1
|
Zhao Y, Dong J, Liao Y, Wang H, Zhou D, Kang J, Chen X. Identification and validation of four photodynamic therapy related genes inhibiting MAPK and inducing cell cycle alteration in squamous cell carcinoma. Front Oncol 2022; 12:946493. [PMID: 35992777 PMCID: PMC9386316 DOI: 10.3389/fonc.2022.946493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer, and photodynamic therapy (PDT) is a promising modality against cSCC. This study investigated the impact of PDT on the MAPK pathway and cell cycle alternation of cSCC as well as the related molecular mechanisms. Method Expressing mRNA profile data sets GSE98767, GSE45216, and GSE84758 were acquired from the GEO database. The functions of differently expressed genes (DEGs) were enriched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Least absolute shrinkage and selection operator (Lasso) analysis were used to establish a diagnosis model based on GSE98767. A correlation analysis and a protein–protein interaction (PPI) network were used to evaluate the relationship between cSCC-PDT-related genes and the MAPK pathway. Single-sample gene set enrichment analysis (ssGSEA) was performed on GSE98767 to estimate MAPK activation and cell cycle activity. Finally, the effect of MAPK activation on the cell cycle was explored in vitro. Result Four cSCC-PDT-related genes, DUSP6, EFNB2, DNAJB1, and CCNL1, were identified as diagnostic markers of cSCC, which were upregulated in cSCC or LC50 PDT-protocol treatment and negatively correlated with the MAPK promoter. Despite having a smaller MAPK activation score, cSCC showed higher cell cycle activity. The PDT treatment suppressed the G1 to G2/M phase in JNK overexpressed A431 cells. Conclusion CCNL1, DNAJB1, DUSP6, and EFNB2 were identified as potential PDT target genes in cSCC treatment, whose potential therapeutic mechanism was inhibiting the MAPK pathway and inducing cell cycle alternation.
Collapse
Affiliation(s)
- Yingchao Zhao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jianxiang Dong
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuxuan Liao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongyi Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dawei Zhou
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jian Kang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jian Kang, ; Xiang Chen,
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jian Kang, ; Xiang Chen,
| |
Collapse
|
2
|
Gong W, Luo C, Peng F, Xiao J, Zeng Y, Yin B, Chen X, Li S, He X, Liu Y, Cao H, Xu J, Long H. Brahma-related gene-1 promotes tubular senescence and renal fibrosis through Wnt/β-catenin/autophagy axis. Clin Sci (Lond) 2021; 135:1873-1895. [PMID: 34318888 PMCID: PMC8358963 DOI: 10.1042/cs20210447] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/09/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Although accelerated cellular senescence is closely related to the progression of chronic kidney disease (CKD) and renal fibrosis, the underlying mechanisms remain largely unknown. Here, we reported that tubular aberrant expression of Brahma-related gene 1 (BRG1), an enzymatic subunit of the SWItch/Sucrose Non-Fermentable complex, is critically involved in tubular senescence and renal fibrosis. BRG1 was significantly up-regulated in the kidneys, predominantly in tubular epithelial cells, of both CKD patients and unilateral ureteral obstruction (UUO) mice. In vivo, shRNA-mediated knockdown of BRG1 significantly ameliorated renal fibrosis, improved tubular senescence, and inhibited UUO-induced activation of Wnt/β-catenin pathway. In mouse renal tubular epithelial cells (mTECs) and primary renal tubular cells, inhibition of BRG1 diminished transforming growth factor-β1 (TGF-β1)-induced cellular senescence and fibrotic responses. Correspondingly, ectopic expression of BRG1 in mTECs or normal kidneys increased p16INK4a, p19ARF, and p21 expression and senescence-associated β-galactosidase (SA-β-gal) activity, indicating accelerated tubular senescence. Additionally, BRG1-mediated pro-fibrotic responses were largely abolished by small interfering RNA (siRNA)-mediated p16INK4a silencing in vitro or continuous senolytic treatment with ABT-263 in vivo. Moreover, BRG1 activated the Wnt/β-catenin pathway, which further inhibited autophagy. Pharmacologic inhibition of the Wnt/β-catenin pathway (ICG-001) or rapamycin (RAPA)-mediated activation of autophagy effectively blocked BRG1-induced tubular senescence and fibrotic responses, while bafilomycin A1 (Baf A1)-mediated inhibition of autophagy abolished the effects of ICG-001. Further, BRG1 altered the secretome of senescent tubular cells, which promoted proliferation and activation of fibroblasts. Taken together, our results indicate that BRG1 induces tubular senescence by inhibiting autophagy via the Wnt/β-catenin pathway, which ultimately contributes to the development of renal fibrosis.
