1
|
Goujani SM, Koopaie M, Safarian FH, Hakimiha N, Younespour S. Comparative analysis of combined methylene blue photodynamic therapy and doxorubicin treatment of oral squamous cell carcinoma cell line: in vitro study on apoptosis. Photodiagnosis Photodyn Ther 2024:104457. [PMID: 39732188 DOI: 10.1016/j.pdpdt.2024.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 12/30/2024]
Abstract
INTRODUCTION Squamous cell carcinoma (SCC) is the most common malignancy of the head and neck region. Combination therapy potentially enhances the effectiveness beyond that of each treatment alone. This study aimed to assess whether photodynamic therapy (PDT), using methylene blue as a photosensitizer in conjunction with doxorubicin, produces synergistic effects on the apoptosis of the oral squamous cell carcinoma (OSCC) cell line. MATERIALS AND METHODS The human oral epidermal carcinoma cell line (KB cell line, NCBI Code: C152) was cultured in Dulbecco's modified Eagle's medium. Following at least 24 hours of incubation, the OSCC cells were distributed into six groups, with groups 1-3 and 5 performed in the dark to prevent any light interference. 1: control group; 2: treated with 3.2 μg/mL methylene blue; 3: exposed to various concentrations of doxorubicin; 4: PDT group (methylene blue + 660 nm light); 5: treated with both doxorubicin and methylene blue; and finally, 6: treated with PDT (methylene blue + 660 nm light) in conjunction with doxorubicin. Flow cytometry methods were used to assess apoptosis. Analysis of variance (ANOVA) was used to compare quantitative variables between groups, and Tukey's test was applied for pairwise group comparisons. RESULTS Flow cytometry analysis revealed that the highest level of cellular apoptosis occurred in the group treated with PDT in conjunction with doxorubicin. CONCLUSIONS PDT using the photosensitizer methylene blue, in combination with doxorubicin, can serve as an effective agent for inducing apoptosis in OSCC cells.
Collapse
Affiliation(s)
- Shayan Momeni Goujani
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fateme Hamta Safarian
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Hakimiha
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Younespour
- Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Shang L, Deng D, Krom BP, Gibbs S. Oral host-microbe interactions investigated in 3D organotypic models. Crit Rev Microbiol 2024; 50:397-416. [PMID: 37166371 DOI: 10.1080/1040841x.2023.2211665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
The oral cavity is inhabited by abundant microbes which continuously interact with the host and influence the host's health. Such host-microbe interactions (HMI) are dynamic and complex processes involving e.g. oral tissues, microbial communities and saliva. Due to difficulties in mimicking the in vivo complexity, it is still unclear how exactly HMI influence the transition between healthy status and disease conditions in the oral cavity. As an advanced approach, three-dimensional (3D) organotypic oral tissues (epithelium and mucosa/gingiva) are being increasingly used to study underlying mechanisms. These in vitro models were designed with different complexity depending on the research questions to be answered. In this review, we summarised the existing 3D oral HMI models, comparing designs and readouts, discussing applications as well as future perspectives.
