1
|
Zitek T, Scheppke KA, Antevy P, Coyle C, Garay S, Scheppke E, Farcy DA. Midazolam and Ketamine for Convulsive Status Epilepticus in the Out-of-Hospital Setting. Ann Emerg Med 2024:S0196-0644(24)01195-8. [PMID: 39674935 DOI: 10.1016/j.annemergmed.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024]
Abstract
STUDY OBJECTIVE To determine if ketamine, when added to midazolam for the treatment of out-of-hospital seizures, is associated with an increase in the rate of cessation of convulsions prior to hospital arrival. METHODS We performed a retrospective cohort study of out-of-hospital patients with an active convulsive seizure being transported to a hospital by a large emergency medical services system in Florida, using data from August 1, 2015 and August 5, 2024. Per protocol, patients received midazolam first for their seizure. Starting in June 2017, a new protocol was developed in which patients who continued to convulse after midazolam received ketamine. We used propensity score matching and multivariable logistic regression to determine if patients who received ketamine were more likely to stop convulsing prior to hospital arrival than those who received midazolam alone. RESULTS Overall, 479 (80.1%) of 598 actively convulsing patients who received 2 doses of midazolam (without subsequent ketamine) had resolution of their convulsions prior to hospital arrival compared with 85 (94.4%) of 90 who received ketamine after midazolam, an absolute difference between groups of 14.3% (95% CI 8.6% to 20.1%). After propensity matching, 82.0% of those in the midazolam only group had resolution of convulsions compared to 94.4% in the ketamine group, a difference of 12.4% (95% CI 3.1% to 21.7%). CONCLUSION In this retrospective study of out-of-hospital patients with active convulsive seizures, patients who received ketamine were more likely to have stopped convulsing prior to hospital arrival than those who received midazolam alone.
Collapse
Affiliation(s)
- Tony Zitek
- Department of Emergency Medicine, Mt. Sinai Medical Center, Miami Beach, FL; Department of Emergency Medicine and Critical Care, Herbert Wertheim College of Medicine at Florida International University, Miami, FL.
| | | | - Peter Antevy
- Palm Beach County Fire Rescue, West Palm Beach, FL
| | | | | | | | - David A Farcy
- Department of Emergency Medicine, Mt. Sinai Medical Center, Miami Beach, FL; Department of Emergency Medicine and Critical Care, Herbert Wertheim College of Medicine at Florida International University, Miami, FL; Palm Beach County Fire Rescue, West Palm Beach, FL
| |
Collapse
|
2
|
Scheppke KA, Pepe PE, Garay SA, Coyle CW, Antevy PM, Perlmutter MC, Scheppke EK, Crowe RP. Effectiveness of Ketamine As a Rescue Drug for Patients Experiencing Benzodiazepine-Resistant Status Epilepticus in the Prehospital Setting. Crit Care Explor 2024; 6:e1186. [PMID: 39642307 PMCID: PMC11627481 DOI: 10.1097/cce.0000000000001186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024] Open
Abstract
OBJECTIVES Accumulating basic science data, early clinical findings and various feasibility considerations have provided rationales for administering ketamine as a proposed rescue medication for midazolam-resistant status epilepticus (SE) in the logistically challenging prehospital environment. This report details the multiyear experience of paramedics managing midazolam-resistant SE following the introduction of a ketamine-rescue protocol. DESIGN A 7-year, population-based, observational study was conducted to evaluate outcomes of patients treated with IV, intraosseous, intramuscular, or intranasal ketamine for SE despite sufficient midazolam dosings. Tracked outcomes included: 1) rapid/sustained termination of clinical seizures in adults while under paramedics' care; 2) corresponding evaluations in children/adolescents; 3) any concerning observations regarding need for assisted ventilation, intubation, or other active interventions post-ketamine; and 4) any identifiable associations between outcomes and circumstances, demographics, or medical history. SETTING Emergency response 9-1-1 system serving a large, diverse U.S. county (jurisdictional population, 961,000/1,769 sq miles). PATIENTS Those receiving ketamine from paramedics for persistent seizures. INTERVENTIONS Adults and adolescents: 100 mg ketamine IV/intraosseous/intramuscular/intranasal; children: 1 mg/kg intramuscular/intranasal. MEASUREMENTS AND MAIN RESULTS Among 81 total cases, 57 involved adults (18-86 yr old) receiving the SE-midazolam + ketamine protocol. Ketamine rapidly terminated convulsions in 56 (98.2%) without recurrence during prehospital and hospital arrival phases. For approved reasons, paramedics administered ketamine directly (no midazolam) in eight adults and one child, terminating convulsions in every case. Among 15 childhood/adolescent cases treated per protocol, ketamine rapidly terminated SE activity in 11, but only mitigated it in four, including two retrospectively judged to involve nonseizure activity and two involving intranasal administration. Among all 81 ketamine-treated cases, there were no identifiable clinically significant complications attributable to ketamine, particularly the need for any additional active interventions. CONCLUSIONS Ketamine appeared to be consistently effective in treating adults with ongoing out-of-hospital seizures that were resistant to sufficient dosings of midazolam. Similar results were observed in children/adolescents.
