1
|
Lattar SM, Schneider RP, Eugenio VJ, Padilla G. High release of Candida albicans eDNA as protection for the scaffolding of polymicrobial biofilm formed with Staphylococcus aureus and Streptococcus mutans against the enzymatic activity of DNase I. Braz J Microbiol 2024:10.1007/s42770-024-01550-4. [PMID: 39480631 DOI: 10.1007/s42770-024-01550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
This study aimed to determine the protective role of the high release of C. albicans extracellular DNA (eDNA) in a polymicrobial biofilm formed by S. aureus and S. mutans in the course of DNase I treatment. A tube-flow biofilm bioreactor was developed to mimic biofilm formation in the oral cavity. eDNA release was quantified by real-time PCR (qPCR) and confocal microscopy analysis were used to determine the concentration and distribution of eDNA and intracellular DNA (iDNA). The mean amount of eDNA released by each species in the polymicrobial was higher than that in monospecies biofilms (S. aureus: 3.1 × 10-2 ng/μl polymicrobial versus 5.1 × 10-4 ng/μl monospecies; S. mutans: 3 × 10-1 ng/μl polymicrobial versus 2.97 × 10-2 ng/μl monospecies; C. albicans: 8.35 ng/μl polymicrobial versus 4.85 ng/μl monospecies). The large amounts of eDNA released by C. albicans (96%) in polymicrobial biofilms protects the S. aureus and S. mutans cells against the degradation by DNase I and dampens the effect of clindamycin.
Collapse
Affiliation(s)
- Santiago M Lattar
- Cell Biology of Microorganism Laboratory, Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, BH, Brazil.
| | | | - Vidal Jorge Eugenio
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gabriel Padilla
- Bioproducts Laboratory, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Paschoal MAB, Gonçalves LM, Cavalcante SIA, Andrade-Maia G, Duarte S. Morphological changes and viability of Streptococcus mutans biofilm treated with erythrosine: A confocal laser scanning microscopy analysis. Microsc Res Tech 2024; 87:888-895. [PMID: 38129976 DOI: 10.1002/jemt.24477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 10/30/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Antimicrobial photodynamic therapy (a-PDT) is a modality that aims to induce microorganisms through visible light, a photosensitizer, and molecular oxygen. This therapy has shown promising results in controlling cariogenic biofilm in vitro and in vivo counterparts. This study investigated bacterial viability and morphological characterization of Streptococcus mutans mature biofilms after combination of erythrosine and a high potency dental curing light. Biofilms were formed on saliva-coated hydroxyapatite disks in batch culture. The samples were performed in triplicates. Fresh medium was replaced daily for five days and treated using 40 μM of E activated by HL 288 J/cm2 and total dose of 226 J at 1200 mW/cm2. Phosphate buffer saline and 0.12% of chlorhexidine were used as negative and positive control, respectively. After treatment, biofilms were assessed for microbial viability and morphological characterization by means of bio-volume and thickness. COMSTAT software was used for image analysis. Data were analyzed using two-way ANOVA followed by Tukey test with significance level 5%. The application of a-PDT and CHX treatments decreased S. mutans bacterial viability. The image analysis showed more red cells on biofilms when compared to other groups, demonstrating photobacterial killing. Erythrosine irradiated with a high potency curing light can potentially act as an antimicrobial tool in the treatment of cariogenic biofilms. The morphology and viability of microorganisms were impacted after treatment. Treatment with photodynamic therapy may be able to reduce the bio-volume and viability of bacteria present in biofilms. CLINICAL RELEVANCE AND RESEARCH HIGHLIGHTS: The use of the a-PDT technique has been applied in dentistry with satisfactory results. Some applications of this technique are in stomatology and endodontics. In the present study, we sought to understand the use of photodynamic therapy in the control of biofilm and the results found are compatible with the objective of microbiological control proposed by this technique, thus raising the alert for future studies in vivo using the combination of a-PDT with erythrosine, since they are easily accessible materials for the dental surgeon and can be applied in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Gabriele Andrade-Maia
- Department of Child and Adolescent Oral Health, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Simone Duarte
- Senior Director, Applied Research Department, American Dental Association Science and Research Institute, Chicago, Illinois, USA
| |
Collapse
|
3
|
Balhaddad AA, Xia Y, Lan Y, Mokeem L, Ibrahim MS, Weir MD, Xu HHK, Melo MAS. Magnetic-Responsive Photosensitizer Nanoplatform for Optimized Inactivation of Dental Caries-Related Biofilms: Technology Development and Proof of Principle. ACS NANO 2021; 15:19888-19904. [PMID: 34878250 DOI: 10.1021/acsnano.1c07397] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conventional antibiotic therapies for biofilm-trigged oral diseases are becoming less efficient due to the emergence of antibiotic-resistant bacterial strains. Antimicrobial photodynamic therapy (aPDT) is hampered by restricted access to bacterial communities embedded within the dense extracellular matrix of mature biofilms. Herein, a versatile photosensitizer nanoplatform (named MagTBO) was designed to overcome this obstacle by integrating toluidine-blue ortho (TBO) photosensitizer and superparamagnetic iron oxide nanoparticles (SPIONs) via a microemulsion method. In this study, we reported the preparation, characterization, and application of MagTBO for aPDT. In the presence of an external magnetic field, the MagTBO microemulsion can be driven and penetrate deep sites inside the biofilms, resulting in an improved photodynamic disinfection effect compared to using TBO alone. Besides, the obtained MagTBO microemulsions revealed excellent water solubility and stability over time, enhanced the aPDT performance against S. mutans and saliva-derived multispecies biofilms, and improved the TBO's biocompatibility. Such results demonstrate a proof-of-principle for using microemulsion as a delivery vehicle and magnetic field as a navigation approach to intensify the antibacterial action of currently available photosensitizers, leading to efficient modulation of pathogenic oral biofilms.
