1
|
Aghili SS, Jahangirnia A, Alam M, Oskouei AB, Golkar M, Badkoobeh A, Abbasi K, Mohammadikhah M, Karami S, Soufdoost RS, Namanloo RA, Talebi S, Amookhteh S, Hemmat M, Sadeghi S. The effect of photodynamic therapy in controlling the oral biofilm: A comprehensive overview. J Basic Microbiol 2023; 63:1319-1347. [PMID: 37726220 DOI: 10.1002/jobm.202300400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
Several resistance mechanisms are involved in dental caries, including oral biofilms. An accumulation of bacteria on the surface of teeth is called plaque. Periodontitis and gingivitis are caused by dental plaque. In this review article, we aimed to review the studies associated with the application of photodynamic therapy (PDT) to prevent and treat various microbial biofilm-caused oral diseases in recent decades. There are several studies published in PubMed that have described antimicrobial photodynamic therapy (APDT) effects on microorganisms. Several in vitro and in vivo studies have demonstrated the potential of APDT for treating endodontic, periodontal, and mucosal infections caused by bacteria as biofilms. Reactive oxygen species (ROS) are activated in the presence of oxygen by integrating a nontoxic photosensitizer (PS) with appropriate wavelength visible light. By causing irreversible damage to microorganisms, ROS induces some biological and photochemical events. Testing several wavelengths has been conducted to identify potential PS for APDT. A standard protocol is not yet available, and the current review summarizes findings from dental studies on APDT.
Collapse
Affiliation(s)
- Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asal Bagherzadeh Oskouei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | | | - Sahar Talebi
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Amookhteh
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Hemmat
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sima Sadeghi
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Li Y, Qi R, Wang X, Yuan H. Recent Strategies to Develop Conjugated Polymers for Detection and Therapeutics. Polymers (Basel) 2023; 15:3570. [PMID: 37688196 PMCID: PMC10490465 DOI: 10.3390/polym15173570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The infectious diseases resulting from pathogenic microbes are highly contagious and the source of infection is difficult to control, which seriously endangers life and public health safety. Although the emergence of antibiotics has a good therapeutic effect in the early stage, the massive abuse of antibiotics has brought about the evolution of pathogens with drug resistance, which has gradually weakened the lethality and availability of antibiotics. Cancer is a more serious disease than pathogenic bacteria infection, which also threatens human life and health. Traditional treatment methods have limitations such as easy recurrence, poor prognosis, many side effects, and high toxicity. These two issues have led to the exploration and development of novel therapeutic agents (such as conjugated polymers) and therapeutic strategies (such as phototherapy) to avoid the increase of drug resistance and toxic side effects. As a class of organic polymer biological functional materials with excellent photoelectric properties, Conjugated polymers (CPs) have been extensively investigated in biomedical fields, such as the detection and treatment of pathogens and tumors due to their advantages of easy modification and functionalization, good biocompatibility and low cost. A rare comprehensive overview of CPs-based detection and treatment applications has been reported. This paper reviews the design strategies and research status of CPs used in biomedicine in recent years, introduces and discusses the latest progress of their application in the detection and treatment of pathogenic microorganisms and tumors according to different detection or treatment methods, as well as the limitations and potential challenges in prospective exploration.
Collapse
Affiliation(s)
- Yutong Li
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ruilian Qi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel IDW, Matczyszyn K. The role of the light source in antimicrobial photodynamic therapy. Chem Soc Rev 2023; 52:1697-1722. [PMID: 36779328 DOI: 10.1039/d0cs01051k] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising approach to fight the growing problem of antimicrobial resistance that threatens health care, food security and agriculture. APDT uses light to excite a light-activated chemical (photosensitiser), leading to the generation of reactive oxygen species (ROS). Many APDT studies confirm its efficacy in vitro and in vivo against bacteria, fungi, viruses and parasites. However, the development of the field is focused on exploring potential targets and developing new photosensitisers. The role of light, a crucial element for ROS production, has been neglected. What are the main parameters essential for effective photosensitiser activation? Does an optimal light radiant exposure exist? And finally, which light source is best? Many reports have described the promising antibacterial effects of APDT in vitro, however, its application in vivo, especially in clinical settings remains very limited. The restricted availability may partially be due to a lack of standard conditions or protocols, arising from the diversity of selected photosensitising agents (PS), variable testing conditions including light sources used for PS activation and methods of measuring anti-bacterial activity and their effectiveness in treating bacterial infections. We thus sought to systematically review and examine the evidence from existing studies on APDT associated with the light source used. We show how the reduction of pathogens depends on the light source applied, radiant exposure and irradiance of light used, and type of pathogen, and so critically appraise the current state of development of APDT and areas to be addressed in future studies. We anticipate that further standardisation of the experimental conditions will help the field advance, and suggest key optical and biological parameters that should be reported in all APDT studies. More in vivo and clinical studies are needed and are expected to be facilitated by advances in light sources, leading to APDT becoming a sustainable, alternative therapeutic option for bacterial and other microbial infections in the future.
