1
|
Qian MQ, Xiang Z, Wang X. Sonodynamic inactivation of gram-negative and gram-positive bacteria in the presence of phenothiazine compounds toluidine blue and azurin A. Biochim Biophys Acta Gen Subj 2024; 1868:130711. [PMID: 39278371 DOI: 10.1016/j.bbagen.2024.130711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Sonodynamic antimicrobial chemotherapy (SACT) is an effective antimicrobial treatment that can avoid the production of drug-resistant bacteria. Design and development of new high-efficiency sonosensitizers play a key role in the practical application of SACT. METHODS The bacteriostatic effects of two phenothiazine compounds, toluidine blue (TB) and azure A (AA) combined with ultrasonic (US) on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were studied, and the sonodynamic antibacterial activities of TB and AA were compared. The reactive oxygen species (ROS) and the types of ROS produced in the sonodynamic system were detected and the sonodynamic mechanisms of TB and AA were proposed. RESULTS The sonodynamic bacteriostasis mediated by TB and AA increased with the increasing concentration of sonosensitizer, the extension of sonication time and the increase of reaction temperature. The production of ROS was the main reason that TB and AA had excellent sonodynamic antibacterial performance. Singlet oxygen (1O2) and hydroxyl radical (•OH) were the main ROS types in the sonodynamic antibacterial system. The ROS produced by the combined action of AA and US was higher than that of TB. CONCLUSION Both TB and AA displayed excellent sonodynamic antibacterial activities. Moreover, AA had a higher sonodynamic activity than TB. The electron donation effect and steric hindrance effect of the methyl group of phenothiazine parent nucleus of TB might be the cause of the decrease of its sonodynamic activity. These results would provide a valuable reference for the further study of phenothiazines sonosensitizers and their clinical application in SACT.
Collapse
Affiliation(s)
- Ming-Qin Qian
- Departments of Ultrasound, People's Hospital of Liaoning Province, Shenyang 110016, PR China.
| | - Zheng Xiang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, PR China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diesases, Liaoning University, Shenyang 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, PR China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diesases, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
2
|
Wang MF, Guo J, Yuan SJ, Li K, Zhang Q, Lei HM, Wu JL, Zhao L, Xu YH, Chen X. Targeted sonodynamic therapy induces tumor cell quasi-immunogenic ferroptosis and macrophage immunostimulatory autophagy in glioblastoma. Biomaterials 2024; 315:122913. [PMID: 39471712 DOI: 10.1016/j.biomaterials.2024.122913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/13/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
In this study, we demonstrated the mechanism of a glioblastoma (GBM)-targeted sonodynamic therapy (SDT) strategy employing platelets loaded with a sonosensitizer based on functionalized boron nitride nanoparticles carrying chlorin e6 (BNPD-Ce6). In the in vitro study, we first found that the BNPD-Ce6-mediated sonodynamic action (SDA) induced remarkable viability loss, DNA damage, and cell death in the GBM cells (GBCs) but not macrophages. Surprisingly, the SDA-exposed GBCs displayed a ferroptotic phenotype while the SDA-exposed macrophages underwent immuno-stimulatory autophagy and potently potentiated the SDA's toxicity to the GBCs. The ferroptotic GBCs induced by the SDA were found to be quasi-immunogenic, characterized by the emission of some alarmins such as ATP, HSP90, and CRT, but absent HMGB1, a potent endogenous adjuvant. As such, the SDA-stressed GBCs were unable to stimulate the BMDMs. This defect, interestingly, could be rescued by platelets as a donor of HMGB1 which markedly enhanced the BNPD-Ce6's sonotoxicity to the GBCs. In the in vivo study, we first employed BNPD-Ce6-loaded platelets to achieve ultrasound-triggered, targeted delivery of BNPD-Ce6 in grafted intra-cranial GBMs and subsequent sonodynamic tumor damage. An SDT regimen designed based on these results slowed the growth of grafted intra-cranial GBMs and significantly increased the survival of the host animals. Pathological examination of the SDT-treated GBMs revealed tissue necrosis and destruction and validated the in vitro observations. Finally, the depletion of macrophages was found to abrogate the efficacy of the SDT in subcutaneous GBC grafts. In conclusion, the BNPD-Ce6@Plt-mediated SDT is a practicable and efficacious anti-GBM therapy. Its therapeutic mechanism critically involves a synergy of tumor cell ferroptosis, macrophage stimulation, and platelet activation induced by the SDA.
