1
|
Pires ICB, Shuchi SI, Tostes BDVA, Santos DKDDN, Burnett WL, Leonce BC, Harvey OR, Coffer JL, de Sousa Filho IA, de Athayde-Filho PF, Junior SA, Mathis JM. Theranostics Using MCM-41-Based Mesoporous Silica Nanoparticles: Integrating Magnetic Resonance Imaging and Novel Chemotherapy for Breast Cancer Treatment. Int J Mol Sci 2024; 25:8097. [PMID: 39125669 PMCID: PMC11311303 DOI: 10.3390/ijms25158097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Advanced breast cancer remains a significant oncological challenge, requiring new approaches to improve clinical outcomes. This study investigated an innovative theranostic agent using the MCM-41-NH2-DTPA-Gd3⁺-MIH nanomaterial, which combined MRI imaging for detection and a novel chemotherapy agent (MIH 2.4Bl) for treatment. The nanomaterial was based on the mesoporous silica type, MCM-41, and was optimized for drug delivery via functionalization with amine groups and conjugation with DTPA and complexation with Gd3+. MRI sensitivity was enhanced by using gadolinium-based contrast agents, which are crucial in identifying early neoplastic lesions. MIH 2.4Bl, with its unique mesoionic structure, allows effective interactions with biomolecules that facilitate its intracellular antitumoral activity. Physicochemical characterization confirmed the nanomaterial synthesis and effective drug incorporation, with 15% of MIH 2.4Bl being adsorbed. Drug release assays indicated that approximately 50% was released within 8 h. MRI phantom studies demonstrated the superior imaging capability of the nanomaterial, with a relaxivity significantly higher than that of the commercial agent Magnevist. In vitro cellular cytotoxicity assays, the effectiveness of the nanomaterial in killing MDA-MB-231 breast cancer cells was demonstrated at an EC50 concentration of 12.6 mg/mL compared to an EC50 concentration of 68.9 mg/mL in normal human mammary epithelial cells (HMECs). In vivo, MRI evaluation in a 4T1 syngeneic mouse model confirmed its efficacy as a contrast agent. This study highlighted the theranostic capabilities of MCM-41-NH2-DTPA-Gd3⁺-MIH and its potential to enhance breast cancer management.
Collapse
Affiliation(s)
- Indira C. B. Pires
- Department of Chemistry, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (I.C.B.P.); (B.d.V.A.T.); (D.K.D.d.N.S.)
| | - Samia I. Shuchi
- School of Biomedical Sciences, Departments of Microbiology, Immunology, and Genetics and Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Braulio de V. A. Tostes
- Department of Chemistry, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (I.C.B.P.); (B.d.V.A.T.); (D.K.D.d.N.S.)
| | - Dayane K. D. do N. Santos
- Department of Chemistry, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (I.C.B.P.); (B.d.V.A.T.); (D.K.D.d.N.S.)
| | - William L. Burnett
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA (B.C.L.); (O.R.H.); (J.L.C.)
| | - Burke C. Leonce
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA (B.C.L.); (O.R.H.); (J.L.C.)
| | - Omar R. Harvey
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA (B.C.L.); (O.R.H.); (J.L.C.)
| | - Jeffery L. Coffer
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA (B.C.L.); (O.R.H.); (J.L.C.)
| | - Idio Alves de Sousa Filho
- Institute of Chemistry, Federal Rural University of Rio de Janeiro, Rio de Janeiro 23890-000, RJ, Brazil;
| | | | - Severino A. Junior
- Department of Chemistry, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (I.C.B.P.); (B.d.V.A.T.); (D.K.D.d.N.S.)
| | - J. Michael Mathis
- School of Biomedical Sciences, Departments of Microbiology, Immunology, and Genetics and Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| |
Collapse
|
2
|
Mesoporous Silica Nanoparticles for pH-Responsive Delivery of Iridium Metallotherapeutics and Treatment of Glioblastoma Multiforme. INORGANICS 2022. [DOI: 10.3390/inorganics10120250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Using nanoparticles for controlled drug delivery to cancer, in response to its weakly acidic environment, represents a promising approach toward increasing the effectiveness and reducing the adverse effects of cancer therapy. Hence, the aim of this study is to construct novel mesoporous silica nanoparticle (MSN)-based acidification-responsive drug delivery systems for targeted cancer therapy. Herein, the surface of MSN is covalently functionalized with Ir(III)-based complex through a pH-cleavable hydrazone-based linker and characterized by nitrogen sorption, SEM, FTIR, EDS, TGA, DSC, DLS, and zeta potential measurements. Enhanced release of Ir(III)-complexes is evidenced by UV/VIS spectroscopy at the weakly acidic environments (pH 5 and pH 6) in comparison to the release at physiological conditions. The in vitro toxicity of the prepared materials is tested on healthy MRC-5 cells while their potential for the efficient treatment of glioblastoma multiforme is demonstrated on the U251 cell line.
Collapse
|