1
|
Aebisher D, Czech S, Dynarowicz K, Misiołek M, Komosińska-Vassev K, Kawczyk-Krupka A, Bartusik-Aebisher D. Photodynamic Therapy: Past, Current, and Future. Int J Mol Sci 2024; 25:11325. [PMID: 39457108 PMCID: PMC11508366 DOI: 10.3390/ijms252011325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The Greek roots of the word "photodynamic" are as follows: "phos" (φω~ς) means "light" and "dynamis" (δύναμις) means "force" or "power". Photodynamic therapy (PDT) is an innovative treatment method based on the ability of photosensitizers to produce reactive oxygen species after the exposure to light that corresponds to an absorbance wavelength of the photosensitizer, either in the visible or near-infrared range. This process results in damage to pathological cancer cells, while minimizing the impact on healthy tissues. PDT is a promising direction in the treatment of many diseases, with particular emphasis on the fight against cancer and other diseases associated with excessive cell growth. The power of light contributed to the creation of phototherapy, whose history dates back to ancient times. It was then noticed that some substances exposed to the sun have a negative effect on the body, while others have a therapeutic effect. This work provides a detailed review of photodynamic therapy, from its origins to the present day. It is surprising how a seemingly simple beam of light can have such a powerful healing effect, which is used not only in dermatology, but also in oncology, surgery, microbiology, virology, and even dentistry. However, despite promising results, photodynamic therapy still faces many challenges. Moreover, photodynamic therapy requires further research and improvement.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland
| | - Sara Czech
- Department of Biochemistry and General Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland; (S.C.); (D.B.-A.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland;
| | - Maciej Misiołek
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland; (S.C.); (D.B.-A.)
| |
Collapse
|
2
|
Coppola N, Cantile T, Adamo D, Canfora F, Baldares S, Riccitiello F, Musella G, Mignogna MDD, Leuci S. Supportive care and antiviral treatments in primary herpetic gingivostomatitis: a systematic review. Clin Oral Investig 2023; 27:6333-6344. [PMID: 37733027 PMCID: PMC10630243 DOI: 10.1007/s00784-023-05250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVES Herpes simplex virus 1 (HSV-1) is the main pathogen responsible for herpes infections. In 13-30% of the cases, primary HSV-1 leads to the primary herpetic gingivostomatitis (PHGS), often a self-limiting infection; however, it can limit the ability to drink/eat with, sometimes, the need for hospitalization. Multiple therapeutic methods have been proposed. This systematic review aims to collect and critically appraise the available evidence about the clinical management of PHGS. MATERIALS AND METHODS Literature search including three databases (PubMed, Scopus, Embase), study design, and data analysis were performed following PRISMA guidelines, according to the PICO tool (PROSPERO n° CRD42023391386). Risk of bias was assessed with RoB 2 and ROBINS-I. RESULTS Five studies on a total of 364 patients (average age: 7.6 years) were identified. The treatment regimens were summarized in acyclovir; acyclovir + honey; fluids and analgesic; maalox + diphenhydramine; lidocaine; chlorhexidine (CHX); CHX + ialuronic acid; CHX + Mucosyte®; antimicrobial photodynamic therapy (aPDT); topical antiviral; topical antiviral + aPDT; and others. CONCLUSIONS Although PHGS is a disease with a high worldwide prevalence, the lack of consensus about therapeutic management indicates gaps in existing evidence. Most of the proposed treatment consists in symptomatic drugs with empiric regimens which are ineffective for the viral replication. The main limit to realize randomized clinical trial is due to the rapid onset and remission of the disease. In fact, the diagnostic delay, estimated in 72 h, decreases the effectiveness of any antiviral drugs. CLINICAL RELEVANCE Out of the five studies included in this systematic review, only one was able to provide some weak evidence that ACV is an effective treatment, improving healing of oral lesions and reducing duration of symptoms.
Collapse
Affiliation(s)
- Noemi Coppola
- Oral Medicine Unit, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Tiziana Cantile
- Pediatric Dentistry, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Baronissi, Italy.