Collapse
Affiliation(s)
- Meng-Fei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Jie Guo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Shen-Jun Yuan
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Ke Li
- Center for Lab Teaching, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Quan Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Hui-Mei Lei
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Jia-Lin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RADX), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yong-Hong Xu
- Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430072, China.
| |
Collapse
|
3
|
Panayides JL, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med Chem 2024; 15:3286-3344. [PMID: 39430101 PMCID: PMC11484438 DOI: 10.1039/d4md00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/22/2024] Open
Abstract
This review aims to highlight the role of silicon in drug discovery. Silicon and carbon are often regarded as being similar with silicon located directly beneath carbon in the same group in the periodic table. That being noted, in many instances a clear dichotomy also exists between silicon and carbon, and these differences often lead to vastly different physiochemical and biological properties. As a result, the utility of silicon in drug discovery has attracted significant attention and has grown rapidly over the past decade. This review showcases some recent advances in synthetic organosilicon chemistry and examples of the ways in which silicon has been employed in the drug-discovery field.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Pharmaceutical Technologies, Future Production: Chemicals, Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria South Africa
| | - Darren Lyall Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria South Africa
| | - Felix Hasenmaile
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| |
Collapse
|
4
|
Wysocki M, Ziental D, Biyiklioglu Z, Jozkowiak M, Baş H, Dlugaszewska J, Piotrowska-Kempisty H, Güzel E, Sobotta L. Non-peripheral octasubstituted zinc(II) phthalocyanines bearing pyridinepropoxy substituents - Antibacterial, anticancer photodynamic and sonodynamic activity. J Inorg Biochem 2024; 262:112751. [PMID: 39368458 DOI: 10.1016/j.jinorgbio.2024.112751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
The novel non-peripheral octa-substituted zinc(II) phthalocyanines with 3- and 4-pyridinepropoxy substituents were synthesized via cyclization of substituted phthalonitriles and further characterized. Their photodynamic and sonodynamic activity were then assessed toward bacteria and cancer cells. Additionally, inhibition activity against common human enzymes was evaluated. The singlet oxygen generation (with 1,3-diphenylisobenzofuran - DPBF as an unspecific chemical quencher of singlet oxygen) were measured under light irradiation, whereas under ultrasounds (1 MHz, 3 W) the stability of DPBF in the presence of sensitizer was evaluated. Both phthalocyanines revealed high photostability in DMSO and moderate in DMF, whereas the sonostability in DMF was moderate. Calculated light-induced singlet oxygen generation quantum yields were similar for both compounds and oscillated around 0.33 in DMF and 0.67 in DMSO. Sonodynamic manner revealed moderately high DPBF decomposition upon 1 MHz. Significant bacterial reduction was noted in both photodynamic and sonodynamic manner, reaching >3 log reduction against MRSA and S. epidermidis. Both compounds showed ca. 50 % viability reduction toward hypopharyngeal tumor (FaDu). Moreover, up to 60 % viability reduction was observed in squamous cell carcinoma (SCC-25). In summary, this molecular building of the efficient phthalocyanine-based sensitizer is a potential therapeutic for photodynamic and sonodynamic applications.
Collapse
Affiliation(s)
- Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; Doctoral School Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Zekeriya Biyiklioglu
- Department of Chemistry, Karadeniz Technical University, Faculty of Science, Trabzon, Türkiye.
