1
|
Kushwaha R, Singh V, Peters S, Yadav AK, Dolui D, Saha S, Sarkar S, Dutta A, Koch B, Sadhukhan T, Banerjee S. Density Functional Theory-Guided Photo-Triggered Anticancer Activity of Curcumin-Based Zinc(II) Complexes. J Phys Chem B 2023; 127:10266-10278. [PMID: 37988143 DOI: 10.1021/acs.jpcb.3c02382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Photodynamic therapy (PDT) has evolved as a new therapeutic modality for cancer treatment with fewer side effects and drug resistance. Curcumin exhibits PDT activity, but its low bioavailability restricts its clinical application. Here, the bioavailability of curcumin was increased by its complex formation with the Zn(II) center. For a structure-activity relationship study, Zn(II)-based complexes (1-3) comprising N^N-based ligands (2,2'-bipyridine in 1 and 2 or 1,10-phenanthroline in 3) and O^O-based ligands (acetylacetone in 1, monoanionic curcumin in 2 and 3) were synthesized and thoroughly characterized. The X-ray structure of the control complex, 1, indicated a square pyramidal shape of the molecules. Photophysical and TD-DFT studies indicated the potential of 2 and 3 as good visible light type-II photosensitizers for PDT. Guided by the TD-DFT studies, the low-energy visible light-triggered singlet oxygen (1O2) generation efficacy of 2 and 3 was explored in solution and in cancer cells. As predicted by the TD-DFT calculations, these complexes produced 1O2 efficiently in the cytosol of MCF-7 cancer cells and ultimately displayed excellent apoptotic anticancer activity in the presence of light. Moreover, the molecular docking investigation showed that complexes 2 and 3 have very good binding affinities with caspase-9 and p-53 proteins and could activate them for cellular apoptosis. Further molecular dynamics simulations confirmed the stability of 3 in the caspase-9 protein binding site.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Virendra Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Silda Peters
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ashish K Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Dependu Dolui
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Sukanta Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Sujit Sarkar
- Prescience Insilico Pvt. Ltd., Bengaluru, Karnataka 560066, India
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Biplob Koch
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Tumpa Sadhukhan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
2
|
Vorobyeva SN, Shekhovtsov NA, Baidina IA, Sukhikh TS, Tkachev SV, Bushuev MB, Belyaev AV. The saga of rhodium(III) nitrate complexes and their speciation in solution: An integrated experimental and quantum chemical study. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|