Collapse
Affiliation(s)
- Kenneth A. Scheppke
- Palm Beach County Fire Rescue, Palm Beach County, West Palm Beach, FL
- Florida Department of Health, Tallahassee, FL
| | - Paul E. Pepe
- Palm Beach County Fire Rescue, Palm Beach County, West Palm Beach, FL
- Department of Management, Policy and Community Health, University of Texas Health Sciences Center, School of Public Health, Houston, TX
- Coral Springs/Parkland Fire Department, City of Coral Springs, FL
| | | | - Charles W. Coyle
- Palm Beach County Fire Rescue, Palm Beach County, West Palm Beach, FL
| | - Peter M. Antevy
- Palm Beach County Fire Rescue, Palm Beach County, West Palm Beach, FL
- Coral Springs/Parkland Fire Department, City of Coral Springs, FL
| | | | | | - Remle P. Crowe
- Department of Clinical and Operational Research, ESO, Austin, TX
| |
Collapse
|
3
|
Nunes ML, Yozawitz EG, Wusthoff CJ, Shellhaas RA, Olivas-Peña E, Wilmshurst JM, Pressler RM, Triki CC, Hartmann H, Inder T, Boylan GB, Valente K, Moshe SL, Mizrahi EM, Abend NS. Defining neonatal status epilepticus: A scoping review from the ILAE neonatal task force. Epilepsia Open 2024. [PMID: 39540265 DOI: 10.1002/epi4.13090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE To review the available literature concerning the definition of neonatal status epilepticus (SE) and/or seizure burden. METHODS The International League Against Epilepsy Neonatal Task Force performed a scoping review of the definitions of neonatal SE. Following a systematic literature review, articles were screened and data were abstracted regarding: (1) article characteristics (author identification, publication year, journal name, digital object identifier, title, objective, and study design); (2) cohort characteristics (sample size, gestational age, seizure etiology); (3) definition of SE and/or seizure burden; and (4) the method used to identify and classify SE, including routine EEG (EEG), continuous EEG monitoring (cEEG), amplitude-integrated EEG (aEEG), or clinical features. RESULTS The scoping review yielded 44 articles containing a definition of neonatal SE. Studies mainly included infants with hypoxic-ischemic encephalopathy or neonates considered at risk for seizures. SE identification and classification most often relied on cEEG. The majority of studies based the definition of SE on seizure duration, including summed duration of seizures comprising ≥50% of any 1-h epoch, recurrent seizures for >50% of the total recording time, or either electrographic seizures lasting >30 min and/or repeated electrographic seizures totaling >50% in any 1-h period. Seizure burden was reported in 20 studies, and the most commonly used approach assessed total seizure burden, defined as total duration of EEG seizures in minutes. Sixteen studies assessed the relationship between seizure burden and outcomes, and most identified a significant association between higher seizure burden and unfavorable outcomes. SIGNIFICANCE This scoping review demonstrates a substantial variation in neonatal SE definitions across the literature. The most common definitions were based around a 30-min seizure duration criterion, but evidence was insufficient to support that 30 min was a cutoff defining prolonged seizures or that seizures exceeding this burden were more likely to be pharmacoresistant or associated with worse outcomes. As a next step, the Neonatal Task Force intends to develop a standardized approach to assessing and describing neonatal seizure burden and defining neonatal SE. PLAIN LANGUAGE SUMMARY Prolonged seizures are a neurologic emergency, if untreated, can lead to permanent injury or death. In adults and children, seizures lasting longer than 30 min are believed to cause brain damage. However, it is not clear if this definition can be applied to neonates. The International League Against Epilepsy Neonatal Taskforce performed a scoping literature review which identified 44 articles containing a definition of neonatal status epilepticus. In this article, the authors reviewed the current used definitions for prolonged seizures in neonates to establish a relationship between seizure duration and neurological outcome. As a next step, the Neonatal Task Force intends to develop a standardized approach to assessing and describing neonatal seizure burden and defining neonatal SE.