| | - Malgorzata Jozkowiak
- Doctoral School Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; Chair and Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland; Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wroclaw, Poland
| | - Hüseyin Baş
- Department of Chemistry, Karadeniz Technical University, Faculty of Science, Trabzon, Türkiye
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Chair and Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Emre Güzel
- Department of Engineering Fundamental Sciences, Sakarya University of Applied Sciences, Sakarya, Türkiye
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
| |
Collapse
|
5
|
Trivedi R, Upadhyay TK. Preparation, characterization and antioxidant and anticancerous potential of Quercetin loaded β-glucan particles derived from mushroom and yeast. Sci Rep 2024; 14:16047. [PMID: 38992105 PMCID: PMC11239821 DOI: 10.1038/s41598-024-66824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
β-glucans are polysaccharides found in the cell walls of various fungi, bacteria and cereals. β-glucan have been found to show various kinds of anti-inflammatory, antimicrobial, antidiabetic antioxidant and anticancerous activities. In the present study, we have isolated β-glucan from the baker's yeast Saccharomyces cerevisiae and white button mushroom Agaricus bisporus and tested their antioxidant potential and anticancerous activity against prostate cancer cell line PC3. Particles were characterized with zeta sizer and further with FTIR that confirmed that the isolated particles are β-glucan and alginate sealing made slow and sustained release of the Quercetin from the β-glucan particles. Morphological analysis of the hollow and Quercetin loaded β-glucan was performed with the SEM analysis and stability was analyzed with TGA and DSC analysis that showed the higher stability of the alginate sealed particles. Assessments of the antioxidant potential showed that Quercetin loaded particles were having higher antioxidant activity than hollow β-glucan particles. Cell viability of the PC3 cells was examined with MTT assay and it was found that Quercetin loaded alginate sealed Agaricus bisporus derived β-glucan particles were having lowest IC50. Further ROS generation was found to increase in a dose dependent manner. Apoptosis detection was carried out with Propidium iodide and AO/EtBr staining dye which showed significant death in the cells treated with higher concentration of the particles. Study showed that particles derived from both of the sources were having efficient anticancer activity and showing a dose dependent increase in cell death in PC3 cells upon treatment.
Collapse
Affiliation(s)
- Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India.
| |
Collapse
|
6
|
Hochma E, Ishai PB, Firer MA, Minnes R. Phyto-Photodynamic Therapy of Prostate Cancer Cells Mediated by Yemenite 'Etrog' Leave Extracts. Nutrients 2024; 16:1820. [PMID: 38931175 PMCID: PMC11206993 DOI: 10.3390/nu16121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer therapy, from malignant tumor inhibition to cellular eradication treatment, remains a challenge, especially regarding reduced side effects and low energy consumption during treatment. Hence, phytochemicals as cytotoxic sensitizers or photosensitizers deserve special attention. The dark and photo-response of Yemenite 'Etrog' leaf extracts applied to prostate PC3 cancer cells is reported here. An XTT cell viability assay along with light microscope observations revealed pronounced cytotoxic activity of the extract for long exposure times of 72 h upon concentrations of 175 μg/mL and 87.5 μg/mL, while phototoxic effect was obtained even at low concentration of 10.93 μg/mL and a short introduction period of 1.5 h. For the longest time incubation of 72 h and for the highest extract concentration of 175 μg/mL, relative cell survival decreased by up to 60% (below the IC50). In combined phyto-photodynamic therapy, a reduction of 63% compared to unirradiated controls was obtained. The concentration of extract in cells versus the accumulation time was inversely related to fluorescence emission intensity readings. Extracellular ROS production was also shown. Based on an ATR-FTIR analysis of the powdered leaves and their liquid ethanolic extract, biochemical fingerprints of both polar and non-polar phyto-constituents were identified, thereby suggesting their implementation as phyto-medicine and phyto-photomedicine.
Collapse
Affiliation(s)
- Efrat Hochma
- Department of Physics, Ariel University, Ariel 4070000, Israel; (E.H.); (P.B.I.)
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel
| | - Paul Ben Ishai
- Department of Physics, Ariel University, Ariel 4070000, Israel; (E.H.); (P.B.I.)
| | - Michael A. Firer
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel
- Adelson School of Medicine, Ariel University, Ariel 4070000, Israel
| | - Refael Minnes
- Department of Physics, Ariel University, Ariel 4070000, Israel; (E.H.); (P.B.I.)
