1
|
Wei D, Hamblin MR, Wang H, Fekrazad R, Wang C, Wen X. Rose Bengal diacetate-mediated antimicrobial photodynamic inactivation: potentiation by potassium iodide and acceleration of wound healing in MRSA-infected diabetic mice. BMC Microbiol 2024; 24:246. [PMID: 38970013 PMCID: PMC11225387 DOI: 10.1186/s12866-024-03401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
Previous studies have shown that antimicrobial photodynamic inactivation (aPDI) can be strongly potentiated by the addition of the non-toxic inorganic salt, potassium iodide (KI). This approach was shown to apply to many different photosensitizers, including the xanthene dye Rose Bengal (RB) excited by green light (540 nm). Rose Bengal diacetate (RBDA) is a lipophilic RB derivative that is easily taken up by cells and hydrolyzed to produce an active photosensitizer. Because KI is not taken up by microbial cells, it was of interest to see if aPDI mediated by RBDA could also be potentiated by KI. The addition of 100 mM KI strongly potentiated the killing of Gram-positive methicillin-resistant Staphylocccus aureus, Gram-negative Eschericia coli, and fungal yeast Candida albicans when treated with RBDA (up to 15 µM) for 2 hours followed by green light (540 nm, 10 J/cm2). Both RBDA aPDI regimens (400 µM RBDA with or without 400 mM KI followed by 20 J/cm2 green light) accelerated the healing of MRSA-infected excisional wounds in diabetic mice, without damaging the host tissue.
Collapse
Affiliation(s)
- Danfeng Wei
- Department of Dermatology, West China Hospital, Sichuan University, No.37 Guo Xue Alley, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Hao Wang
- Department of Dermatology, West China Hospital, Sichuan University, No.37 Guo Xue Alley, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, No.37 Guo Xue Alley, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Giannakopoulos E, Katopodi A, Rallis M, Politopoulos K, Alexandratou E. The effect of low-dose photodynamic therapy using the photosensitizer chloroaluminum phthalocyanine on a scratch wound model in skin fibroblasts. JOURNAL OF BIOPHOTONICS 2024:e202400033. [PMID: 38962832 DOI: 10.1002/jbio.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Different approaches on wound healing have been developed over the years but they suffer from high costs and adverse effects for the patients. The current paper was designed to study low dose PDT, a novel healing approach, in an in vitro fibroblasts wound healing model. Chloroaluminum phthalocyanine (AlClPc) was used as photosensitizer and was activated by a red diode laser at 661 nm. After PDT optimization, wound closure rate and reactive oxygen species were quantified by image processing and analysis. Our results revealed that wound healing rates were significantly higher in PDT treated groups than in the control. Additionally, the study revealed that a prolonged ROS increase did not promote wound closure, while a small increase acted as a trigger, resulting in faster wound closure. Concluding, low dose PDT using AlClPc enhances wound healing in vitro in a ROS dependent manner, allowing the assumption of similar positive effects in vivo.
Collapse
Affiliation(s)
- Efstathios Giannakopoulos
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
- Division of Pharmaceutical Technology, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Annita Katopodi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Michail Rallis
- Division of Pharmaceutical Technology, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Politopoulos
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Eleni Alexandratou
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
3
|
Cela EM, Urquiza D, Gómez MI, Gonzalez CD. New Weapons to Fight against Staphylococcus aureus Skin Infections. Antibiotics (Basel) 2023; 12:1477. [PMID: 37887178 PMCID: PMC10603739 DOI: 10.3390/antibiotics12101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
The treatment of Staphylococcus aureus skin and soft tissue infections faces several challenges, such as the increased incidence of antibiotic-resistant strains and the fact that the antibiotics available to treat methicillin-resistant S. aureus present low bioavailability, are not easily metabolized, and cause severe secondary effects. Moreover, besides the susceptibility pattern of the S. aureus isolates detected in vitro, during patient treatment, the antibiotics may never encounter the bacteria because S. aureus hides within biofilms or inside eukaryotic cells. In addition, vascular compromise as well as other comorbidities of the patient may impede proper arrival to the skin when the antibiotic is given parenterally. In this manuscript, we revise some of the more promising strategies to improve antibiotic sensitivity, bioavailability, and delivery, including the combination of antibiotics with bactericidal nanomaterials, chemical inhibitors, antisense oligonucleotides, and lytic enzymes, among others. In addition, alternative non-antibiotic-based experimental therapies, including the delivery of antimicrobial peptides, bioactive glass nanoparticles or nanocrystalline cellulose, phototherapies, and hyperthermia, are also reviewed.
