1
|
Tang S, Li G, Zhang H, Bao Y, Wu X, Yan R, Wang Z, Jin Y. Organic disulfide-modified folate carbon dots for tumor-targeted synergistic chemodynamic/photodynamic therapy. Biomater Sci 2023; 11:3128-3143. [PMID: 36919663 DOI: 10.1039/d3bm00124e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Carbon dots (CDs) have great potential for cancer diagnosis and treatment. Photodynamic therapy and chemodynamic therapy are promising treatments mediated by reactive oxygen species (ROS), which have the advantages of being minimally invasive, having no multi-drug resistance, and having no systemic toxic side effects. However, the tumor microenvironment (TME) and poor targetability often reduce the therapeutic effect. In this work, we have successfully prepared folate-based carbon dots (FCP-CDs) from folic acid (FA), citric acid (CA), and polyethyleneimine (PEI) for tumor-targeting. The surface of FCP-CDs was modified using organic disulfide, 3,3'-dithiodipropionic acid (DTPA), and a photosensitizer (PS) pyropheophorbide-a (PPa) to form a tumor microenvironment-responsive nanoplatform, FCP-CDs@DTPA@PPa (named FCPPD), for synergistic cancer therapy. The results showed that FCPPD effectively preserved the tumor target specificity of folic acid and the photodynamic therapeutic (PDT) activity of PPa, and could provide additional chemodynamic therapeutic (CDT) function by reacting with hydrogen peroxide (H2O2) to generate ˙OH. The introduction of DTPA, which contains disulfide bonds, endows FCPPD with an excellent ability to deplete glutathione (GSH) in tumors via intracellular redox reactions, amplifying intracellular oxidative strain and enhancing ROS-based therapeutic effects. Systematic in vitro and in vivo studies under various conditions have shown that the obtained FCPPD nanoparticles have good biocompatibility and could be a promising therapeutic agent for imaging-guided PDT/CDT combination therapy.
Collapse
Affiliation(s)
- Sihan Tang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Guanghao Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Hui Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yujun Bao
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China. .,Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
2
|
Ding J, Kang X, Feng M, Tan J, Feng Q, Wang X, Wang J, Liu J, Li Z, Guan W, Qiao T. A novel active mitochondrion-selective fluorescent probe for the NIR fluorescence imaging and targeted photodynamic therapy of gastric cancer. Biomater Sci 2022; 10:4756-4763. [PMID: 35837996 DOI: 10.1039/d2bm00684g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The annual morbidity and mortality due to gastric cancer are still high across the world, posing a serious threat to public health. Improving the diagnosis rate of gastric cancer and exploring new treatments are urgent issues in the clinical field. In recent years, photosensitizer (PS)-based photodynamic therapy (PDT) has proven to be an effective cancer treatment strategy and can be used to treat a variety of cancers. Developing PSs with tumor-targeting ability and high singlet oxygen yield (Φ(1O2)) is the key to improving the PDT effect. Herein, we developed a novel diagnosis and treatment system (Cy1395-NPs). Our active thio-photosensitizer is based on the sulfur substitution strategy as it can reduce the S1-T1 energy gap, which can promote the process of intersystem crossing (ISC), thus resulting in high ROS generation efficiency. Cy1395-NPs exhibited stable spectral characteristics, satisfactory biocompatibility and high 1O2 yield under laser irradiation due to the introduction of the sulfur atom. In cellular studies, Cy1395-NPs could specifically target MKN45 cells via integrin αvβ3-mediated cRGD endocytosis and selectively aggregate in the mitochondria. Cy1395-NPs had no obvious cytotoxicity for MKN45 cells and exerted obvious phototoxicity due to the production of 1O2 under laser irradiation. The in vivo results showed that the fluorescence signal from the tumor site was obviously enhanced in 16-48 h, and Cy1395-NPs could selectively target solid tumors with a retention time of about 32 h. Under laser irradiation, Cy1395-NPs significantly inhibited tumor growth and led to significant tumor suppression and apoptosis. In summary, the developed Cy1395-NPs could actively target tumors and exert mitochondrial selectivity, showing an excellent fluorescence imaging effect. Under the irradiation of an 808 nm laser, Cy1395-NPs achieved good inhibition of gastric cancer cells both in vitro and in vivo, thus displaying the functions of tumor targeting, mitochondrial selectivity, fluorescence imaging and tumor inhibition. Our strategy provides a new diagnostic and treatment method for gastric cancers in clinical settings.
Collapse
Affiliation(s)
- Jie Ding
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China. .,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Xing Kang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Jiangkun Tan
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China.
| | - Qingzhao Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Xingzhou Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Jiafeng Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jiang Liu
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210004, China
| | - Zan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China.
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|