Collapse
Affiliation(s)
- Wangqiu Gong
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Congwei Luo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fenfen Peng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jing Xiao
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiqun Zeng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Bohui Yin
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaowen Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shuting Li
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaoyang He
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanxia Liu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Huihui Cao
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haibo Long
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
3
|
Chen J, Zhou D, Kang J, Liu C, Huang R, Jiang Z, Liao Y, Liu A, Gao L, Song X, Zhao S, Chen Y, Wang H, Lan Z, Wang W, Guan H, Chen X, Huang J. ER stress modulates apoptosis in A431 cell subjected to EtNBSe-PDT via the PERK pathway. Photodiagnosis Photodyn Ther 2021; 34:102305. [PMID: 33901688 DOI: 10.1016/j.pdpdt.2021.102305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/18/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023]
Abstract
Photodynamic therapy (PDT) is a promising modality against various cancers including squamous cell carcinoma (SCC) with which the induction of apoptosis is an effective mechanism. Here, we initially describe the preclinical activity of 5-ethylamino-9-diethylaminobenzo [a] phenoselenazinium(EtNBSe)-mediated PDT treatment in SCC. Results of our studies suggest that EtNBSe-PDT provokes a cellular state of endoplasmic reticulum (ER) stress triggering the PERK/ eIF2α signaling pathway and induces the appearance of apoptosis in A431 cells at the meantime. With ER stress inhibitor 4-PBA or eIF2α inhibitor ISRIB, suppressing the EtNBSe-PDT induced ER stress substantially promotes apoptosis of A431 cells. Furthermore, we demonstrate that ATF4, whose expression is ER-stress-inducible and elevated in response to the PERK/eIF2α signaling pathway activation, contributes to cytoprotection against EtNBSe-PDT induced apoptosis. In a mouse model bearing A431 cells, EtNBSe shows intense phototoxicity and when associated with decreased ER stress, EtNBSe-PDT ameliorates tumor growth. Taken together, our study reveals an antagonistic activity of ER stress against EtNBSe-PDT treatment via inhibiting apoptosis in A431 cells. With further development, these results provide a proof-of-concept that downregulation of ER stress response has a therapeutic potential to improve EtNBSe-PDT sensitivity in SCC patients via the promotion of induced apoptosis.
Collapse
Affiliation(s)
- Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Dawei Zhou
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jian Kang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Chenxi Liu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Roujie Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhengqian Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuxuan Liao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - An Liu
- Department of Otorhinolaryngology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lihua Gao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan Province, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yihui Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hongyi Wang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zehao Lan
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Weidong Wang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Haoyu Guan
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
4
|
Wu RWK, Chu ESM, Yuen JWM, Huang Z. Comparative study of FosPeg® photodynamic effect on nasopharyngeal carcinoma cells in 2D and 3D models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111987. [PMID: 32801063 DOI: 10.1016/j.jphotobiol.2020.111987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022]
Abstract
Photodynamic Therapy (PDT) offers an alternative option for the treatment of nasopharyngeal carcinoma (NPC). The utilization of 3-dimensional (3D) culture model might provide better understanding of PDT effects on NPC cells. The aim of this in vitro study was to compare PDT effect on NPC cells using 2D and 3D models. Two 3D culture models were established using liquid overlay method with agarose base (MCL) and hanging drop method (MCS). PDT was carried out using the combination of FosPeg® and 652 nm laser in 3D and conventional 2D models. The effects of 3D culture size and morphology on the uptake and distribution of sensitizer and gene expression were examined. Photocytotoxity, mode of cell death, and protein expression were compared for 2D and 3D models. Regular and irregular NPC spheroids were obtained from MCL and MCS methods, respectively. A significantly down-regulation of LMP1 mRNA were observed in MCL spheroid. The sensitizer uptake in 3D spheroids was half of 2D culture. More sensitizers were required to obtain IC50 in 3D spheroids. Apoptosis, necrosis and autophagosomes were detected in PDT treated 2D and 3D cells. Different protein expression patterns were observed in 2D and 3D models. FosPeg® PDT is effective in killing NPC cells. MCL-derived 3D spheroid model is more suitable for the evaluation of PDT killing mechanisms.