Collapse
Affiliation(s)
- Abdulrahman A Balhaddad
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia
| | - Yang Xia
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yucheng Lan
- Department of Physics and Engineering Physics, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States
| | - Lamia Mokeem
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Maria S Ibrahim
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Department of Preventive Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia
| | - Michael D Weir
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Hockin H K Xu
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Mary Anne S Melo
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Division of Operative Dentistry, Dept. of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| |
Collapse
|
4
|
Photodynamic antimicrobial chemotherapy (PACT) using riboflavin inhibits the mono and dual species biofilm produced by antibiotic resistant Staphylococcus aureus and Escherichia coli. Photodiagnosis Photodyn Ther 2020; 32:102002. [PMID: 32916327 DOI: 10.1016/j.pdpdt.2020.102002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Multispecies biofilms play a significant role in persistent infections. Furthermore, by interspecies transfer of antibiotic resistance genes, multispecies biofilms spread antibiotic resistance. The purpose of this study was to investigate the effect of Photodynamic Antimicrobial Chemotherapy (PACT) using riboflavin on mono and multi species biofilms. METHODS For this we used two clinically relevant opportunistic pathogens species E. coli and S. aureus as mono-species and multispecies biofilms. We did broth dilution assay for antibacterial, crystal violet assay for biofilms and fluorometric study for reactive oxygen species (ROS) and extracellular polymeric substance (EPS) production by phenol-HCl method. RESULTS Antibacterial study revealed that photo-illuminated riboflavin shows bactericidal effect against each bacteria and their mix culture. E. coli was found to be little more resistant than S. aureus. Crystal violet assay revealed photo-illuminated riboflavin shows anti-biofilms activity against both mono and mix species biofilms. But mix species biofilms were more resistant to PACT than mono species biofilms. Further study revealed this may be due to the interaction between different EPS production, hence in mix species biofilms EPS production is less affected after PACT than mono species biofilms. We found photo-illuminated riboflavin increased the intracellular ROS production. CONCLUSION Photo-illuminated riboflavin shows bactericidal and anti-biofilms effect against each bacteria and their mix culture. Photo-illuminated increased intracellular ROS production, which may induce the oxidative stress and destroy the respiratory system of bacteria.
Collapse
|
5
|
Pinto RM, Soares FA, Reis S, Nunes C, Van Dijck P. Innovative Strategies Toward the Disassembly of the EPS Matrix in Bacterial Biofilms. Front Microbiol 2020; 11:952. [PMID: 32528433 PMCID: PMC7264105 DOI: 10.3389/fmicb.2020.00952] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Bacterial biofilms represent a major concern at a worldwide level due to the high demand for implantable medical devices and the rising numbers of bacterial resistance. The complex structure of the extracellular polymeric substances (EPS) matrix plays a major role in this phenomenon, since it protects bacteria from antibiotics, avoiding drug penetration at bactericidal concentrations. Besides, this structure promotes bacterial cells to adopt a dormant lifestyle, becoming less susceptible to antibacterial agents. Currently, the available treatment for biofilm-related infections consists in the administration of conventional antibiotics at high doses for a long-term period. However, this treatment lacks efficiency against mature biofilms and for implant-associated biofilms it may be necessary to remove the medical device. Thus, biofilm-related infections represent an economical burden for the healthcare systems. New strategies focusing on the matrix are being highlighted as alternative therapies to eradicate biofilms. Here, we outline reported matrix disruptive agents, nanocarriers, and technologies, such as application of magnetic fields, photodynamic therapy, and ultrasounds, that have been under investigation to disrupt the EPS matrix of clinically relevant bacterial biofilms. In an ideal therapy, a synergistic effect between antibiotics and the explored innovated strategies is aimed to completely eradicate biofilms and avoid antimicrobial resistance phenomena.