| | - Daniela Adamo
- Oral Medicine Unit, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Federica Canfora
- Oral Medicine Unit, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Stefania Baldares
- Oral Medicine Unit, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Riccitiello
- Pediatric Dentistry, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Gennaro Musella
- Oral Medicine Unit, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Michele Davide D Mignogna
- Oral Medicine Unit, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Stefania Leuci
- Oral Medicine Unit, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Pourhajibagher M, Bahador A. Natural photosensitizers potentiate the targeted antimicrobial photodynamic therapy as the Monkeypox virus entry inhibitors: An in silico approach. Photodiagnosis Photodyn Ther 2023; 43:103656. [PMID: 37336465 PMCID: PMC10275794 DOI: 10.1016/j.pdpdt.2023.103656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Monkeypox is a viral zoonotic disease that has emerged as a threat to public health. Currently, there is no treatment approved specifically targeting Monkeypox disease. Hence, it is essential to identify and develop therapeutic approaches to the Monkeypox virus. In the current in silico paper, we comprehensively involve using computer simulations and modeling to insights and predict hypotheses on the potential of natural photosensitizers-mediated targeted antimicrobial photodynamic therapy (aPDT) against D8L as a Monkeypox virus protein involved in viral cell entry. MATERIALS AND METHODS In the current study, computational techniques such as molecular docking were combined with in silico ADMET predictions to examine how Curcumin (Cur), Quercetin (Qct), and Riboflavin (Rib) as the natural photosensitizers bind to the D8L protein in Monkeypox virus, as well as to determine pharmacokinetic properties of these photosensitizers. RESULTS The three-dimensional structure of the D8L protein in the Monkeypox virus was constructed using homology modeling (PDB ID: 4E9O). According to the physicochemical properties and functional characterization, 4E9O was a stable protein with the nature of a hydrophilic structure. The docking studies employing a three-dimensional model of 4E9O with natural photosensitizers exhibited good binding affinity. D8L protein illustrated the best docking score (-7.6 kcal/mol) in relation to the Rib and displayed good docking scores in relation to the Cur (-7.0 kcal/mol) and Qct (-7.5 kcal/mol). CONCLUSIONS The findings revealed that all three photosensitizers were found to obey the criteria of Lipinski's rule of five and displayed drug-likeness. Moreover, all the tested photosensitizers were found to be non-hepatotoxic and non-cytotoxic. In summary, our investigation identified Cur, Qct, and Rib could efficiently interact with D8L protein with a strong binding affinity. It can be concluded that aPDT using these natural photosensitizers may be considered an adjuvant treatment against Monkeypox disease.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
4
|
Virtual screening and computational simulation analysis of antimicrobial photodynamic therapy using propolis-benzofuran A to control of Monkeypox. Photodiagnosis Photodyn Ther 2023; 41:103208. [PMID: 36417972 PMCID: PMC9675939 DOI: 10.1016/j.pdpdt.2022.103208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Monkeypox is a viral zoonotic disease and there are no available treatments that specifically target the monkeypox virus. Antimicrobial photodynamic therapy (aPDT) is a non-invasive approach that has been introduced as a targeted adjuvant treatment against various microbial infections. In this study, we used a computational strategy to investigate the potential of aPDT using propolis-benzofuran A against the Monkeypox virus. METHODS In this in silico study, the evaluation of drug-likeness, molecular properties, and bioactivity of propolis-benzofuran A was carried out using SwissADME. Pro-Tox II and OSIRIS servers were used to identify the organ toxicities and toxicological endpoints of propolis-benzofuran A. Molecular docking approach was employed to screen the potential binding modes of propolis-benzofuran A ligand with the Monkeypox virus A48R protein (PDB ID: 2V54). RESULTS The results of the computational investigation revealed that propolis-benzofuran A obeyed all the criteria of Lipinski's rule of five and exhibited drug-likeness. The photosensitizing agent tested was categorized as toxicity class-5 and was found to be non-hepatotoxic, non-carcinogenic, non-mutagenic, and non-cytotoxic. The docking studies employing a predicted three-dimensional model of Monkeypox virus A48R protein with propolis-benzofuran A ligand exhibited good binding affinity (-7.84 kcal/mol). DISCUSSION The computational simulation revealed that propolis-benzofuran A had a strong binding affinity with the Monkeypox virus A48R protein. Hence, aPDT based on this natural photosensitizer can be proposed as an adjuvant treatment against the Monkeypox virus.
Collapse
|
5
|
Gholami L, Shahabi S, Jazaeri M, Hadilou M, Fekrazad R. Clinical applications of antimicrobial photodynamic therapy in dentistry. Front Microbiol 2023; 13:1020995. [PMID: 36687594 PMCID: PMC9850114 DOI: 10.3389/fmicb.2022.1020995] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
Given the emergence of resistant bacterial strains and novel microorganisms that globally threaten human life, moving toward new treatment modalities for microbial infections has become a priority more than ever. Antimicrobial photodynamic therapy (aPDT) has been introduced as a promising and non-invasive local and adjuvant treatment in several oral infectious diseases. Its efficacy for elimination of bacterial, fungal, and viral infections and key pathogens such as Streptococcus mutans, Porphyromonas gingivalis, Candida albicans, and Enterococcus faecalis have been investigated by many invitro and clinical studies. Researchers have also investigated methods of increasing the efficacy of such treatment modalities by amazing developments in the production of natural, nano based, and targeted photosensitizers. As clinical studies have an important role in paving the way towards evidence-based applications in oral infection treatment by this method, the current review aimed to provide an overall view of potential clinical applications in this field and summarize the data of available randomized controlled clinical studies conducted on the applications of aPDT in dentistry and investigate its future horizons in the dental practice. Four databases including PubMed (Medline), Web of Science, Scopus and Embase were searched up to September 2022 to retrieve related clinical studies. There are several clinical studies reporting aPDT as an effective adjunctive treatment modality capable of reducing pathogenic bacterial loads in periodontal and peri-implant, and persistent endodontic infections. Clinical evidence also reveals a therapeutic potential for aPDT in prevention and reduction of cariogenic organisms and treatment of infections with fungal or viral origins, however, the number of randomized clinical studies in these groups are much less. Altogether, various photosensitizers have been used and it is still not possible to recommend specific irradiation parameters due to heterogenicity among studies. Reaching effective clinical protocols and parameters of this treatment is difficult and requires further high quality randomized controlled trials focusing on specific PS and irradiation parameters that have shown to have clinical efficacy and are able to reduce pathogenic bacterial loads with sufficient follow-up periods.
Collapse
Affiliation(s)
- Leila Gholami
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Shiva Shahabi
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Jazaeri
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Hadilou
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran,*Correspondence: Reza Fekrazad,
| |
Collapse
|