1
|
Maruyama T, Ekuni D, Yokoi A, Nagasaki J, Sawada N, Morita M. Effect of Antimicrobial Photodynamic Therapy on the Tongue Dorsum on Reducing Halitosis and the Duration of the Effect: A Randomized Clinical Trial. Healthcare (Basel) 2024; 12:980. [PMID: 38786391 PMCID: PMC11121130 DOI: 10.3390/healthcare12100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Antimicrobial photodynamic therapy (PDT) is a treatment that is gaining popularity in modern clinical medicine. However, little is known about the effect of PDT alone on reducing oral halitosis and the duration of the effect. This trial examined the effect of PDT on the tongue dorsum on reducing oral halitosis and the duration of the effect. This study was approved by the Ethics Committee of Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, and Okayama University Hospital (CRB20-015), and it was registered in the Japan Registry of Clinical Trials (jRCTs061200060). Twenty-two participants were randomly assigned to two groups: an intervention group and control group. PDT was performed in the intervention group using red laser emission and methylene blue gel on the middle and posterior area of the tongue dorsum. The concentration of volatile sulfur compounds, bacterial count on the tongue dorsum, probing pocket depth, bleeding on probing, and simplified oral debris index score were determined before and 1 week after PDT. The Mann-Whitney U test was used to assess the significance of the differences in each parameter between the two groups. We found that the hydrogen sulfide concentration and bacterial count on the tongue dorsum were decreased in the intervention group, but there was no statistically significant difference between the two groups. These results indicated that performing only PDT on the tongue dorsum may not contribute to reducing halitosis.
Collapse
Affiliation(s)
- Takayuki Maruyama
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (D.E.); (A.Y.)
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama 700-8558, Japan
| | - Daisuke Ekuni
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (D.E.); (A.Y.)
| | - Aya Yokoi
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (D.E.); (A.Y.)
| | | | - Nanami Sawada
- Department of Preventive Dentistry, Okayama University Hospital, Okayama 700-8558, Japan;
| | - Manabu Morita
- Department of Oral Health Sciences, Takarazuka University of Medical and Health Care, Takarazuka 666-0162, Japan;
| |
Collapse
|
2
|
Shafaee H, Asgari R, Bardideh E, Rangrazi A, Sedigh S, Kerayechian N. The effects of low-level laser therapy and photodynamic therapy on oral health of fixed orthodontics patients. A systematic review and meta-analysis. Photodiagnosis Photodyn Ther 2023; 44:103759. [PMID: 37604216 DOI: 10.1016/j.pdpdt.2023.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/23/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Objective To investigate the effect of low-level laser and photodynamic therapy on the oral health, and periodontal tissue of fixed orthodontic patients and the effect of using photobiomodulation methods compared to routine plaque removal methods and the amount of plaque in fixed orthodontic patients. Method and materials First, the title and summary of related articles were collected by using the search strategy electronic databases PUBMED, EMBASE, Cochrane's CENTRAL, Scopus, ISI and all the articles that were published from the beginning to February 2023 were evaluated. The title, abstracts and full texts of all the relevant studies were reviewed respectively, and those meeting the criteria were entered into our study. Finally, the quality of the studies was examined and the results of the studies were pooled by means of random effects inverse variance meta-analysis. Results Eighteen randomized studies, conducted between 2015 and December 2022, were selected for meta-analysis. Five studies were conducted as split-mouth, twelve as parallel-group, and one as a cross-over design. Among the studies, five examined the effects of low-level laser therapy and twelve assessed the effects of photodynamic therapy. The meta-analysis revealed that photodynamic therapy significantly reduced probing depth compared to scaling (MD=-0.2 mm, P<0.001), though the difference does not seem to be clinically significant. But no significant differences between photodynamic therapy and scaling or low-level laser therapy and control groups in terms of plaque index, or bleeding on probing, gingival crevicular fluid volume, gingival recession, clinical attachment loss, bacterial load and concentrations of inflammatory substances across multiple follow-up periods. Conclusion Moderate evidence indicates that photodynamic therapy (PDT) is comparable to conventional methods in improving oral health, as measured by periodontal indices, inflammatory proteins, bacterial colonies, and white spot lesions, making it a suitable alternative. Limited evidence suggests low-level laser therapy (LLLT) may improve oral health, particularly addressing caries, but further research is needed.
