implant. We evaluated osteoblast functions on the contaminated SLA (sandblasting, large-grit and acid-etching) Ti alloy surfaces after the concentration-dependent use of MB-aPDT. Totally 1164 SLA discs were randomly distributed for the analyses of antibacterial efficacy and osteoblast functions. Gram-negative (Aggregatibacter actinomycetemcomitans; A. actinomycetemcomitans) or Gram-positive (Streptococcus mutans; S. mutans) adhered on disc samples was subjected to aPDT with different MB concentrations (200, 250, 300, 350, and 400 μg/mL) using 660 nm diode laser with maximum output 80 mW for 1 min irradiation (4.8 J/cm2). Bactericidal effect was examined by viability, morphology, and lipopolysaccharide (LPS) assays. The disinfected disc surfaces by MB-aPDT to support osteoblast-like MG63 attachment, proliferation, differentiation, and mineralization were assessed for the predetermined culture time intervals. The statistical differences between the means were performed using a one-way analysis of variance (ANOVA) with a post hoc Scheffe test. The results of the morphology observation and bacterial survival examination consistently indicated a remarkably lower quantity of bacterial colonies on biofilm-contaminated surfaces after the aPDT treatment with higher MB concentration. Similarly, the higher MB concentration in aPDT resulted in the lower LPS amounts remaining on the A. actinomycetemcomitans-contaminated surfaces. Intriguingly, the expression of osteoblast cultured on disinfected surfaces using aPDT with higher MB concentration was comparable to the control without contamination. Within the limits of this in vitro model, this formulation of 400 μg/mL MB used in aPDT may be not only the lethal concentration against the 2 bacteria-contaminated implants, but it could also enhance the osteoblast functions on the contaminated implants. Nevertheless, the efficacy in the clinical practice for peri-implantitis therapy remains to be studied.
Collapse
Affiliation(s)
- Tsun-Chin Huang
- Institute of Oral Science, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Chun-Ju Chen
- Institute of Oral Science, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Chun-Cheng Chen
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung City 402, Taiwan; School of Dentistry, Chung Shan Medical University, Taichung City 402, Taiwan.
| | - Shinn-Jyh Ding
- Institute of Oral Science, Chung Shan Medical University, Taichung City 402, Taiwan; Department of Stomatology, Chung Shan Medical University Hospital, Taichung City 402, Taiwan.
| |
Collapse
|
24
|
Chen W, Zhi M, Feng Z, Gao P, Yuan Y, Zhang C, Wang Y, Dong A. Sustained co-delivery of ibuprofen and basic fibroblast growth factor by thermosensitive nanoparticle hydrogel as early local treatment of peri-implantitis. Int J Nanomedicine 2019; 14:1347-1358. [PMID: 30863065 PMCID: PMC6390857 DOI: 10.2147/ijn.s190781] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective The aims of this study were to 1) encapsulate ibuprofen (IBU) and basic fibroblast growth factor (bFGF) in a thermosensitive micellar hydrogel, 2) test the biological properties of this in situ drug delivery system, and 3) study the effect of hydrogel in promoting soft tissue healing after implant surgery and its anti-inflammatory function as an early local treatment of peri-implantitis. Materials and methods A thermosensitive micellar hydrogel was prepared from amphiphilic copolymer poly(ε-caprolactone-co-1,4,8-trioxa [4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly(ε-caprolactone-co-1,4,8-trioxa [4.6]spiro-9-undecanone) (PECT) nanoparticles and tested in vitro using a scanning electron microscope, rheometer, UV spectrophotometer, HPLC, and transmission electron microscope. Results The bFGF + IBU/PECT hydrogel formed a stable, water-dispersible nanoparticle core shell that was injectable at room temperature, hydrogel in situ at body temperature, and provided sustained release of both hydrophilic and hydrophobic drugs. The hydrogel promoted the proliferation and adhesion of human gingival fibroblasts, upregulated the expression of adhesion factors such as vinculin proteins, and showed anti-inflammatory properties. Conclusion In situ preparation of IBU-and bFGF-loaded PECT hydrogel represents a promising drug delivery system with the potential to provide early local treatment for peri-implantitis.