Collapse
Affiliation(s)
- Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Olek M, Machorowska-Pieniążek A, Czuba ZP, Cieślar G, Kawczyk-Krupka A. Immunomodulatory Effect of Hypericin-Mediated Photodynamic Therapy on Oral Cancer Cells. Pharmaceutics 2023; 16:42. [PMID: 38258051 PMCID: PMC10819034 DOI: 10.3390/pharmaceutics16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
In 2020, there were 377,713 new oral and lip cancer diagnoses and 177,757 deaths. Oral cancer is a malignancy of the head and neck region, and 90% of cases are squamous cell carcinomas (OSCCs). One of the alternative methods of treating pre-cancerous lesions and oral cancer is photodynamic therapy (PDT). In addition to the cytotoxic effect, an important mechanism of PDT action is the immunomodulatory effect. This study used the OSCC (SCC-25) cell line and the healthy gingival fibroblast (HGF-1) line. A compound of natural origin-hypericin (HY)-was used as the photosensitizer (PS). The HY concentrations of 0-1 µM were used. After two hours of incubation with PS, the cells were irradiated with light doses of 0-20 J/cm2. The MTT test determined sublethal doses of PDT. Cell supernatants subjected to sublethal PDT were assessed for interleukin 6 (IL-6), soluble IL-6 receptor alpha (sIL-6Ralfa), sIL-6Rbeta, IL-8, IL-10, IL-11 IL-20, IL-32, and Pentraxin-3 using the Bio-Plex ProTM Assay. The phototoxic effect was observed starting with a light dose of 5 J/cm2 and amplified with increasing HY concentration and a light dose. HY-PDT affected the SCC-25 cell secretion of sIL-6Rbeta, IL-20, and Pentraxin-3. HY alone increased IL-8 secretion. In the case of HGF-1, the effect of HY-PDT on the secretion of IL-8 and IL-32 was found.
Collapse
Affiliation(s)
- Marcin Olek
- Doctoral School of Medical University of Silesia, 40-055 Katowice, Poland
- Department of Orthodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | | | - Zenon P. Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
4
|
Dalir Abdolahinia E, Han X. The Three-Dimensional In Vitro Cell Culture Models in the Study of Oral Cancer Immune Microenvironment. Cancers (Basel) 2023; 15:4266. [PMID: 37686542 PMCID: PMC10487272 DOI: 10.3390/cancers15174266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The onset and progression of oral cancer are accompanied by a dynamic interaction with the host immune system, and the immune cells within the tumor microenvironment play a pivotal role in the development of the tumor. By exploring the cellular immunity of oral cancer, we can gain insight into the contribution of both tumor cells and immune cells to tumorigenesis. This understanding is crucial for developing effective immunotherapeutic strategies to combat oral cancer. Studies of cancer immunology present unique challenges in terms of modeling due to the extraordinary complexity of the immune system. With its multitude of cellular components, each with distinct subtypes and various activation states, the immune system interacts with cancer cells and other components of the tumor, ultimately shaping the course of the disease. Conventional two-dimensional (2D) culture methods fall short of capturing these intricate cellular interactions. Mouse models enable us to learn about tumor biology in complicated and dynamic physiological systems but have limitations as the murine immune system differs significantly from that of humans. In light of these challenges, three-dimensional (3D) culture systems offer an alternative approach to studying cancer immunology and filling the existing gaps in available models. These 3D culture models provide a means to investigate complex cellular interactions that are difficult to replicate in 2D cultures. The direct study of the interaction between immune cells and cancer cells of human origin offers a more relevant and representative platform compared to mouse models, enabling advancements in our understanding of cancer immunology. This review explores commonly used 3D culture models and highlights their significant contributions to expanding our knowledge of cancer immunology. By harnessing the power of 3D culture systems, we can unlock new insights that pave the way for improved strategies in the battle against oral cancer.
Collapse
Affiliation(s)
| | - Xiaozhe Han
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
5
|
Rodrigues JA, Correia JH. Photodynamic Therapy for Colorectal Cancer: An Update and a Look to the Future. Int J Mol Sci 2023; 24:12204. [PMID: 37569580 PMCID: PMC10418644 DOI: 10.3390/ijms241512204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
This review provides an update on the current state of photodynamic therapy (PDT) for colorectal cancer (CRC) and explores potential future directions in this field. PDT has emerged as a promising minimally invasive treatment modality that utilizes photosensitizers and specific light wavelengths to induce cell death in targeted tumor tissues. In recent years, significant progress has been made in understanding the underlying mechanisms, optimizing treatment protocols, and improving the efficacy of PDT for CRC. This article highlights key advancements in PDT techniques, including novel photosensitizers, light sources, and delivery methods. Furthermore, it discusses ongoing research efforts and potential future directions, such as combination therapies and nanotechnology-based approaches. By elucidating the current landscape and providing insights into future directions, this review aims to guide researchers and clinicians in harnessing the full potential of PDT for the effective management of CRC.
