1
|
Brival R, Ghafari N, Mingotaud AF, Fourquaux I, Gilard V, Collin F, Vicendo P, Balayssac S, Gibot L. Encapsulation of photosensitizer worsen cell responses after photodynamic therapy protocol and polymer micelles act as biomodulators on their own. Int J Pharm 2024; 663:124589. [PMID: 39147251 DOI: 10.1016/j.ijpharm.2024.124589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Photodynamic therapy (PDT) is a photochemical therapeutic modality used clinically for dermatological, ophthalmological and oncological applications. Pheo a was used as a model photosensitizer, either in its free form or encapsulated within poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-PCL) polymer micelles. Block copolymer micelles are water-soluble biocompatible nanocontainers with great potential for delivering hydrophobic drugs. Empty PEO-PCL micelles were also tested throughout the experiments. The goal was to conduct an in vitro investigation into human colorectal tumor HCT-116 cellular responses induced by free and encapsulated Pheo a in terms of cell architecture, plasma membrane exchanges, mitochondrial function, and metabolic disturbances. In a calibrated PDT protocol, encapsulation enhanced Pheo a penetration (flow cytometry, confocal microscopy) and cell death (Prestoblue assay), causing massive changes to cell morphology (SEM) and cytoskeleton organization (confocal), mitochondrial dysfunction and loss of integrity (TEM), rapid and massive ion fluxes across the plasma membrane (ICP-OES, ion chromatography), and metabolic alterations, including increased levels of amino acids and choline derivatives (1H NMR). The detailed investigation provides insights into the multifaceted effects of encapsulated Pheo-PDT, emphasizing the importance of considering both the photosensitizer and its delivery system in understanding therapeutic outcomes. The study also raises questions as to the broader impact of empty nanovectors per se, and encourages a more comprehensive exploration of their biological effects.
Collapse
Affiliation(s)
- Rachel Brival
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France; Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Toulouse Rangueil, Université de Toulouse, 133, route de Narbonne, 31062 Toulouse, France
| | - Nathan Ghafari
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Isabelle Fourquaux
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Toulouse Rangueil, Université de Toulouse, 133, route de Narbonne, 31062 Toulouse, France
| | - Véronique Gilard
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Fabrice Collin
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Patricia Vicendo
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Stéphane Balayssac
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Laure Gibot
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
2
|
Ishizuka M, Kaibori M, Sumiyama F, Okamoto Y, Suganami A, Tamura Y, Yoshii K, Sugie T, Sekimoto M. Photodynamic therapy with paclitaxel-encapsulated indocyanine green-modified liposomes for breast cancer. Front Oncol 2024; 14:1365305. [PMID: 38515576 PMCID: PMC10955121 DOI: 10.3389/fonc.2024.1365305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Background Photodynamic therapy (PDT) involves the administration of a photosensitizing agent and irradiation of light at an excitation wavelength that damages tumor cells without causing significant damage to normal tissue. We developed indocyanine green (ICG)-modified liposomes in which paclitaxel (PTX) was encapsulated (ICG-Lipo-PTX). ICG-Lipo-PTX accumulates specifically in tumors due to the characteristics of the liposomes. The thermal and photodynamic effects of ICG and the local release of PTX by irradiation are expected to induce not only antitumor effects but also cancer immunity. In this study, we investigated the antitumor effects of ICG-Lipo-PTX in breast cancer. Methods The antitumor effects of ICG-Lipo-PTX were examined in xenograft model mice subcutaneously implanted with KPL-1 human breast cancer cells. ICG-Lipo-PTX, ICG-Lipo, or saline was administered intraperitoneally, and the fluorescence intensity was measured with a fluorescence imaging system (IVIS). Intratumor temperature, tumor volume, and necrotic area of tumor tissue were also compared. Next, we investigated the induction of cancer immunity in an allogeneic transplantation model in which BALB-MC mouse breast cancer cells were transplanted subcutaneously in the bilateral inguinal region. ICG-Lipo-PTX was administered intraperitoneally, and PDT was performed on only one side. The fluorescence intensity measured by IVIS and the bilateral tumor volumes were compared. Cytokine secretory capacity was also evaluated by ELISPOT assay using splenocytes. Results In the xenograft model, the fluorescence intensity and temperature during PDT were significantly higher with ICG-Lipo-PTX and ICG-Lipo in tumor areas than in nontumor areas. The fluorescence intensity in the tumor area was reduced to the same level as that in the nonirradiated area after two times of irradiation. Tumor growth was significantly reduced and the percentage of necrotic area in the tumor was higher after PDT in the ICG-Lipo-PTX group than in the other groups. In the allograft model, tumor growth on day 14 in the ICG-Lipo-PTX group was significantly suppressed not only on the PDT side but also on the non-PDT side. In addition, the secretion of interferon-γ and interleukin-2 was enhanced, whereas that of interleukin-10 was suppressed, in the ICG-Lipo-PTX group. Conclusion The PDT therapy with ICG-Lipo-PTX may be an effective treatment for breast cancer.