Collapse
Affiliation(s)
- Wenlei Chen
- Department of Periodontology, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Min Zhi
- Department of Periodontology, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Zujian Feng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China,
| | - Pengfei Gao
- Department of Periodontology, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Yuan Yuan
- Department of Periodontology, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Congcong Zhang
- Department of Periodontology, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Yonglan Wang
- Department of Periodontology, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Anjie Dong
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China,
| |
Collapse
|
25
|
Huang TC, Chen CJ, Ding SJ, Chen CC. Antimicrobial efficacy of methylene blue-mediated photodynamic therapy on titanium alloy surfaces in vitro. Photodiagnosis Photodyn Ther 2018; 25:7-16. [PMID: 30439531 DOI: 10.1016/j.pdpdt.2018.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/03/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
Bacterial elimination using antimicrobial photodynamic therapy (aPDT) has been considered an alternative therapeutic modality in peri-implantitis treatment. The present in vitro study evaluated the dose-dependent and pH-dependent bactericidal effects of methylene blue (MB)-mediated aPDT at eliminating Gram-negative (P. gingivalis and A. actinomycetemcomitans) and Gram-positive (S. mutans) bacteria on sandblasting, large-grit and acid-etching (SLA)-pretreated titanium alloy. The effects of different MB concentrations (50, 100, and 200 μg/mL), the pH of the MB (4, 7, and 10), and irradiation time (0, 30, and 60 s) on the bacterial viability and residual lipopolysaccharide (LPS) levels were examined. The variations in the pH of the MB solution after aPDT for 60 s on the uncontaminated and contaminated specimens were also detected. The experimental results indicated that MB-mediated PDT could effectively kill the majority of bacteria on the titanium alloy surfaces of biofilm-contaminated implants compared with the MB alone. Of note, aPDT exhibited better antibacterial efficacy with increase in the MB concentration and irradiation time. While treated in an acidic solution on the biofilm-contaminated specimens, aPDT caused the pH to increase. By contrast, the initially high alkaline pH decreased to a value of about pH 8.5 after aPDT. Intriguingly, the neutral pH had minor changes, independent of the MB concentration and bacterial species. As expected, aPDT with higher MB concentration at higher pH environment significantly lowered the LPS concentration of A. actinomycetemcomitans and P. gingivalis. On the basis of the data, the aPDT with 200 μg/mL MB at pH 10 for 60 s of irradiation time might be an effectively treatment to eliminate bacteria and LPS adherent to titanium surface, however, the use of the multispecies biofilm model and the evaluation of in vitro osteogenesis needed to be further evaluated.
Collapse
Affiliation(s)
- Tsun-Chin Huang
- Institute of Oral Science, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Chun-Ju Chen
- Institute of Oral Science, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Shinn-Jyh Ding
- Institute of Oral Science, Chung Shan Medical University, Taichung City 402, Taiwan; Department of Stomatology, Chung Shan Medical University Hospital, Taichung City 402, Taiwan.
| | - Chun-Cheng Chen
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung City 402, Taiwan; School of Dentistry, Chung Shan Medical University, Taichung City 402, Taiwan.
| |
Collapse
|
26
|
Karimi MR, Montazeri M, Harandi M, Aghazadeh L, Aghazadeh L. Effect of Photodynamic Therapy Using Toluidine Blue on Eikenella corrodens and Aggregatibacter actinomycetemcomitans Biofilms Adhered to Titanium Discs: An In Vitro Study. JOURNAL OF RESEARCH IN DENTAL AND MAXILLOFACIAL SCIENCES 2018. [DOI: 10.29252/jrdms.3.4.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
27
|
Garcia VG, Gualberto EC, Ervolino E, Nagata MJH, de Almeida JM, Theodoro LH. aPDT for periodontitis treatment in ovariectomized rats under systemic nicotine. Photodiagnosis Photodyn Ther 2018; 22:70-78. [DOI: 10.1016/j.pdpdt.2018.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 01/04/2023]
|
28
|
Sivaramakrishnan G, Sridharan K. Photodynamic therapy for the treatment of peri-implant diseases: A network meta-analysis of randomized controlled trials. Photodiagnosis Photodyn Ther 2018; 21:1-9. [DOI: 10.1016/j.pdpdt.2017.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/05/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022]
|
29
|
Simões A, Benites BM, Benassi C, Torres-Schroter G, de Castro JR, Campos L. Antimicrobial photodynamic therapy on treatment of infected radiation-induced oral mucositis: Report of two cases. Photodiagnosis Photodyn Ther 2017; 20:18-20. [DOI: 10.1016/j.pdpdt.2017.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/23/2017] [Accepted: 08/13/2017] [Indexed: 11/16/2022]
|
30
|
Kodukula K, Faller DV, Harpp DN, Kanara I, Pernokas J, Pernokas M, Powers WR, Soukos NS, Steliou K, Moos WH. Gut Microbiota and Salivary Diagnostics: The Mouth Is Salivating to Tell Us Something. Biores Open Access 2017; 6:123-132. [PMID: 29098118 PMCID: PMC5665491 DOI: 10.1089/biores.2017.0020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The microbiome of the human body represents a symbiosis of microbial networks spanning multiple organ systems. Bacteria predominantly represent the diversity of human microbiota, but not to be forgotten are fungi, viruses, and protists. Mounting evidence points to the fact that the "microbial signature" is host-specific and relatively stable over time. As our understanding of the human microbiome and its relationship to the health of the host increases, it is becoming clear that many and perhaps most chronic conditions have a microbial involvement. The oral and gastrointestinal tract microbiome constitutes the bulk of the overall human microbial load, and thus presents unique opportunities for advancing human health prognosis, diagnosis, and therapy development. This review is an attempt to catalog a broad diversity of recent evidence and focus it toward opportunities for prevention and treatment of debilitating illnesses.
Collapse
Affiliation(s)
- Krishna Kodukula
- Bridgewater College, Bridgewater, Virginia
- ShangPharma Innovation, Inc., South San Francisco, California
- PhenoMatriX, Inc., Natick, Massachusetts
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, Canada
| | | | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Nikolaos S. Soukos
- Dana Research Center, Department of Physics, Northeastern University, Boston, Massachusetts
| | - Kosta Steliou
- PhenoMatriX, Inc., Natick, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Walter H. Moos
- ShangPharma Innovation, Inc., South San Francisco, California
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California
| |
Collapse
|