1
|
Gameleira FT, Alúcio KT, de Paiva MLMN, de Lima Carlos KC, de Lima KM, Gameleira MH, Kauffman MA, Espay AJ. Epileptic chorea: Another window into neural networks? J Neurol Sci 2018; 394:138-140. [PMID: 30266016 DOI: 10.1016/j.jns.2018.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022]
Affiliation(s)
| | - Karina Torres Alúcio
- Programme of Epilepsy Surgery of the University Hospital of the Federal University of Alagoas, Brazil
| | | | | | - Kedma Mayara de Lima
- Programme of Epilepsy Surgery of the University Hospital of the Federal University of Alagoas, Brazil
| | | | - Marcelo A Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía. Buenos Aires, Argentina
| | - Alberto J Espay
- James J. and Joan A. Gardner Center for Parkinson disease and Movement Disorders, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Erro R, Bhatia KP, Espay AJ, Striano P. The epileptic and nonepileptic spectrum of paroxysmal dyskinesias: Channelopathies, synaptopathies, and transportopathies. Mov Disord 2017; 32:310-318. [PMID: 28090678 DOI: 10.1002/mds.26901] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Historically, the syndrome of primary paroxysmal dyskinesias was considered a group of disorders as a result of ion channel dysfunction. This proposition was primarily based on the discovery of mutations in ion channels, which caused other episodic neurological disorders such as epilepsy and migraine and also supported by the frequent association between paroxysmal dyskinesias and epilepsy. However, the discovery of the genes responsible for the 3 classic forms of paroxysmal dyskinesias disproved this ion channel theory. On the other hand, novel gene mutations implicating ion channels have been recently reported to produce episodic movement disorders clinically similar to the classic paroxysmal dyskinesias. Here, we review the clinical and pathophysiological aspects of the paroxysmal dyskinesias, further proposing a pathophysiological framework according to which they can be classified as synaptopathies (proline-rich transmembrane protein 2 and myofibrillogenesis regulator gene), channelopathies (calcium-activated potassium channel subunit alpha-1 and voltage-gated sodium channel type 8), or transportopathies (solute carrier family 2 member 1). This proposal might serve to explain similarities and differences among the various paroxysmal dyskinesias in terms of clinical features, treatment response, and natural history. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roberto Erro
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, Institute of Neurology, London, UK.,Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, Institute of Neurology, London, UK
| | - Alberto J Espay
- Gardner Neuroscience Institute, Department of Neurology, Gardner Center for Parkinson's disease and Movement Disorders, University of Cincinnati, Ohio, USA
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute, Genova, Italy
| |
Collapse
|
3
|
Gardella E, Becker F, Møller RS, Schubert J, Lemke JR, Larsen LHG, Eiberg H, Nothnagel M, Thiele H, Altmüller J, Syrbe S, Merkenschlager A, Bast T, Steinhoff B, Nürnberg P, Mang Y, Bakke Møller L, Gellert P, Heron SE, Dibbens LM, Weckhuysen S, Dahl HA, Biskup S, Tommerup N, Hjalgrim H, Lerche H, Beniczky S, Weber YG. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol 2016; 79:428-36. [PMID: 26677014 DOI: 10.1002/ana.24580] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/02/2015] [Accepted: 12/13/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Benign familial infantile seizures (BFIS), paroxysmal kinesigenic dyskinesia (PKD), and their combination-known as infantile convulsions and paroxysmal choreoathetosis (ICCA)-are related autosomal dominant diseases. PRRT2 (proline-rich transmembrane protein 2 gene) has been identified as the major gene in all 3 conditions, found to be mutated in 80 to 90% of familial and 30 to 35% of sporadic cases. METHODS We searched for the genetic defect in PRRT2-negative, unrelated families with BFIS or ICCA using whole exome or targeted gene panel sequencing, and performed a detailed cliniconeurophysiological workup. RESULTS In 3 families with a total of 16 affected members, we identified the same, cosegregating heterozygous missense mutation (c.4447G>A; p.E1483K) in SCN8A, encoding a voltage-gated sodium channel. A founder effect was excluded by linkage analysis. All individuals except 1 had normal cognitive and motor milestones, neuroimaging, and interictal neurological status. Fifteen affected members presented with afebrile focal or generalized tonic-clonic seizures during the first to second year of life; 5 of them experienced single unprovoked seizures later on. One patient had seizures only at school age. All patients stayed otherwise seizure-free, most without medication. Interictal electroencephalogram (EEG) was normal in all cases but 2. Five of 16 patients developed additional brief paroxysmal episodes in puberty, either dystonic/dyskinetic or "shivering" attacks, triggered by stretching, motor initiation, or emotional stimuli. In 1 case, we recorded typical PKD spells by video-EEG-polygraphy, documenting a cortical involvement. INTERPRETATION Our study establishes SCN8A as a novel gene in which a recurrent mutation causes BFIS/ICCA, expanding the clinical-genetic spectrum of combined epileptic and dyskinetic syndromes.