Collapse
Affiliation(s)
- Marta Piksa
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Cheng Lian
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Imogen C Samuel
- School of Medicine, University of Manchester, Manchester, M13 9PL, UK
| | - Krzysztof J Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
4
|
Huarote Fernández JE, Lugo Varillas JG. [Evaluation of the adhesive resistance of a composite resin to dentin treated with chlorhexidine and photodynamic therapy. in vitro study]. REVISTA CIENTÍFICA ODONTOLÓGICA 2023; 11:e142. [PMID: 38288315 PMCID: PMC10809960 DOI: 10.21142/2523-2754-1101-2023-142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction Photodynamic therapy consists of the application of a light with an adequate wavelength on the cavities prior to the application of a photosensitizing agent, with the purpose of eliminating remnants of microorganisms remaining after instrumentation. Objective Evaluate the adhesive resistance to dentin treated with 2% chlorhexidine and photodynamic therapy with a 660nm diode prior to the insertion of composite resin. Materials an Methods In this in vitro experimental study, 60 bovine mandibular incisors were collected, After dentin wear, the samples were divided into 3 groups, with 20 samples per group: control group (no therapy was applied), 2% chlorhexidine, and 660nm diode laser (photosensitizer: methylene blue). Adhesive strength test was measured by shear test compared to kruskall-wallis test and post-hoc pairwise comparison. Results The average values from highest to lowest result with the CHX (14.82 ± 3.14), followed by the 660nm diode laser (14.77 ± 4.02) and the control group (9.25 ± 1.16). Similar groups of 660 nm diode laser and 2% CHX changed values (P>0.05), but significantly higher than the control group (P<0.001). Conclusion: Photodynamic therapy increased adhesive resistance as well as chlorhexidine, both therapies presented an increase in adhesive resistance compared to the control group.
Collapse
Affiliation(s)
- Joaquín Enrique Huarote Fernández
- Carrera de Estomatología, Universidad Científica del Sur. Lima, Perú. Universidad Científica del Sur Carrera de Estomatología Universidad Científica del Sur Lima Peru
| | - Jocelyn Graciela Lugo Varillas
- Departamento de Ciencias de la Salud, Carrera de Estomatología, Universidad Científica del Sur. Lima, Perú. Universidad Científica del Sur Departamento de Ciencias de la Salud Carrera de Estomatología Universidad Científica del Sur Lima Peru
| |
Collapse
|
5
|
Xiao F, Cao B, Wen L, Su Y, Zhan M, Lu L, Hu X. Photosensitizer conjugate-functionalized poly(hexamethylene guanidine) for potentiated broad-spectrum bacterial inhibition and enhanced biocompatibility. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.06.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Bactericidal effect of antimicrobial photodynamic therapy (aPDT) on dentin plate infected with Lactobacillus acidophilus. Odontology 2020; 109:67-75. [PMID: 32556972 DOI: 10.1007/s10266-020-00532-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
Abstract
This study aimed to examine bactericidal effects of a new antimicrobial photodynamic therapy (aPDT) on dentin plates infected with Lactobacillus acidophilus (L. acidophilus). First, we measured the amount of reactive oxygen species (ROS) produced when new photosensitizer (PS), acid red (AR), and brilliant blue (BB) were irradiated with a semiconductor laser. ROS generated from each PS solution by laser irradiation was calculated as the total light emission amount (Relative Light Unit, RLU) using a chemiluminescence measuring device. Second, we examined bactericidal effects of the aPDT on dentin plates infected with L. acidophilus. The bactericidal effects on each group were evaluated by colony count assay and adenosine triphosphate assay. The experimental groups comprised two laser irradiation groups (650 nm laser, 650laser; and 940 nm laser, 940laser), two PS groups (BB and AR), four aPDT groups (650 nm laser irradiation with BB, 650laser-BB; 650 nm laser irradiation with AR, 650laser-AR; 940 nm laser irradiation with BB, 940laser-BB; 940 nm laser irradiation with AR, 940laser-AR), and a control. The ROS in all aPDT groups was significantly higher than in the control. RLU in all groups applied with laser irradiation was significantly lower than that in the control. However, only 650laser-BB showed significantly lower colony counts than the control. 650laser-BB was the most effective in sterilizing the infected dentin plates.
