Rodrigues ABF, Passos JCDS, Costa MS. Effect of Antimicrobial Photodynamic Therapy, using Toluidine blue on dual-species biofilms of Candida albicans and Candida krusei.
Photodiagnosis Photodyn Ther 2023;
42:103600. [PMID:
37150491 DOI:
10.1016/j.pdpdt.2023.103600]
[Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND
Although Candida albicans is the most frequent etiological agent of candidiasis, it has been reported a sizable number of infections related to the non-albicans Candida (NAC) species, Candida krusei. In addition, dual biofilms (biofilms composed by two species) may easily occur in vivo, becoming even more challenging the treatment of an infection. The fungicide effect of Photodynamic Therapy (PDT), using toluidine blue O (TBO) on both C. albicans and C. krusei development has been demonstrated. Thus, the objective of this study was to investigate the effects of PDT on dual-species biofilms of Candida albicans and Candida krusei.
METHODS
The effect of PDT was observed on the metabolic activity of mature dual-species biofilms of Candida albicans and Candida krusei by a metabolic assay based on the reduction of XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide sodium salt) assay and the identification of Candida albicans and Candida krusei was performed on CHROMagar Candida medium.
RESULTS
it was observed a reduction of ∼30% in the metabolic activity of a mature biofilm treated with PDT, using 0.05mg·mL-1 TBO and during biofilm formation a predominance of C. albicans on C. krusei was observed. The inhibition observed was related to reduction in the number of Colony Forming Units (CFU) of Candida albicans from 31.33 ± 3.7 to 17.0 ± 1.5. The number of CFU of C. krusei was not significantly modified.
CONCLUSIONS
These results demonstrated the efficiency of PDT in inhibiting the dual-species biofilms of Candida albicans and Candida krusei by reducing C. albicans development.
Collapse