Collapse
Affiliation(s)
- Ricky Wing Kei Wu
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China.
| | | | - John Wai Man Yuen
- School of Nursing, Hong Kong Polytechnic University, Hong Kong, China
| | - Zheng Huang
- Biomedical Photonics Center, MOE Key Laboratory of Photonics Science and Technology for Medicine, School of OptoElectronic and Information Engineering, Fujian Normal University, Fuzhou, Hong Kong, China
| |
Collapse
|
5
|
Zhang ZJ, Wang KP, Mo JG, Xiong L, Wen Y. Photodynamic therapy regulates fate of cancer stem cells through reactive oxygen species. World J Stem Cells 2020; 12:562-584. [PMID: 32843914 PMCID: PMC7415247 DOI: 10.4252/wjsc.v12.i7.562] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is an effective and promising cancer treatment. PDT directly generates reactive oxygen species (ROS) through photochemical reactions. This oxygen-dependent exogenous ROS has anti-cancer stem cell (CSC) effect. In addition, PDT may also increase ROS production by altering metabolism, endoplasmic reticulum stress, or potential of mitochondrial membrane. It is known that the half-life of ROS in PDT is short, with high reactivity and limited diffusion distance. Therefore, the main targeting position of PDT is often the subcellular localization of photosensitizers, which is helpful for us to explain how PDT affects CSC characteristics, including differentiation, self-renewal, apoptosis, autophagy, and immunogenicity. Broadly speaking, excess ROS will damage the redox system and cause oxidative damage to molecules such as DNA, change mitochondrial permeability, activate unfolded protein response, autophagy, and CSC resting state. Therefore, understanding the molecular mechanism by which ROS affect CSCs is beneficial to improve the efficiency of PDT and prevent tumor recurrence and metastasis. In this article, we review the effects of two types of photochemical reactions on PDT, the metabolic processes, and the biological effects of ROS in different subcellular locations on CSCs.
Collapse
Affiliation(s)
- Zi-Jian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Kun-Peng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Jing-Gang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
6
|
de Morais FAP, Gonçalves RS, Vilsinski BH, Lazarin-Bidóia D, Balbinot RB, Tsubone TM, Brunaldi K, Nakamura CV, Hioka N, Caetano W. Hypericin photodynamic activity in DPPC liposomes - part II: stability and application in melanoma B16-F10 cancer cells. Photochem Photobiol Sci 2020; 19:620-630. [PMID: 32248218 DOI: 10.1039/c9pp00284g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypericin (Hyp) is considered a promising photosensitizer for Photodynamic Therapy (PDT), due to its high hydrophobicity, affinity for cell membranes, low toxicity and high photooxidation activity. In this study, Hyp photophysical properties and photodynamic activity against melanoma B16-F10 cells were optimized using DPPC liposomes (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) as a drug delivery system. This nanoparticle is used as a cell membrane biomimetic model and solubilizes hydrophobic drugs. Hyp oxygen singlet lifetime (τ) in DPPC was approximately two-fold larger than that in P-123 micelles (Pluronic™ surfactants), reflecting a more hydrophobic environment provided by the DPPC liposome. On the other hand, singlet oxygen quantum yield values (ΦΔ1O2) in DPPC and P-123 were similar; Hyp molecules were preserved as monomers. The Hyp/DPPC liposome aqueous dispersion was stable during fluorescence emission and the liposome diameter remained stable for at least five days at 30 °C. However, the liposomes collapsed after the lyophilization/rehydration process, which was resolved by adding the lyoprotectant Trehalose to the liposome dispersion before lyophilization. Cell viability of the Hyp/DPPC formulation was assessed against healthy HaCat cells and high-metastatic melanoma B16-F10 cells. Hyp incorporated into the DPPC carrier presented a higher selectivity index than the Hyp sample previously solubilized in ethanol under the illumination effect. Moreover, the IC50 was lower for Hyp in DPPC than for Hyp pre-solubilized in ethanol. These results indicate the potential of the formulation of Hyp/DPPC for future biomedical applications in PDT treatment.
Collapse
Affiliation(s)
| | | | | | - Danielle Lazarin-Bidóia
- Universidade Estadual de Maringá, Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, Department of Health Sciences, 87020-900, Maringá, Paraná, Brazil
| | - Rodolfo Bento Balbinot
- Universidade Estadual de Maringá, Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, Department of Health Sciences, 87020-900, Maringá, Paraná, Brazil
| | - Tayana Mazin Tsubone
- Universidade Federal de Uberlandia, Institute of Chemistry, 38400-902, Minas, Gerais, Brazil
| | - Kellen Brunaldi
- Physiological Sciences Department, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Celso Vatatu Nakamura
- Universidade Estadual de Maringá, Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, Department of Health Sciences, 87020-900, Maringá, Paraná, Brazil
| | - Noboru Hioka
- Chemistry Department, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Wilker Caetano
- Chemistry Department, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brazil
| |
Collapse
|