Collapse
Affiliation(s)
- Hooman Shafaee
- Dental Materials Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Erfan Bardideh
- Department of Orthodontics, Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Vakilabad blvd, Mashhad, Iran.
| | - Abdolrasoul Rangrazi
- Department of Orthodontics, Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Vakilabad blvd, Mashhad, Iran
| | - Sadaf Sedigh
- Student of Dentistry, University of Pittsburgh School of Dental Medicine, PA, USA
| | - Navid Kerayechian
- Department of Biomaterials and Biomimetics, New York University, New York, NY, USA
| |
Collapse
|
3
|
Khounganian RM, Alasmari ON, Aldosari MM, Alghanemi NM. Causes and Management of Halitosis: A Narrative Review. Cureus 2023; 15:e43742. [PMID: 37727189 PMCID: PMC10506127 DOI: 10.7759/cureus.43742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Halitosis is defined as the presence of an unpleasant odor in exhaled air, regardless of its cause. In most patients with halitosis, the condition causes embarrassment and interferes with social interactions and daily life. Furthermore, bad breath can be a sign of an underlying disease. Understanding the factors and causes that lead to halitosis and its manifestations could facilitate proper management of this condition. To properly diagnose and treat patients, healthcare professionals, including primary care physicians and dental professionals, must be familiar with the etiology and appropriate management of the disease. Consequently, this review aims to provide practitioners with up-to-date information on the etiological factors of halitosis to facilitate the establishment of preventive measures and provide accurate diagnosis and management.
Collapse
Affiliation(s)
| | - Osama N Alasmari
- Dentistry, College of Dentistry, King Saud University, Riyadh, SAU
| | | | | |
Collapse
|
4
|
Wang N, Hao S, Zhang J, Yang J. Clinical efficacy of photodynamic therapy on halitosis: a systematic review and meta-analysis. Lasers Med Sci 2022; 38:29. [PMID: 36585474 DOI: 10.1007/s10103-022-03700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
Halitosis is a widespread health problem with complex factors, and therapeutic effects sometimes are unsatisfactory. Plenty of clinical trials have tried to prove the effectiveness of photodynamic therapy (PDT), but the results are indeterminate. This study aimed to evaluate the clinical efficacy of PDT on halitosis. We searched PubMed, Cochrane Library, Embase, Web of Science, and Scopus from inception to August 10, 2022, and only studies about the PDT on halitosis were included. The criteria for meta-analysis comprised randomized controlled trials (RCTs) comparing the treatment of PDT with tongue scraper (TS) immediately after the halitosis therapy and during a 7-, 14-, 30-, and 90-day follow-up. Eight eligible studies involving 345 patients were included in this study. It was shown that PDT (MD = - 34.49, 95% CI [- 66.34, - 2.64], P = 0.03) or PDT + TS (MD = - 67.72, 95% CI [- 101.17, - 34.28], P < 0.001) had better efficacy than TS on the H2S concentration reduction immediately after the halitosis therapy. No significant differences were observed in reducing the H2S among TS, PDT alone, and PDT + TS at the follow-up. Besides, no difference between PDT and TS was found in the reduction of CH3SCH3 and CH3SH. Based on the current evidence, PDT and PDT + TS demonstrate efficacy in the treatment of halitosis in the short term, and PDT was shown to be a beneficial and promising therapeutic method.