Collapse
Affiliation(s)
- José A. Rodrigues
- CMEMS-UMinho, University of Minho, 4800-058 Guimarães, Portugal;
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal
| | - José H. Correia
- CMEMS-UMinho, University of Minho, 4800-058 Guimarães, Portugal;
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal
| |
Collapse
|
6
|
Olek M, Machorowska-Pieniążek A, Czuba ZP, Cieślar G, Kawczyk-Krupka A. Effect of Hypericin-Mediated Photodynamic Therapy on the Secretion of Soluble TNF Receptors by Oral Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15041279. [PMID: 37111765 PMCID: PMC10140873 DOI: 10.3390/pharmaceutics15041279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Squamous cell carcinoma is the most common cancer of the head and neck region. In addition to the classic surgical treatment method, alternative therapy methods are sought. One such method is photodynamic therapy (PDT). In addition to the direct cytotoxic effect, it is essential to determine the effect of PDT on persistent tumor cells. The study used the SCC-25 oral squamous cell carcinoma (OSCC) cell line and the HGF-1 healthy gingival fibroblast line. A compound of natural origin-hypericin (HY)-was used as a photosensitizer (PS) at concentrations of 0-1 µM. After two hours of incubation with the PS, the cells were irradiated with light doses of 0-20 J/cm2. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test was used to determine sublethal doses of PDT. Cell supernatants subjected to sublethal PDT were assessed for soluble tumor necrosis alpha receptors (sTNF-R1, sTNF-R2). The phototoxic effect was observed starting with a light dose of 5 J/cm2 and amplified with the increase in HY concentration and light dose. A statistically significant increase in sTNF-R1 secretion by SCC-25 cells was demonstrated after the PDT with 0.5 µM HY and irradiation with 2 J/cm2 (sTNF-R1 concentration = 189.19 pg/mL ± 2.60) compared to the control without HY and irradiated with the same dose of light (sTNF-R1 concentration = 108.94 pg/mL ± 0.99). The baseline production of sTNF-R1 was lower for HGF-1 than for SCC-25, and secretion was not affected by the PDT. The PDT had no effect on the sTNF-R2 production in the SCC-25 or HGF-1 lines.
Collapse
Affiliation(s)
- Marcin Olek
- Doctoral School of Medical University of Silesia, 40-055 Katowice, Poland
- Department of Orthodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | | | - Zenon P Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
7
|
Lin L, Song C, Wei Z, Zou H, Han S, Cao Z, Zhang X, Zhang G, Ran J, Cai Y, Han W. Multifunctional photodynamic/photothermal nano-agents for the treatment of oral leukoplakia. J Nanobiotechnology 2022; 20:106. [PMID: 35246146 PMCID: PMC8895861 DOI: 10.1186/s12951-022-01310-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2024] Open
Abstract
Oral leukoplakia (OLK) has gained extensive attention because of the potential risk for malignant transformation. Photosensitizers (PSs) played an indispensable role in the photodynamic therapy (PDT) of OLK, but the poor light sensitivity greatly hampered its clinical application. Herein, a novel organic photosensitive ITIC-Th nanoparticles (ITIC-Th NPs) were developed for OLK photodynamic/photothermal therapy (PTT). ITIC-Th NPs present both high photothermal conversion efficiency (~ 38%) and suitable reactive oxygen species (ROS) generation ability under 660 nm laser irradiation, making them possess excellent PDT and PTT capability. In 4-nitroquinoline 1-oxide (4NQO)-induced oral precancerous animal models, ITIC-Th NPs effectively suppress the OLK's cancerization without apparent topical or systemic toxicity in vivo. This study offers a promising therapeutic strategy for PDT and PTT in OLK treatment, and this study is the first interdisciplinary research in the field of multimodal therapy for OLK.