| |
Collapse
|
7
|
Messaoudi H, Yaşa Atmaca G, Türkkol A, Bilgin MD, Erdoğmuş A. Monitoring of singlet oxygen generation of a novel Schiff-base substituted silicon phthalocyanines by sono-photochemical studies and in vitro activities on prostate cancer cell. J Biol Inorg Chem 2024; 29:303-314. [PMID: 38727821 PMCID: PMC11111517 DOI: 10.1007/s00775-024-02055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/13/2024] [Indexed: 05/24/2024]
Abstract
This study demonstrates the potential of sono-photodynamic therapy as an effective approach for enhancing singlet oxygen generation using the synthesized Schiff-base diaxially substituted silicon phthalocyanines. In photochemical studies, the singlet oxygen quantum yields (Φ∆) were determined as 0.43 for Si1a, 0.94 for Q-Si1a, 0.58 for S-Si1a, and 0.49 for B-Sia1. In sono-photochemical studies, the Φ∆ values were reached to 0.67 for Si1a, 1.06 for Q-Si1a, 0.65 for S-Si1a, and 0.67 for B-Sia1. In addition, this study demonstrates the therapeutic efficacy of phthalocyanines synthesized as sensitizers on the PC3 prostate cancer cell line through in vitro experiments. The application of these treatment modalities exhibited notable outcomes, leading to a substantial decrease in cell viability within the PC3 prostate cancer cell line. These findings highlight the potential of utilizing these synthesized phthalocyanines as promising therapeutic agents for prostate cancer treatment.
Collapse
Affiliation(s)
- Hiba Messaoudi
- Department of Chemistry, Yildiz Technical University, 34210, Esenler, Istanbul, Turkey
| | - Göknur Yaşa Atmaca
- Department of Chemistry, Yildiz Technical University, 34210, Esenler, Istanbul, Turkey.
| | - Ayşegül Türkkol
- Faculty of Medicine, Department of Biophysics, Aydın Adnan Menderes University, 09010, Aydın, Turkey
| | - Mehmet Dinçer Bilgin
- Faculty of Medicine, Department of Biophysics, Aydın Adnan Menderes University, 09010, Aydın, Turkey
| | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, 34210, Esenler, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, 34220, Istanbul, Turkey.
| |
Collapse
|
8
|
Nene LC, Abrahamse H. Design consideration of phthalocyanines as sensitizers for enhanced sono-photodynamic combinatorial therapy of cancer. Acta Pharm Sin B 2024; 14:1077-1097. [PMID: 38486981 PMCID: PMC10935510 DOI: 10.1016/j.apsb.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/08/2023] [Accepted: 11/25/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer remains one of the diseases with the highest incidence and mortality globally. Conventional treatment modalities have demonstrated threatening drawbacks including invasiveness, non-controllability, and development of resistance for some, including chemotherapy, radiation, and surgery. Sono-photodynamic combinatorial therapy (SPDT) has been developed as an alternative treatment modality which offers a non-invasive and controllable therapeutic approach. SPDT combines the mechanism of action of sonodynamic therapy (SDT), which uses ultrasound, and photodynamic therapy (PDT), which uses light, to activate a sensitizer and initiate cancer eradication. The use of phthalocyanines (Pcs) as sensitizers for SPDT is gaining interest owing to their ability to induce intracellular oxidative stress and initiate toxicity under SDT and PDT. This review discusses some of the structural prerequisites of Pcs which may influence their overall SPDT activities in cancer therapy.
Collapse
Affiliation(s)
- Lindokuhle Cindy Nene
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
9
|
Köse GG, Erdoğmuş A. Dual effect of light and ultrasound for efficient singlet oxygen generation with novel diaxial silicon phthalocyanine sensitizer. Photochem Photobiol 2024; 100:52-66. [PMID: 37431229 DOI: 10.1111/php.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
To treat a life-threatening disease like cancer, photodynamic therapy (PDT) and sonodynamic therapy (SDT) methods were combined into sono-photodynamic therapy (SPDT) as an effective therapeutic solution. Each day, the usage of phthalocyanine sensitizers increases in the therapeutic applications as they have the ability to produce more reactive oxygen species. In this context, a new diaxially silicon phthalocyanine sensitizer, containing triazole and tert-butyl groups, was synthesized. After elucidating the structure of the complex with elemental analysis, FT-IR, UV-Vis, MALDI-TOF MS and 1 H NMR, its photophysical, photochemical and sono-photochemical properties were examined. When singlet oxygen generation capacity of the new synthesized silicon phthalocyanine complex was determined and compared among photochemical (PDT; ФΔ = 0.59 in DMSO, 0.44 in THF, 0.47 in toluene) and sonophotochemical (SPDT; ФΔ = 0.88 in dimethyl sulfoxide (DMSO), 0.60 in tetrahydrofuran (THF), 0.65 in toluene) methods, it can be said that the complex is a successful sono-photosensitizer that can be used as a good SPDT agent in vitro or in vivo future studies.