Collapse
Affiliation(s)
- Elena Gardella
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark.,Institute of Regional Health Research, University of South Denmark, Odense, Denmark
| | - Felicitas Becker
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rikke S Møller
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark.,Institute of Regional Health Research, University of South Denmark, Odense, Denmark
| | - Julian Schubert
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University Hospitals, University of Leipzig, Leipzig, Germany
| | | | - Hans Eiberg
- RC-LINK, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nothnagel
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Steffen Syrbe
- Department of Woman and Child Health, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Andreas Merkenschlager
- Department of Woman and Child Health, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | | | | | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Yuan Mang
- Wilhelm Johannsen Center for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Pia Gellert
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark
| | - Sarah E Heron
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Leanne M Dibbens
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Sarah Weckhuysen
- Neurogenetics Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | | | - Saskia Biskup
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Niels Tommerup
- Wilhelm Johannsen Center for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Helle Hjalgrim
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark.,Institute of Regional Health Research, University of South Denmark, Odense, Denmark
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Sándor Beniczky
- Danish Epilepsy Center-Filadelfia, Dianalund, Denmark.,Department of Clinical Neurophysiology, Aarhus University, Aarhus, Denmark
| | - Yvonne G Weber
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Sun W, Li J, Zhu Y, Yan X, Wang W. Clinical features of paroxysmal kinesigenic dyskinesia: report of 24 cases. Epilepsy Behav 2012; 25:695-9. [PMID: 23067699 DOI: 10.1016/j.yebeh.2012.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/22/2012] [Accepted: 06/23/2012] [Indexed: 10/27/2022]
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is the most common type of paroxysmal dyskinesia and is characterized by involuntary, intermittent movements induced by sudden movements. Here, we describe 24 patients with PKD, whose clinical data were analyzed. The attacks of involuntary movements were all short lasting, and could involve extremities, trunk, neck, or face without alteration of consciousness. The motor function was normal between attacks, and in some cases, attacks could be evoked during examination. Most patients had normal electroencephalogram (EEG) and neuroimaging results, but 2 cases had abnormal EEGs, and another 2 cases had bilateral calcification of basal ganglion on brain computed tomography (CT) scans. Previous history of misdiagnosis was a predominant feature, while treatments based on misdiagnosis sometimes did lead to improvement. Here, we discuss the clinical characteristics, especially the abnormalities of investigations and misdiagnosis, and recent insights into the pathophysiology of PKD.
Collapse
Affiliation(s)
- Wei Sun
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | | | | | | | | |
Collapse
|
5
|
Kato N, Sadamatsu M, Kikuchi T, Niikawa N, Fukuyama Y. Paroxysmal kinesigenic choreoathetosis: from first discovery in 1892 to genetic linkage with benign familial infantile convulsions. Epilepsy Res 2006; 70 Suppl 1:S174-84. [PMID: 16901678 DOI: 10.1016/j.eplepsyres.2006.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 01/07/2006] [Accepted: 02/06/2006] [Indexed: 10/24/2022]
Abstract
Paroxysmal kinesigenic choreoathetosis (PKC) is presently clearly designated as a familial movement disorder with autosomal dominant inheritance. We identified a family of PKC, in which 6 out of 23 members were affected, and 4 of the affected members had a history of infantile convulsions. Thus, this family was also considered as a case of infantile convulsions with paroxysmal choreoathetosis (ICCA). Video-EEG monitoring of two affected members suggested that PKC is less likely to be a form of reflex epilepsy, despite the existence of a history of infantile convulsions. Linkage analysis on eight Japanese families, including this family, defined the locus of PKC within the pericentromeric region of chromosome 16. ICCA and a form of autosomal dominant benign familial infantile convulsions (BFIC) were both mapped to the same or nearby region for PKC on chromosome 16. Additionally and quite unexpectedly, the locus of wet/dry ear wax (cerumen) was found to be located in the same region. Lastly, it was pointed out that the priority of the first discovery of PKC in the world should go to a Japanese psychiatrist, Shuzo Kure (1865-1932), who published the first detailed and almost complete description of a male patient with PKC in a Japanese medical journal in 1892.
Collapse
Affiliation(s)
- Nobumasa Kato
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan.
| | | | | | | | | |
Collapse
|