Collapse
Affiliation(s)
- Eliana M. Cela
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Dolores Urquiza
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Departamento de Investigaciones Biomédicas y Biotecnológicas, Universidad Maimónides, Buenos Aires C1405BCK, Argentina
| | - Marisa I. Gómez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Departamento de Investigaciones Biomédicas y Biotecnológicas, Universidad Maimónides, Buenos Aires C1405BCK, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Cintia D. Gonzalez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| |
Collapse
|
4
|
Fekrazad S, Sohrabi M, Fekrazad R. Angiogenetic and anti-inflammatory effects of photobiomodulation on bone regeneration in rat: A histopathological, immunohistochemical, and molecular analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112599. [PMID: 36493717 DOI: 10.1016/j.jphotobiol.2022.112599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/27/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Post-surgical bone defects require new alternative approaches for a better healing process. For this matter, photobiomodulation therapy (PBMT) has been used in order to improve the process of healing, pain, and inflammation reduction and tissue rejuvenation. This study is set to evaluate the effect of PBMT on angiogenic and inflammatory factors for bone regeneration in rat post-surgical cranial defects. Thirty male Wistar rats were distributed accidentally into two groups (Subdivided into 3 groups according to their follow-up durations). During operation, an 8-mm critical-sized calvarial defect was made in each rat. A continuous diode laser was used (power density 100 mW/cm2, wavelength 810 nm, the energy density of 4 J/cm2). Bone samples were assessed histomorphometrically and histologically after hematoxylin and eosin (H&E) staining. ALP, PTGIR, OCN, and IL-1 levels were measured by RT-PCR. VEGF expression was studied by immunohistochemistry analysis. The level of IL-1 expression decreased significantly in the PBMT group compared to the control after 7 days (p < 0.05), while, the PTGIR level was improved significantly compared to the control group after 7 days. Furthermore, levels of OCN and ALP improved after PBM use; however, the alterations were not statistically meaningful (p > 0.05). Evaluation with IHC displayed a significant rise in VEGF expression after 3 days in the PBMT group compared to the control (p > 0.05). In this study's conditions, the results showed a meaningful alteration in osteogenic, inflammatory, and angiogenic mediators in post-surgical calvarial defect following PBMT. It appears that PBM can accelerate angiogenesis in the bone healing procedure which can be helpful in bone tissue engineering.
Collapse
Affiliation(s)
- Sepehr Fekrazad
- Department of General Surgery, Subdivision of Surgical Oncology, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Sohrabi
- Department of Pediatrics, Dental School, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, AJA University of Medical Sciences - International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
5
|
Boldin BV, Turkin PY, Oettinger AP, Bogachev VY, Somov NO, Kuzmin SG, Loschenov VB, Mikhaleva LM, Midiber KY. Efficacy of photodynamic therapy in the treatment of venous trophic ulcers: results from the experiment. AMBULATORNAYA KHIRURGIYA = AMBULATORY SURGERY (RUSSIA) 2022. [DOI: 10.21518/1995-1477-2022-19-2-82-94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction. Today, antimicrobial photodynamic therapy (a-PDT) becomes more and more popular, because of it pronounced bactericidal activity, anti-inflammatory effect. At the same time, no animal model studies have been conducted on morphological changes in cells after exposure to PDT on venous ulcers (VU) when using different types of photosensitizers (PS). The problem of comparing morphological changes in tissues when using a-PDT vs conventional PDT have not yet been resolved.Aim. Evaluation of the effectiveness of PDT and APDT in a comprehensive examination of trophic ulcers in an in vivo experiment and compare them with standard methods for the treatment of VLU.Materials and мethods. A series of experiments was conducted on 21 rabbits, separated into 3 equal groups of 7 rabbits each. Venous trophic ulcer was originally modeled for all rabbits. To obtain a VU, we performed an additional ligation of v. femoralis. The control group received standard therapy for VU. The PDT group had PDT with Photosens. The a-PDT group underwent a-PDT using Cholosens. Every 3 days, picture of local inflammation, regeneration rate and ulcer volume were determined. A morphological study of VLU was carried out on the first, 9th and 15th days.Results. The a-PDT group, day 15: 100% wound epithelization. Control group, day 21st: The volume of wounds decreased on average by 50%. The PDT group: 100% wound epithelization. The morphological study indicated a positive trend in the a-PDT group compared with PDT and control groups, which resulted in a decrease in the total mass of necrotic detritus, a change in the quantitative and qualitative composition of inflammatory infiltrate.Conclusion. The data obtained indicate that the use of a-PDT is recommended in treatment of VLU. Both PDT and a-PDT methods showed better results in comparison with standard therapy.