Collapse
Affiliation(s)
| | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
10
|
FARAJZADEH N, YENİLMEZ HY, YAŞA ATMACA G, ERDOĞMUŞ A, ALTUNTAŞ BAYIR Z. Sonophotochemical and photochemical efficiency of thiazole-containing metal phthalocyanines and their gold nanoconjugates. Turk J Chem 2023; 47:1085-1102. [PMID: 38173750 PMCID: PMC10760820 DOI: 10.55730/1300-0527.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/31/2023] [Accepted: 09/30/2023] [Indexed: 01/05/2024] Open
Abstract
This study presents the synthesis of some metal {M = Zn(II), Lu(III), Si(IV)} phthalocyanines bearing chlorine and 2-(4-methylthiazol-5-yl) ethoxy groups at peripheral or axial positions. The newly synthesized metal phthalocyanines were characterized by applying FT-IR, 1H NMR, mass, and UV-Vis spectroscopic approaches. Additionally, the surface of gold nanoparticles was modified with zinc(II) and silicon(IV) phthalocyanines. The resultant nanoconjugates were characterized using TEM images. Moreover, the effect of metal ions and position of substituent, and gold nanoparticles on the photochemical and sonophotochemical properties of the studied phthalocyanines was investigated. The highest singlet oxygen quantum yield was obtained for the lutetium phthalocyanine by applying photochemical and sonophotochemical methods. However, the linkage of the zinc(II) and silicon(IV) phthalocyanines to the surface of gold nanoparticles improved significantly their singlet oxygen generation capacities.
Collapse
Affiliation(s)
- Nazli FARAJZADEH
- Department of Chemistry, İstanbul Technical University, Maslak, İstanbul,
Turkiye
| | | | - Göknur YAŞA ATMACA
- Department of Chemistry, Yıldız Technical University, Esenler, İstanbul,
Turkiye
| | - Ali ERDOĞMUŞ
- Department of Chemistry, Yıldız Technical University, Esenler, İstanbul,
Turkiye
| | - Zehra ALTUNTAŞ BAYIR
- Department of Chemistry, İstanbul Technical University, Maslak, İstanbul,
Turkiye
| |
Collapse
|
11
|
ÖZÇEŞMECİ M, CAN KARANLIK C, ERDOĞMUŞ A, HAMURYUDAN E. Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions. Turk J Chem 2023; 47:1160-1168. [PMID: 38173756 PMCID: PMC10760847 DOI: 10.55730/1300-0527.3602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/31/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024] Open
Abstract
The term sonophotodynamic therapy (SPDT) refers to a combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT), in which the efficacy of the treatment is boosted by utilizing the proper amount of a sensitizer that is responsive to both light and ultrasound. Although it has been proven in photophysicochemical studies that SPDT enhances singlet oxygen production, related studies in the literature are very limited. Considering this situation, this study aims to investigate the efficacy of synthesized phthalocyanines in terms of PDT and SPDT. The singlet oxygen quantum values calculated as 0.13 for 5, 0.44 for 6, and 0.61 for 7 in photochemical (PDT) application increased to 0.18, 0.86, and 0.92, respectively, with sonophotochemical (SPDT) application. According to the results, singlet oxygen production was more efficient with SPDT. This work will add to the body of knowledge on employing the SPDT approach to increase singlet oxygen generation.