Collapse
|
7
|
Wu M, Xu L, Cai Z, Huang S, Li Y, Lei L, Huang X. Disinfection of Cariogenic Pathogens in Planktonic Lifestyle, Biofilm and Carious Dentine with Antimicrobial Photodynamic Therapy. Photochem Photobiol 2019; 96:170-177. [PMID: 31483869 DOI: 10.1111/php.13161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/23/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Minjing Wu
- School and Hospital of Stomatology Fujian Medical University Fuzhou China
- Key Laboratory of Stomatology Fujian Province University Fuzhou China
| | - Li Xu
- School and Hospital of Stomatology Fujian Medical University Fuzhou China
- Key Laboratory of Stomatology Fujian Province University Fuzhou China
| | - Zhiyu Cai
- Department of Stomatology Fujian Medical University Union Hospital Fuzhou China
| | - Shan Huang
- School and Hospital of Stomatology Fujian Medical University Fuzhou China
- Fujian Biological Materials Engineering and Technology Center of Stomatology Fuzhou China
| | - Yijun Li
- School and Hospital of Stomatology Fujian Medical University Fuzhou China
- Fujian Biological Materials Engineering and Technology Center of Stomatology Fuzhou China
| | - Lishan Lei
- School and Hospital of Stomatology Fujian Medical University Fuzhou China
- Fujian Biological Materials Engineering and Technology Center of Stomatology Fuzhou China
| | - Xiaojing Huang
- School and Hospital of Stomatology Fujian Medical University Fuzhou China
- Key Laboratory of Stomatology Fujian Province University Fuzhou China
- Fujian Biological Materials Engineering and Technology Center of Stomatology Fuzhou China
| |
Collapse
|
8
|
de Oliveira AB, Ferrisse TM, Marques RS, de Annunzio SR, Brighenti FL, Fontana CR. Effect of Photodynamic Therapy on Microorganisms Responsible for Dental Caries: A Systematic Review and Meta-Analysis. Int J Mol Sci 2019; 20:ijms20143585. [PMID: 31340425 PMCID: PMC6678311 DOI: 10.3390/ijms20143585] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to perform a systematic review of the literature followed by a meta-analysis about the efficacy of photodynamic therapy (PDT) on the microorganisms responsible for dental caries. The research question and the keywords were constructed according to the PICO strategy. The article search was done in Embase, Lilacs, Scielo, Medline, Scopus, Cochrane Library, Web of Science, Science Direct, and Pubmed databases. Randomized clinical trials and in vitro studies were selected in the review. The study was conducted according the PRISMA guideline for systematic review. A total of 34 articles were included in the qualitative analysis and four articles were divided into two subgroups to perform the meta-analysis. Few studies have achieved an effective microbial reduction in microorganisms associated with the pathogenesis of dental caries. The results highlight that there is no consensus about the study protocols for PDT against cariogenic microorganisms, although the results showed the PDT could be a good alternative for the treatment of dental caries.
Collapse
Affiliation(s)
- Analú Barros de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo 14801-903, Brazil
| | - Túlio Morandin Ferrisse
- São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo 14801-903, Brazil
| | - Raquel Souza Marques
- São Paulo State University (UNESP), School of Dentistry, Araraquara, São Paulo 14801-903, Brazil
| | - Sarah Raquel de Annunzio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo 14800-903, Brazil
| | | | - Carla Raquel Fontana
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo 14800-903, Brazil.