Collapse
Affiliation(s)
- Nini Wang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Hao
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jinmei Zhang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Jingmei Yang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|
5
|
Novel use of chloro-aluminum phthalocyanine assisted photodynamic therapy helps in periimplant healing among smoking patients. Photodiagnosis Photodyn Ther 2022; 41:103193. [PMID: 36343897 DOI: 10.1016/j.pdpdt.2022.103193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
AIMS To evaluate the clinical and biochemical peri‑implant parameters using chloro‑aluminum phthalocyanine-(CAP) mediated antimicrobial photodynamic therapy (PDT) as an adjunct to non-surgical mechanical debridement (NSD) in cigarette smokers (CS) and never-smokers (NS) with peri‑implantitis. MATERIALS AND METHODS Thirty-two patients with peri‑implantitis [Group CS - 16 and Group NS - 16] were recruited for the trial. The study participants underwent two therapies: PDT + NSD and NSD alone. The clinical peri‑implant parameters assessed in this clinical trial were bleeding on probing (BP), crestal bone loss (CBL) peri‑implant pocket depth (PD), and peri‑implant plaque scores (PS), respectively. Peri-implant crevicular fluid was sampled and the quantification of interleukin (IL)-1β and tumor necrosis factor-alpha (TNF-α) was performed using enzyme linked immunosorbent assay (ELISA). RESULTS BP was significantly reduced at 6 months after PDT+NSD in CS groups. Mean PD significantly reduced after both PDT+NSD and NSD subgroups within both NS and CS groups. Only at 6 months did PDT+NSD showed statistically significantly reduced IL-1β levels in the NS group. TNF-α levels significantly reduced in CS group with PDT+NSD and NSD alone at both 3 months and 6 months follow up. CONCLUSION CAP-assisted PDT helped to improve the clinical and cytokine levels after non-surgical peri‑implant mechanical debridement in treating peri‑implantitis patients in smokers.
Collapse
|
6
|
Patil P, Patil L, Triveni MG, Usha GV, Shah R, Kumar AT. Efficacy of antimicrobial photodynamic therapy on the tongue surface in the management of halitosis – A real-time polymerase chain reaction analysis. Photodiagnosis Photodyn Ther 2022; 39:102989. [DOI: 10.1016/j.pdpdt.2022.102989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
|
7
|
Randomized and Controlled Clinical Studies on Antibacterial Photodynamic Therapy: An Overview. PHOTONICS 2022. [DOI: 10.3390/photonics9050340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The emergence of drug-resistant bacteria is considered a critical public health problem. The need to establish alternative approaches to countering resistant microorganisms is unquestionable in overcoming this problem. Among emerging alternatives, antimicrobial photodynamic therapy (aPDT) has become promising to control infectious diseases. aPDT is based on the activation of a photosensitizer (PS) by a particular wavelength of light followed by generation of the reactive oxygen. These interactions result in the production of reactive oxygen species, which are lethal to bacteria. Several types of research have shown that aPDT has been successfully studied in in vitro, in vivo, and randomized clinical trials (RCT). Considering the lack of reviews of RCTs studies with aPDT applied in bacteria in the literature, we performed a systematic review of aPDT randomized clinical trials for the treatment of bacteria-related diseases. According to the literature published from 2008 to 2022, the RCT study of aPDT was mostly performed for periodontal disease, followed by halitosis, dental infection, peri-implantitis, oral decontamination, and skin ulcers. A variety of PSs, light sources, and protocols were efficiently used, and the treatment did not cause any side effects for the individuals.
Collapse
|
8
|
Mazur A, Koziorowska K, Dynarowicz K, Aebisher D, Bartusik-Aebisher D. Photodynamic Therapy for Treatment of Disease in Children—A Review of the Literature. CHILDREN 2022; 9:children9050695. [PMID: 35626872 PMCID: PMC9140108 DOI: 10.3390/children9050695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
Photodynamic therapy is a mode of treatment whereby local irradiation of an administered photosensitizer with light of a specific wavelength generates cytotoxic reactive oxygen species. Despite the upward trend in the popularity of this method in adults, it is not yet commonly used in the treatment of children. Due to certain limitations, underdeveloped treatment regimens and potential side effects, the use of photodynamic therapy in the pediatric population is still in the initial phases of evaluation in clinical trials. Method: This study is a review of articles in English from the databases PubMed and Web of Science retrieved by applying the search term “photodynamic therapy in children” from 2000–2020. Results: Based on the literature review, we analyze selected pediatric clinical cases in which photodynamic therapy was used for treatment in children. Examples of photodynamic therapy for treatment of dermatological diseases, diseases of the mucosa of the upper respiratory tract, halitosis, eye diseases and brain tumors are described. The paper describes the effectiveness of anti-cancer photodynamic therapy, including its use in antibacterial therapy. Conclusions: The results of the analysis suggest the potential of photodynamic therapy for the treatment of various diseases in children.