Collapse
Affiliation(s)
- Mukaddes ÖZÇEŞMECİ
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, İstanbul,
Turkiye
| | - Ceren CAN KARANLIK
- Department of Chemistry, Faculty of Science and Letters, Yıldız Technical University, İstanbul,
Turkiye
| | - Ali ERDOĞMUŞ
- Department of Chemistry, Faculty of Science and Letters, Yıldız Technical University, İstanbul,
Turkiye
| | - Esin HAMURYUDAN
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, İstanbul,
Turkiye
| |
Collapse
|
12
|
ÖMEROĞLU İ, DURMUŞ M. Water-soluble phthalocyanine photosensitizers for photodynamic therapy. Turk J Chem 2023; 47:837-863. [PMID: 38173755 PMCID: PMC10760830 DOI: 10.55730/1300-0527.3583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/31/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024] Open
Abstract
Photodynamic therapy (PDT) is based on a photochemical reaction that is started when a photosensitizing process is activated by the light and results in the death of tumor cells. Solubility is crucial in PDT applications to investigate the physical and chemical characteristics of phthalocyanines, but, unfortunately, most phthalocyanines show limited solubility especially in water. To increase the solubility of phthalocyanines in polar solvents and water, ionic groups such as -SO3-, -NR3+, -COO-, and nonionic groups such as polyoxy chains are frequently added to the peripheral or nonperipheral positions of the phthalocyanine framework. Since water-solubility and NIR-absorbing properties are essential for efficient PDT activation, studies have been focused on the synthesis of these types of phthalocyanine derivatives. This review focuses on the photophysical, photochemical, and some in vitro or in vivo studies of the recently published ionic and nonionic phthalocyanine-mediated photosensitizers carried out in the last five years. This review will have positive contributions to future studies on phthalocyanine chemistry and their PDT applications as well as photochemistry.
Collapse
Affiliation(s)
- İpek ÖMEROĞLU
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli,
Turkiye
| | - Mahmut DURMUŞ
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli,
Turkiye
| |
Collapse
|
13
|
Kocaağa N, Türkkol A, Bilgin MD, Erdoğmuş A. The synthesis of novel water-soluble zinc (II) phthalocyanine based photosensitizers and exploring of photodynamic therapy activities on the PC3 cancer cell line. Photochem Photobiol Sci 2023; 22:2037-2053. [PMID: 37166570 DOI: 10.1007/s43630-023-00428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
In this study, Schiff base substituted phthalocyanine complexes (Zn1c, Zn2c) and their quaternized derivatives (Q-Zn1c, Q-Zn2c) were synthesized for the first time. Their structures have been characterized by FT-IR, 1H-NMR, UV-Vis, mass spectrometry and elemental analysis as well as. The photophysicochemical properties (fluorescence, singlet oxygen and photodegradation quantum yield) of these novel complexes were investigated in dimethylsulfoxide (DMSO) for both non-ionic and quaternized cationic phthalocyanine complexes and in aqueous solution for quaternized cationic phthalocyanine complexes. Water soluble cationic phthalocyanine compounds gave good singlet oxygen quantum yield (0.65 for Q-Zn1c, 0.66 for Q-Zn2c in DMSO; 0.65 for Q-Zn2c in aqueous solution). The binding of Q-Zn1c and Q-Zn2c to BSA/DNA was studied by using UV-Vis and fluorescence spectroscopy and these. Studies indicate that the mechanism of BSA quenching by quaternized zinc(II) phthalocyanines was static quenching. Quaternized zinc(II) phthalocyanines interacted with ct-DNA by intercalation. Quaternized zinc(II) phthalocyanines caused a decrease in cell viability and triggered apoptotic cell death after PDT was applied at a concentration that did not have a toxic effect on their own. Q-Zn1c and Q-Zn2c mediated PDT reduced the activity of SOD, CAT, GSH while increased MDA level in the prostate cancer cells. Furthermore, expression of apoptotic proteins after PDT was examined. The results revealed that the synthesized water soluble quaternized zinc(II) phthalocyanine complexes (Q-Zn1c and Q-Zn2c) are promising potential photosensitizers for PDT.
Collapse
Affiliation(s)
- Nagihan Kocaağa
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, 34210, Turkey
| | - Ayşegül Türkkol
- Department of Biophysics, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, 09010, Turkey
| | - Mehmet Dinçer Bilgin
- Department of Biophysics, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, 09010, Turkey
| | - Ali Erdoğmuş
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Istanbul, 34210, Turkey.
| |
Collapse
|