| |
Collapse
|
9
|
Rad MR, Pourhajibagher M, Rokn AR, Barikani HR, Bahador A. Effect of Antimicrobial Photodynamic Therapy Using Indocyanine Green Doped with Chitosan Nanoparticles on Biofilm Formation-Related Gene Expression of Aggregatibacter actinomycetemcomitans. Front Dent 2019; 16:187-193. [PMID: 31858084 PMCID: PMC6911664 DOI: 10.18502/fid.v16i3.1590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/07/2019] [Indexed: 11/24/2022] Open
Abstract
Objectives Eradication of Aggregatibacter actinomycetemcomitans (A. actionmycetemcomitans), as an opportunistic periodontopathogen, and inhibition of its virulence factor expression require a new adjunctive therapeutic method. In this study, we accessed the expression level of rcpA gene, as a virulence factor associated with A. actinomycetemcomitans biofilm formation, following treatment by antimicrobial photodynamic therapy (aPDT) using indocyanine green (ICG) doped with chitosan nanoparticles (CS-NPs@ICG). Materials and Methods CS-NPs@ICG was synthesized and examined using scanning electron microscopy (SEM). A. actinomycetemcomitans ATCC 33384 strain was treated with CS-NPs@ICG, as a photosensitizer, which was excited with a diode laser at the wavelength of 810 nm with the energy density of 31.2 J/cm2. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine the changes in rcpA gene expression level. Results Synthetized CS-NPs@ICG was confirmed via SEM. The results revealed that CS-NPs@ICG-mediated aPDT could significantly decrease rcpA gene expression to 13.2-fold (P<0.05). There was a remarkable difference between aPDT using CS-NPs@ICG and ICG (P<0.05). The diode laser, ICG, and CS-NPs@ICG were unable to significantly downregulate rcpA gene expression (P>0.05). Conclusion aPDT with CS-NPs@ICG leads to a decrease of the virulence factor of A. actinomycetemcomitans and can be used as an adjunct to routine treatments for successful periodontal therapy in vivo.
Collapse
Affiliation(s)
- Mehdi Rostami Rad
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Rokn
- Dental Implant Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Barikani
- Dental Implant Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Azizi A, Shohrati P, Goudarzi M, Lawaf S, Rahimi A. Comparison of the effect of photodynamic therapy with curcumin and methylene Blue on streptococcus mutans bacterial colonies. Photodiagnosis Photodyn Ther 2019; 27:203-209. [PMID: 31176042 DOI: 10.1016/j.pdpdt.2019.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM Streptococcus mutans (S. mutans) is a bacterium that colonizes in the mouth and is a common cause of dental caries and periodontal diseases. This bacterium comprises 70% of the bacteria in the dental plaque. Although tooth decay is a multifactorial complication, S. mutans biofilms are the main cause of cavitated carious lesions. Considering the importance of this microorganism, we aimed at investigating the effect of photodynamic therapy (PDT) using curcumin (CUR) and methylene blue (MB) photosensitizers on S. mutans. MATERIALS AND METHODS In this in-vitro experimental study, first, samples of S. mutans were prepared in 110 test tubes and were randomly assigned to 11 groups after colony counting: 1) Positive control group, 2) Negative control group, 3) CUR extract group, 4) 460-nm laser group, 5) 460-nm continuous laser + CUR group, 6) 460-nm discontinues 50% duty cycle (DC) laser + CUR group, 7) 660-nm laser group, 8) 660-nm laser + MB group, 9) MB group, 10) dental light-curing group, and 11) chlorhexidine (CHX) group. After the intervention, cultivation was performed again in blood agar medium, and the bacterial colony-forming units per milliliter (CFU/ml) were counted again. Data were analyzed using analysis of variance (ANOVA) and Tukey's test. RESULTS CHX and 460-nm low-level continuous laser + CUR had the highest and most significant effect on inhibiting the growth of S. mutans bacterial colonies and showed significant differences with other groups (P < 0.001). CONCLUSION According to the results, MB- and CUR-mediated PDT can significantly eradicate S. mutans colonies.
Collapse
Affiliation(s)
- Arash Azizi
- Oral medicine department, Faculty of dentistry, Tehran medical sciences, Islamic Azad University, Tehran, Iran.
| | - Parastoo Shohrati
- Oral medicine department, Faculty of dentistry, Tehran medical sciences, Islamic Azad University, Tehran, Iran.
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shirin Lawaf
- Prosthodontics department, Faculty of dentistry, Tehran medical sciences, Islamic Azad University, Tehran. Iran.
| | - Arash Rahimi
- Biophysics department, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| |
Collapse
|
11
|
In vitro comparison of the effect of photodynamic therapy with curcumin and methylene blue on Candida albicans colonies. Photodiagnosis Photodyn Ther 2019; 26:193-198. [DOI: 10.1016/j.pdpdt.2019.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022]
|