Collapse
Affiliation(s)
- Lin Lin
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China
| | - Chuanhui Song
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China.,Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zheng Wei
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China.,Pediatric Dentistry, Nanjing Stomatology Hospital, Medical School of Nanjing University, No 30 Zhongyang road, Nanjing, 210008, China
| | - Huihui Zou
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China
| | - Shengwei Han
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China
| | - Zichen Cao
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China
| | - Xinyu Zhang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China
| | - Guorong Zhang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China
| | - Jianchuan Ran
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
| | - Wei Han
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
8
|
Olek M, Machorowska-Pieniążek A, Stós W, Kalukin J, Bartusik-Aebisher D, Aebisher D, Cieślar G, Kawczyk-Krupka A. Photodynamic Therapy in Orthodontics: A Literature Review. Pharmaceutics 2021; 13:pharmaceutics13050720. [PMID: 34068878 PMCID: PMC8156301 DOI: 10.3390/pharmaceutics13050720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023] Open
Abstract
Treatment of malocclusions using fixed orthodontic appliances makes it difficult for patients to perform hygiene procedures. Insufficient removal of bacterial biofilm can cause enamel demineralization, manifesting by visible white spot lesions or periodontal diseases, such as gingivitis periodontitis or gingival hyperplasia. The classic methods of preventing the above problems include, in addition to proper hygiene, ultrasonic scaling, periodontal debridement, and oral rinses based on chlorhexidine. New alternative methods of reducing plaque around brackets are being developed. There is a growing interest among researchers in the possibility of using photodynamic therapy in orthodontics. A literature search for articles corresponding to the topic of this review was performed using the PubMed and Scopus databases and the following keywords: ‘photodynamic therapy’, ‘orthodontics’, and ‘photosensitizer(s)’. Based on the literature review, two main directions of research can be distinguished: clinical research on the use of photodynamic therapy in the prevention of white spot lesions and periodontal diseases, and ex vivo research using a modified orthodontic adhesive by adding photosensitizers to them. Methylene blue is the most frequently used photosensitizer in clinical trials. The effectiveness of antimicrobial photodynamic therapy is mainly compared to the ultrasonic scaler as a single therapy or as an adjunct to the ultrasonic scaler. In their conclusions, the researchers most often emphasize the effectiveness of antimicrobial photodynamic therapy in reducing microbial levels in patients treated with fixed appliances and the possibility of using it as an alternative to routine procedures aimed at maintaining a healthy periodontium. The authors suggest further research on the use of photodynamic therapy to prove the validity of this method in orthodontics. It should also not be forgotten that proper hygiene is the basis for maintaining oral cavity health, and its neglect is a contraindication to orthodontic treatment.
Collapse
Affiliation(s)
- Marcin Olek
- Department of Orthodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (M.O.); (A.M.-P.)
- Department of Orthodontics, Dental Institute, Faculty of Medicine, Jagiellonian University Medical College, 31-155 Cracow, Poland; (W.S.); (J.K.)
| | - Agnieszka Machorowska-Pieniążek
- Department of Orthodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (M.O.); (A.M.-P.)
| | - Wojciech Stós
- Department of Orthodontics, Dental Institute, Faculty of Medicine, Jagiellonian University Medical College, 31-155 Cracow, Poland; (W.S.); (J.K.)
| | - Janusz Kalukin
- Department of Orthodontics, Dental Institute, Faculty of Medicine, Jagiellonian University Medical College, 31-155 Cracow, Poland; (W.S.); (J.K.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Faculty of Medicine, University of Rzeszów, Kopisto 2A, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Faculty of Medicine, University of Rzeszów, Kopisto 2A, 35-310 Rzeszów, Poland;
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
- Correspondence:
| |
Collapse
|