Collapse
Affiliation(s)
- Anna Mazur
- Students Biochemistry Science Club URCell, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Katarzyna Koziorowska
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Klaudia Dynarowicz
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
- Correspondence:
| |
Collapse
|
9
|
Motta PDB, Motta LJ, Campos TM, Gonçalves MLL, Santos EM, Martimbianco ALC, de Andrade DJC, Mesquita-Ferrari RA, Fernandes KPS, Horliana ACRT, Bussadori SK. Effect of Photodynamic Therapy on Halitosis: A Systematic Review of Randomized Controlled Trials. SENSORS (BASEL, SWITZERLAND) 2022; 22:469. [PMID: 35062433 PMCID: PMC8780921 DOI: 10.3390/s22020469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND This systematic review aimed to assess the effectiveness and safety of aPDT for the treatment of halitosis. METHODS Search strategies were conducted in October 2021 without language or data restrictions, on the following databases: MEDLINE, EMBASE, CENTRAL, LILACS and BBO, as well as a manual search. Randomized clinical trials (RCTs) with parallel design were considered for inclusion, assessing individuals (adolescents and adults) with a clinical diagnosis of halitosis treated with photodynamic therapy (aPDT). Primary outcomes assessed were halitosis measurements, adverse events and quality of life. The risk of bias for each included study was evaluated with the Cochrane Risk of Bias tool and the certainty of the body of the evidence was assessed with the GRADe approach. RESULTS Six RCTs (total of 225 participants) were included and due to clinical diversities it was not possible to group the outcome data in meta-analyses. Based on very low-certainty evidence (GRADE) the results showed that, when compared to tongue scraper, aPDT seems to promote a little to no difference in reducing halitosis and in the microbiological analysis. No adverse events were reported. Considering aPDT combined with tongue scraper, better outcome results were observed when compared to tongue scraper alone. CONCLUSIONS Based on very low-certainty evidence, the findings of this review are uncertain about the effects of aPDT for halitosis control. Further RCTs with higher number of participants and long term assessments need to be conducted to support the use of this intervention. The protocol was registered in the PROSPERO database (number: CRD42020215319) on 19 November 2020-retrospectively registered.
Collapse
Affiliation(s)
- Pamella de Barros Motta
- Postgraduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Sao Paulo 01504-001, SP, Brazil; (P.d.B.M.); (L.J.M.); (T.M.C.); (M.L.L.G.); (R.A.M.-F.); (K.P.S.F.); (A.C.R.T.H.)
| | - Lara Jansiski Motta
- Postgraduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Sao Paulo 01504-001, SP, Brazil; (P.d.B.M.); (L.J.M.); (T.M.C.); (M.L.L.G.); (R.A.M.-F.); (K.P.S.F.); (A.C.R.T.H.)
| | - Thalita Molinos Campos
- Postgraduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Sao Paulo 01504-001, SP, Brazil; (P.d.B.M.); (L.J.M.); (T.M.C.); (M.L.L.G.); (R.A.M.-F.); (K.P.S.F.); (A.C.R.T.H.)
| | - Marcela Leticia Leal Gonçalves
- Postgraduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Sao Paulo 01504-001, SP, Brazil; (P.d.B.M.); (L.J.M.); (T.M.C.); (M.L.L.G.); (R.A.M.-F.); (K.P.S.F.); (A.C.R.T.H.)
- Postgraduation Program in Health and Environment, Universidade Metropolitana de Santos (UNIMES), Santos 11045-002, SP, Brazil; (E.M.S.); (A.L.C.M.)
| | - Elaine Marcílio Santos
- Postgraduation Program in Health and Environment, Universidade Metropolitana de Santos (UNIMES), Santos 11045-002, SP, Brazil; (E.M.S.); (A.L.C.M.)
| | - Ana Luiza Cabrera Martimbianco
- Postgraduation Program in Health and Environment, Universidade Metropolitana de Santos (UNIMES), Santos 11045-002, SP, Brazil; (E.M.S.); (A.L.C.M.)
| | | | - Raquel Agnelli Mesquita-Ferrari
- Postgraduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Sao Paulo 01504-001, SP, Brazil; (P.d.B.M.); (L.J.M.); (T.M.C.); (M.L.L.G.); (R.A.M.-F.); (K.P.S.F.); (A.C.R.T.H.)
| | - Kristianne Porta Santos Fernandes
- Postgraduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Sao Paulo 01504-001, SP, Brazil; (P.d.B.M.); (L.J.M.); (T.M.C.); (M.L.L.G.); (R.A.M.-F.); (K.P.S.F.); (A.C.R.T.H.)