Collapse
Affiliation(s)
- Rita M Pinto
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal.,Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Filipa A Soares
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Vidal BDC, Mello MLS. Toluidine blue staining for cell and tissue biology applications. Acta Histochem 2019; 121:101-112. [PMID: 30463688 DOI: 10.1016/j.acthis.2018.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
Toluidine blue (TB) staining either alone or in association with other methodologies has the potential to answer a variety of biological questions regarding the human, animal and plant tissues or cells. In this brief review, we not only report the primary use of TB to detect the anionic substrates and availability of their binding sites, but also unveil the resulting applications of TB staining in biological research. Among these applications, the uses of TB staining to identify the changes in chromatin DNA-protein complexes, nucleolus location, and extracellular matrix proteoglycan complexes associated with different physiological and pathological events are described. The usefulness of TB staining to monitor the effects elicited by environmental insults on chromatin and intercalation of drugs into the DNA is also included.
Collapse
|
7
|
Fraix A, Catanzano O, Di Bari I, Conte C, Seggio M, Parisi C, Nostro A, Ginestra G, Quaglia F, Sortino S. Visible light-activatable multicargo microemulsions with bimodal photobactericidal action and dual colour fluorescence. J Mater Chem B 2019; 7:5257-5264. [DOI: 10.1039/c9tb00699k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microemulsion co-solubilizing a photosensitizer and a NO photodonor in the oily phase can be excited with visible light stimuli resulting in the photogeneration of cytotoxic 1O2 and NO together with red and green fluorescence emission.
Collapse
Affiliation(s)
- Aurore Fraix
- Laboratory of Photochemistry
- Department of Drug Science
- Catania
- Italy
| | - Ovidio Catanzano
- Drug Delivery Laboratory
- Department of Pharmacy
- University of Napoli Federico II
- Napoli
- Italy
| | - Ivana Di Bari
- Laboratory of Photochemistry
- Department of Drug Science
- Catania
- Italy
| | - Claudia Conte
- Drug Delivery Laboratory
- Department of Pharmacy
- University of Napoli Federico II
- Napoli
- Italy
| | | | - Cristina Parisi
- Laboratory of Photochemistry
- Department of Drug Science
- Catania
- Italy
| | - Antonia Nostro
- Department of Chemical
- Biological
- Pharmaceutical and Environmental Sciences
- University of Messina
- Messina
| | - Giovanna Ginestra
- Department of Chemical
- Biological
- Pharmaceutical and Environmental Sciences
- University of Messina
- Messina
| | - Fabiana Quaglia
- Drug Delivery Laboratory
- Department of Pharmacy
- University of Napoli Federico II
- Napoli
- Italy
| | | |
Collapse
|
8
|
Fila G, Krychowiak M, Rychlowski M, Bielawski KP, Grinholc M. Antimicrobial blue light photoinactivation of Pseudomonas aeruginosa: Quorum sensing signaling molecules, biofilm formation and pathogenicity. JOURNAL OF BIOPHOTONICS 2018; 11:e201800079. [PMID: 29952074 DOI: 10.1002/jbio.201800079] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Pseudomonas aeruginosa is a common causative bacterium of acute and chronic infections that have been responsible for high mortality over the past decade. P. aeruginosa produces many virulence factors such as toxins, enzymes and dyes that are strongly dependent on quorum sensing (QS) signaling systems. P. aeruginosa has three major QS systems (las, rhl and Pseudomonas quinolone signal) that regulate the expression of genes encoding virulence factors as well as biofilm production and maturation. Antimicrobial blue light (aBL) is considered a therapeutic option for bacterial infections and has other benefits, such as reducing bacterial virulence. Therefore, this study investigated the efficacy of aBL to reduce P. aeruginosa pathogenicity. aBL treatment resulted in the reduced activity of certain QS signaling molecules in P. aeruginosa and inhibited biofilm formation. in vivo tests using a Caenorhabditis elegans infection model indicated that sublethal aBL decreased the pathogenicity of P. aeruginosa. aBL may be a new virulence-targeting therapeutic approach.
Collapse
Affiliation(s)
- Grzegorz Fila
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Marta Krychowiak
- Laboratory of Biologically Active Compounds, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Michal Rychlowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Piotr Bielawski
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|