Collapse
Affiliation(s)
- Mariko Ishizuka
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | - Fusao Sumiyama
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | | | - Akiko Suganami
- Department of Bioinformatics, Chiba University, Chiba, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Chiba University, Chiba, Japan
| | - Kengo Yoshii
- Department of Mathematics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoharu Sugie
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | | |
Collapse
|
3
|
Shinoda K, Suganami A, Moriya Y, Yamashita M, Tanaka T, Suzuki AS, Suito H, Akutsu Y, Saito K, Shinozaki Y, Isojima K, Nakamura N, Miyauchi Y, Shirasawa H, Matsubara H, Okamoto Y, Nakayama T, Tamura Y. Indocyanine green conjugated phototheranostic nanoparticle for photodiagnosis and photodynamic reaciton. Photodiagnosis Photodyn Ther 2022; 39:103041. [PMID: 35914696 DOI: 10.1016/j.pdpdt.2022.103041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phototheranostics represents a highly promising paradigm for cancer therapy, although selecting an appropriate optical imager and sensitizer for clinical use remains challenging. METHODS Liposomally formulated phospholipid-conjugated indocyanine green, denoted as LP-iDOPE, was developed as phototheranostic nanoparticle and its cancer imaging-mediated photodynamic reaction, defined as the immune response induced by photodynamic and photothermal effects, was evaluated with a near-infrared (NIR)-light emitting diode (LED) light irradiator. RESULTS Using in vivo NIR fluorescence imaging, we demonstrated that LP-iDOPE was selectively delivered to tumor sites with high accumulation and a long half-life. Following low-intensity NIR-LED light irradiation on the tumor region of LP-iDOPE accumulated, effector CD8+ T cells were activated at the secondary lymphoid organs, migrated, and subsequently released cytokines including interferon-γ and tumor necrosis factor-α, resulting in effective tumor regression. CONCLUSIONS Our anti-cancer strategy based on tumor-specific LP-iDOPE accumulation and low-intensity NIR-LED light irradiation to the tumor regions, i.e., photodynamic reaction, represents a promising approach to noninvasive cancer therapy.
Collapse
Affiliation(s)
- Kenta Shinoda
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; Molecular Chirality Research Center, Chiba University, Chiba 263-8522, Japan
| | - Yasumitsu Moriya
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masamichi Yamashita
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, Tottori 680-8553, Japan
| | - Tsutomu Tanaka
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, Tottori 680-8553, Japan
| | - Akane S Suzuki
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hiroshi Suito
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yasunori Akutsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kengo Saito
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | - Hiroshi Shirasawa
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yoshiharu Okamoto
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, Tottori 680-8553, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; Molecular Chirality Research Center, Chiba University, Chiba 263-8522, Japan.
| |
Collapse
|