| | - Anna Carolina Ratto Tempestini Horliana
- Postgraduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Sao Paulo 01504-001, SP, Brazil; (P.d.B.M.); (L.J.M.); (T.M.C.); (M.L.L.G.); (R.A.M.-F.); (K.P.S.F.); (A.C.R.T.H.)
| | - Sandra Kalil Bussadori
- Postgraduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Sao Paulo 01504-001, SP, Brazil; (P.d.B.M.); (L.J.M.); (T.M.C.); (M.L.L.G.); (R.A.M.-F.); (K.P.S.F.); (A.C.R.T.H.)
| |
Collapse
|
10
|
Olek M, Machorowska-Pieniążek A, Stós W, Kalukin J, Bartusik-Aebisher D, Aebisher D, Cieślar G, Kawczyk-Krupka A. Photodynamic Therapy in Orthodontics: A Literature Review. Pharmaceutics 2021; 13:pharmaceutics13050720. [PMID: 34068878 PMCID: PMC8156301 DOI: 10.3390/pharmaceutics13050720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023] Open
Abstract
Treatment of malocclusions using fixed orthodontic appliances makes it difficult for patients to perform hygiene procedures. Insufficient removal of bacterial biofilm can cause enamel demineralization, manifesting by visible white spot lesions or periodontal diseases, such as gingivitis periodontitis or gingival hyperplasia. The classic methods of preventing the above problems include, in addition to proper hygiene, ultrasonic scaling, periodontal debridement, and oral rinses based on chlorhexidine. New alternative methods of reducing plaque around brackets are being developed. There is a growing interest among researchers in the possibility of using photodynamic therapy in orthodontics. A literature search for articles corresponding to the topic of this review was performed using the PubMed and Scopus databases and the following keywords: ‘photodynamic therapy’, ‘orthodontics’, and ‘photosensitizer(s)’. Based on the literature review, two main directions of research can be distinguished: clinical research on the use of photodynamic therapy in the prevention of white spot lesions and periodontal diseases, and ex vivo research using a modified orthodontic adhesive by adding photosensitizers to them. Methylene blue is the most frequently used photosensitizer in clinical trials. The effectiveness of antimicrobial photodynamic therapy is mainly compared to the ultrasonic scaler as a single therapy or as an adjunct to the ultrasonic scaler. In their conclusions, the researchers most often emphasize the effectiveness of antimicrobial photodynamic therapy in reducing microbial levels in patients treated with fixed appliances and the possibility of using it as an alternative to routine procedures aimed at maintaining a healthy periodontium. The authors suggest further research on the use of photodynamic therapy to prove the validity of this method in orthodontics. It should also not be forgotten that proper hygiene is the basis for maintaining oral cavity health, and its neglect is a contraindication to orthodontic treatment.
Collapse
Affiliation(s)
- Marcin Olek
- Department of Orthodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (M.O.); (A.M.-P.)
- Department of Orthodontics, Dental Institute, Faculty of Medicine, Jagiellonian University Medical College, 31-155 Cracow, Poland; (W.S.); (J.K.)
| | - Agnieszka Machorowska-Pieniążek
- Department of Orthodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (M.O.); (A.M.-P.)
| | - Wojciech Stós
- Department of Orthodontics, Dental Institute, Faculty of Medicine, Jagiellonian University Medical College, 31-155 Cracow, Poland; (W.S.); (J.K.)
