1
|
Wang W, Cheng Z, Xing H, Zhou S, Ye Q, Xiong G, Wang G, Ma D. Red cell membrane-coating Prussian blue for combined photothermal and NO gas therapy for nasopharyngeal carcinoma. J Mater Chem B 2024; 12:1579-1591. [PMID: 38259153 DOI: 10.1039/d3tb02444j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nitric oxide (NO) gas molecules have demonstrated remarkable anti-tumor effects and minimal susceptibility to drug resistance, establishing as a promising modality for effective tumor treatment. However, how to realize its stable and efficient delivery in vivo is still a challenge. In this study, we have developed a heat-responsive biomimetic nano erythrocyte (M/B@R) by loading a NO donor (BNN6) onto mesoporous Prussian blue (M-PB) and subsequently enveloping them with red blood cell membranes. The preserved integrity of the red blood cell membrane (RBCm) structure could ensure its excellent biosafety, prolong its circulation time within the bloodstream and then enhance the accumulation of BNN6 at tumor sites. When M/B@R is stimulated by near-infrared light (NIR-II, 808 nm) irradiation, the nanoparticle could generate significant heat for photothermal therapy (PTT) by the characteristic NIR absorption of M-PB and then NO could also be efficiently released. The generated NO further facilitates the formation of ONOO-, a highly toxic species to tumors, while also alleviating tumor hypoxia. Remarkably, M/B@R, with NIR as the excitation source, induces combined lethality through hyperthermia, DNA damage, and tumor hypoxia relief. This novel combination strategy provides a new avenue for PTT/NO-induced cancer therapy.
Collapse
Affiliation(s)
- Wenbo Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Zhaoyi Cheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Hui Xing
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Shihao Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Qiaozhang Ye
- Dalang Hospital of Dongguan, Dongguan 523000, China.
| | - Gaofei Xiong
- Dalang Hospital of Dongguan, Dongguan 523000, China.
| | - Guanhai Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Dong Ma
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Tang L, Huang F, Zhou X, Zhao M, Huang M. Fire needle combined with photodynamic therapy for cutaneous infectious granulomatosis caused by mycobacterium chelonae: A case report. Photodiagnosis Photodyn Ther 2024; 45:103836. [PMID: 37813272 DOI: 10.1016/j.pdpdt.2023.103836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
Mycobacterium chelonae is a non-tuberculous mycobacteria, which can cause skin infectious granuloma through cosmetic injection. This disease's treatment requires a combination of sensitive antibiotics and a lengthy treatment cycle. Photodynamic therapy is still effective for patients who are unwilling to take antibiotics orally. In this case, we successfully used fire needle combined with photodynamic therapy to treat skin infectious granulomatosis caused by Mycobacterium chelonei, and achieved satisfactory results. We used fire needle to pretreat cysts and nodules, which improved the diffusion and absorption of locally applied photosensitizers and enhanced the efficacy of photodynamic therapy. However, additional clinical research is necessary to determine the efficacy and safety of fire needle combined with photodynamic therapy for cutaneous infectious granulomatosis.
Collapse
Affiliation(s)
- Lei Tang
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Fujun Huang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xun Zhou
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Mingdan Zhao
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Mengya Huang
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.
| |
Collapse
|
3
|
Bhattacharya S, Prajapati BG, Singh S, Anjum MM. Nanoparticles drug delivery for 5-aminolevulinic acid (5-ALA) in photodynamic therapy (PDT) for multiple cancer treatment: a critical review on biosynthesis, detection, and therapeutic applications. J Cancer Res Clin Oncol 2023; 149:17607-17634. [PMID: 37776358 DOI: 10.1007/s00432-023-05429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment that kills cancer cells selectively by stimulating reactive oxygen species generation with photosensitizers exposed to specific light wavelengths. 5-aminolevulinic acid (5-ALA) is a widely used photosensitizer. However, its limited tumour penetration and targeting reduce its therapeutic efficacy. Scholars have investigated nano-delivery techniques to improve 5-ALA administration and efficacy in PDT. This review summarises recent advances in biological host biosynthetic pathways and regulatory mechanisms for 5-ALA production. The review also highlights the potential therapeutic efficacy of various 5-ALA nano-delivery modalities, such as nanoparticles, liposomes, and gels, in treating various cancers. Although promising, 5-ALA nano-delivery methods face challenges that could impair targeting and efficacy. To determine their safety and biocompatibility, extensive preclinical and clinical studies are required. This study highlights the potential of 5-ALA-NDSs to improve PDT for cancer treatment, as well as the need for additional research to overcome barriers and improve medical outcomes.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| | - Bhuphendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gujarat, Kherva, 384012, India.
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Md Meraj Anjum
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| |
Collapse
|
4
|
Tsiolakkis G, Liontos A, Filippas-Ntekouan S, Matzaras R, Theodorou E, Vardas M, Vairaktari G, Nikopoulou A, Christaki E. Mycobacterium marinum: A Case-Based Narrative Review of Diagnosis and Management. Microorganisms 2023; 11:1799. [PMID: 37512971 PMCID: PMC10384600 DOI: 10.3390/microorganisms11071799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Skin and soft tissue infections caused by non-tuberculous mycobacteria are occurring more frequently in recent years. However, chronic skin and soft tissue lesions present a challenge for clinicians, as the diagnostic work-up and definitive diagnosis require knowledge and available laboratory resources. We present here the case of a 66-year-old male patient who presented with painful abscess-like nodules on his right hand and forearm, which worsened after treatment with an anti-TNF-a agent. The fluid specimen taken from the lesion was positive for mycobacteria according to the acid-fast stain. Mycobacterium marinum was identified, first by next-generation sequencing and finally grown on culture, after eight weeks. Acknowledging the complexity of diagnosing and managing infections by non-tuberculous mycobacteria, and especially Mycobacterium marinum, we provide a review of the current epidemiology, clinical characteristics, diagnosis and management of Mycobacterium marinum infection.
Collapse
Affiliation(s)
- Giorgos Tsiolakkis
- Department of Internal Medicine, Nicosia General Hospital, Nicosia 2029, Cyprus
| | - Angelos Liontos
- 1st Division of Internal Medicine & Infectious Diseases Unit, University General Hospital of Ioannina, Faculty of Medicine, University of Ioannina, Str. Niarchou, 45500 Ioannina, Greece
| | - Sempastian Filippas-Ntekouan
- 1st Division of Internal Medicine & Infectious Diseases Unit, University General Hospital of Ioannina, Faculty of Medicine, University of Ioannina, Str. Niarchou, 45500 Ioannina, Greece
| | - Rafail Matzaras
- 1st Division of Internal Medicine & Infectious Diseases Unit, University General Hospital of Ioannina, Faculty of Medicine, University of Ioannina, Str. Niarchou, 45500 Ioannina, Greece
| | | | - Michail Vardas
- School of Medicine, University of Cyprus, Nicosia 2029, Cyprus
| | | | - Anna Nikopoulou
- Department of Internal Medicine, G. Papanikolaou General Hospital of Thessaloniki, 57010 Thessaloniki, Greece
| | - Eirini Christaki
- 1st Division of Internal Medicine & Infectious Diseases Unit, University General Hospital of Ioannina, Faculty of Medicine, University of Ioannina, Str. Niarchou, 45500 Ioannina, Greece
| |
Collapse
|