Collapse
Affiliation(s)
- B. V. Boldin
- Pirogov Russian National Research Medical University
| | - P. Yu. Turkin
- Pirogov Russian National Research Medical University
| | | | | | - N. O. Somov
- Pirogov Russian National Research Medical University
| | - S. G. Kuzmin
- International Research and Clinical Center ‘Intermedbiophiskhim’; Research Institute of Organic Intermediates and Dyes
| | - V. B. Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences
| | - L. M. Mikhaleva
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery
| | - K. Yu. Midiber
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery; City Clinical Hospital No. 31; Peoples’ Friendship University of Russia
| |
Collapse
|
6
|
Liu X, Guo C, Zhuang K, Chen W, Zhang M, Dai Y, Tan L, Ran Y. A recyclable and light-triggered nanofibrous membrane against the emerging fungal pathogen Candida auris. PLoS Pathog 2022; 18:e1010534. [PMID: 35613180 PMCID: PMC9173615 DOI: 10.1371/journal.ppat.1010534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/07/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
The emerging "super fungus" Candida auris has become an important threat to human health due to its pandrug resistance and high lethality. Therefore, the development of novel antimicrobial strategy is essential. Antimicrobial photodynamic therapy (aPDT) has excellent performance in clinical applications. However, the relevant study on antifungal activity and the mechanism involved against C. auris remains scarce. Herein, a recyclable and biodegradable polylactic acid-hypocrellin A (PLA-HA) nanofibrous membrane is newly developed. In vitro PLA-HA-aPDT could significantly reduce the survival rate of C. auris plankton and its biofilms, and the fungicidal effect of the membrane is still significant after four repeated uses. Simultaneously, PLA-HA exhibits good biocompatibility and low hemolysis. In vivo experiments show that PLA-HA-aPDT can promote C. auris-infected wound healing, reduce inflammatory response, and without obvious toxic side-effects. Further results reveal that PLA-HA-aPDT could increase endogenous reactive oxygen species (ROS) levels, leading to mitochondrial dysfunction, release of cytochrome C, activation of metacaspase, and nuclear fragmentation, thereby triggering apoptosis of C. auris. Compared with HA, PLA-HA shows stronger controllability and reusability, which can greatly improve the utilization efficiency of HA alone. Taken together, the efficacy, safety and antifungal activity make PLA-HA-aPDT a highly promising antifungal candidate for skin or mucous membrane C. auris infection. It is urgent to develop new antifungal strategies to address the problem of Candida auris infection and drug resistance. Previous studies have revealed that antimicrobial photodynamic therapy (aPDT) based on natural products, such as hypocrellin A (HA), is a promising method in clinical applications. However, equivalent studies of aPDT on antifungal activity and its mechanism against C. auris remain scarce. Herein, we successfully prepared a recyclable, biodegradable, and light-driven antifungal PLA-HA nanofibrous membrane through the electrospinning technique. C. auris infection has been treated by aPDT in vitro and in vivo for the first time, especially HA-mediated aPDT. In vitro and in vivo experiments have provided sufficient lines of evidence that PLA-HA is a promising antifungal material for superficial C. auris infections due to its antifungal effect and excellent biocompatibility. Notably, there still remains a very high antifungal activity after utilizing PLA-HA four times. In addition, this study clarifies that the anti-C. auris mechanism of PLA-HA, namely, PLA-HA-mediated aPDT, is attributed to the formation of intracellular ROS, resulting in mitochondrial dysfunction and a decline in the mitochondrial transmembrane potential, releasing cytochrome C from mitochondria to the cytoplasm, promoting the activation of metacaspase, and inducing nuclear condensation and fragmentation of C. auris, thus triggering yeast cell apoptosis. This study lays a foundation for developing new antimicrobial nanofibrous dressings mediated by aPDT and provides an alternative strategy for the treatment of local fungal infectious diseases.
Collapse
Affiliation(s)
- Xinyao Liu
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Academician Workstation of Wanqing Liao, West China Hospital, Sichuan University, Chengdu, China
| | - Chuan Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Kaiwen Zhuang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Academician Workstation of Wanqing Liao, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, Texas United States of America
| | - Muqiu Zhang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Academician Workstation of Wanqing Liao, West China Hospital, Sichuan University, Chengdu, China
| | - Yalin Dai
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Tan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- * E-mail: (LT); (YR)
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Academician Workstation of Wanqing Liao, West China Hospital, Sichuan University, Chengdu, China
- * E-mail: (LT); (YR)
| |
Collapse
|
7
|
The evolution of clinical guidelines for antimicrobial photodynamic therapy of skin. Photochem Photobiol Sci 2022; 21:385-395. [PMID: 35132604 PMCID: PMC8821777 DOI: 10.1007/s43630-021-00169-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/28/2021] [Indexed: 11/28/2022]
Abstract
Antimicrobial photodynamic therapy has become an important component in the treatment of human infection. This review considers historical guidelines, and the scientific literature to envisage what future clinical guidelines for treating skin infection might include. Antibiotic resistance, vertical and horizontal infection control strategies and a range of technologies effective in eradicating microbes without building up new resistance are described. The mechanism of action of these treatments and examples of their clinical use are also included. The research recommendations of NICE Guidelines on the dermatological manifestations of microbial infection were also reviewed to identify potential applications for PDT. The resistance of some microbes to antibiotics can be halted, or even reversed through the use of supplementary drugs, and so they are likely to persist as a treatment of infection. Conventional PDT will undoubtedly continue to be used for a range of skin conditions given existing healthcare infrastructure and a large evidence base. Daylight PDT may find broader antimicrobial applications than just Acne and Cutaneous Leishmaniasis, and Ambulatory PDT devices could become popular in regions where resources are limited or daylight exposure is not possible or inappropriate. Nanotheranostics were found to be highly relevant, and often include PDT, however, new treatments and novel applications and combinations of existing treatments will be subject to Clinical Trials.
Collapse
|