| | - Janusz Kalukin
- Department of Orthodontics, Dental Institute, Faculty of Medicine, Jagiellonian University Medical College, 31-155 Cracow, Poland; (W.S.); (J.K.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Faculty of Medicine, University of Rzeszów, Kopisto 2A, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Faculty of Medicine, University of Rzeszów, Kopisto 2A, 35-310 Rzeszów, Poland;
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
- Correspondence:
| |
Collapse
|
11
|
da Mota ACC, Gonçalves MLL, Horliana ACRT, Deana AM, de Souza Cavalcante LA, Gomes AO, Mayer MPA, Suguimoto ESA, Fernandes KPS, Mesquita-Ferrari RA, Prates RA, Motta LJ, Bussadori SK. Effect of antimicrobial photodynamic therapy with red led and methylene blue on the reduction of halitosis: controlled microbiological clinical trial. Lasers Med Sci 2021; 37:877-886. [PMID: 33987732 DOI: 10.1007/s10103-021-03325-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
To determine the effect of antimicrobial photodynamic therapy (aPDT) using a red light-emitting diode (LED) on the reduction of halitosis and microbiological levels in the tongue coating immediately after irradiation, 7, 14, and 30 days after treatment. Forty-five young adults diagnosed with halitosis were allocated to three groups: G1, aPDT with 0.005% methylene blue and red LED (660 nm, four irradiation points, 90 s per point, power of 400 mW, 36 J per point, radiant exposure of 95 J/cm2, continuous wave); G2, tongue scraping; and G3, tongue scraping and aPDT. Gas chromatography was performed before and immediately after treatment, as well as at the different follow-up times. Microbiological samples were collected at the same times from the dorsum of the tongue, and bacteria were quantified in the samples using real-time PCRq. The Wilcoxon test was used for the intragroup analyses, and the Kruskal-Wallis test was used for the intergroup analyses. In the intragroup analyses, differences were found before and immediately after treatment in all groups (p < 0.05). The effect was maintained after 7 days only in the tongue scraping group (p < 0.05). In the intergroup analysis, no statistically significant differences were found among the groups (p > 0.05). For the microbiological analyses, no statistically significant differences were found in the groups/bacteria that were analyzed (p > 0.05). aPDT using a red LED and 0.005% methylene blue caused an immediate reduction in halitosis, but the effect was not maintained after 7, 14, or 30 days. No reduction occurred in the number of bacteria investigated or the quantification of universal 16S rRNA. ClinicalTrials.gov Identifier: NCT03656419.
Collapse
Affiliation(s)
- Ana Carolina Costa da Mota
- Postgraduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, Vergueiro Street, 235/249, Liberdade, São Paulo, SP, ZIP 01504-001, Brazil
| | - Marcela Leticia Leal Gonçalves
- Postgraduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, Vergueiro Street, 235/249, Liberdade, São Paulo, SP, ZIP 01504-001, Brazil.,Dentistry College, Universidade Metropolitana de Santos, Conselheiro Nébias Avenue, Encruzilhada, Santos, SP, ZIP 11045-002, Brazil.,Postgraduation Program in Health and Environment, Universidade Metropolitana de Santos,, Santos, SP, Brazil
| | - Anna Carolina Ratto Tempestini Horliana
- Postgraduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, Vergueiro Street, 235/249, Liberdade, São Paulo, SP, ZIP 01504-001, Brazil
| | - Alessandro Melo Deana
- Postgraduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, Vergueiro Street, 235/249, Liberdade, São Paulo, SP, ZIP 01504-001, Brazil
| | - Lisyanne Araújo de Souza Cavalcante
- Postgraduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, Vergueiro Street, 235/249, Liberdade, São Paulo, SP, ZIP 01504-001, Brazil
| | - Andréa Oliver Gomes
- Postgraduation Program in Rehabilitation Sciences, Universidade Nove de Julho, Vergueiro Street, 235/249, Liberdade, São Paulo, SP, ZIP 01504-001, Brazil
| | | | | | - Kristianne Porta Santos Fernandes
- Postgraduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, Vergueiro Street, 235/249, Liberdade, São Paulo, SP, ZIP 01504-001, Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Postgraduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, Vergueiro Street, 235/249, Liberdade, São Paulo, SP, ZIP 01504-001, Brazil
| | - Renato Araújo Prates
- Postgraduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, Vergueiro Street, 235/249, Liberdade, São Paulo, SP, ZIP 01504-001, Brazil
| | - Lara Jansiski Motta
- Postgraduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, Vergueiro Street, 235/249, Liberdade, São Paulo, SP, ZIP 01504-001, Brazil
| | - Sandra Kalil Bussadori
- Postgraduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, Vergueiro Street, 235/249, Liberdade, São Paulo, SP, ZIP 01504-001, Brazil. .,Dentistry College, Universidade Metropolitana de Santos, Conselheiro Nébias Avenue, Encruzilhada, Santos, SP, ZIP 11045-002, Brazil. .,Postgraduation Program in Rehabilitation Sciences, Universidade Nove de Julho, Vergueiro Street, 235/249, Liberdade, São Paulo, SP, ZIP 01504-001, Brazil.
| |
Collapse
|