Collapse
Affiliation(s)
- Magda L Nunes
- School of Medicine and Brain Institute (BraIns), Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Elissa G Yozawitz
- Isabelle Rapin Division of Child Neurology of the Saul R Korey Department of Neurology and Pediatrics, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Courtney J Wusthoff
- Department of Neurology, University of California, Davis, Sacramento, California, USA
| | - Renée A Shellhaas
- Division of Pediatric Neurology, Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Efraín Olivas-Peña
- Department of Neurosciences, National Institute of Perinatology, Mexico City, Mexico. Department of Pediatrics, Women's Hospital, Yautepec Morelos, Mexico
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ronit M Pressler
- Clinical Neuroscience, UCL GOS Institute of Child Health and Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Chahnez C Triki
- Child Neurology Department, Hedi Chaker Hospital, LR19ES15, University of Sfax, Sfax, Tunisia
| | - Hans Hartmann
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Terrie Inder
- Department of Pediatrics, University of California, Irvine; Director, Center for Newborn Research, Children's Hospital of Orange County, California, USA
| | - Geraldine B Boylan
- INFANT Research Centre and Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Kette Valente
- Department of Psychiatry and Pediatrics, Research Center for Complex and Rare Epilepsies, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo, Brazil
| | - Solomon L Moshe
- Laboratory of Clinical Neurophysiology and LIM 21, Department of Psychiatry, Clinics Hospital, University of São Paulo (HC FMUSP), São Paulo, Brazil
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, and Department of Neuroscience and Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Eli M Mizrahi
- Department of Neurology and Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Nicholas S Abend
- Department of Neurology and Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Chiriboga N, Spentzas T, Abu-Sawwa R. A systematic review and meta-analysis of ketamine in pediatric status epilepticus. Epilepsia 2024; 65:2200-2212. [PMID: 38881333 DOI: 10.1111/epi.18035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVE Status epilepticus (SE) is a common neurological medical emergency in the pediatric population, with 10%-40% of cases progressing to refractory SE (RSE), requiring treatment with anesthetic infusions. We present a systematic review and meta-analysis of the use of ketamine for the treatment of pediatric SE and its potential advantages over other anesthetic infusions. METHODS This review follows the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement. Electronic databases, including PubMed, Cochrane Library, Ovid, Embase, and Google Scholar, were searched with the keywords "pediatrics," "status epilepticus," and "ketamine treatment." Randomized trials, prospective and retrospective cohort studies, and case reports were considered for inclusion. RESULTS Eighteen publications met the initial inclusion criteria. The 18 publications comprise 11 case reports, one nonconclusive clinical trial, two case series, and four retrospective cohorts. After excluding the case reports because of reporting bias, only the six case series and cohorts were included in the final analysis. There were 172 patients in the six included studies. The weighted age was 9.93 (SD = 10.29) years. The weighted maximum dose was 7.44 (SD = 9.39) mg/kg/h. SE cessation was attained in 51% (95% confidence interval = 43-59) of cases with the addition of ketamine. The heterogeneity was I2 = 0%, t2 = 0, χ2 (5) = 3.39 (p = .64). SIGNIFICANCE Pediatric RSE is difficult to treat, resulting in increased morbidity and mortality. Without strong recommendations and evidence regarding preferred agents, this review provides evidence that ketamine may be considered in managing SE in the pediatric population.
Collapse
Affiliation(s)
- Nicolas Chiriboga
- Pediatric Intensive Care Unit Le Bonheur Children's Hospital, Memphis, Tennessee, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Thomas Spentzas
- Pediatric Intensive Care Unit Le Bonheur Children's Hospital, Memphis, Tennessee, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Renad Abu-Sawwa
- Department of Anatomy and Cell Biology, Rush Medical College, Chicago, Illinois, USA
- Department of Pediatric Neurology, Rush University Children's Hospital, Chicago, Illinois, USA
| |
Collapse
|
5
|
Pin JN, Leonardi L, Nosadini M, Cavicchiolo ME, Guariento C, Zarpellon A, Perilongo G, Raffagnato A, Toldo I, Baraldi E, Sartori S. Efficacy and safety of ketamine for neonatal refractory status epilepticus: case report and systematic review. Front Pediatr 2023; 11:1189478. [PMID: 37334223 PMCID: PMC10275409 DOI: 10.3389/fped.2023.1189478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Background Evidence-based data on treatment of neonatal status epilepticus (SE) are scarce. We aimed to collect data on the efficacy and safety of ketamine for the treatment of neonatal SE and to assess its possible role in the treatment of neonatal SE. Methods We described a novel case and conducted a systematic literature review on neonatal SE treated with ketamine. The search was carried out in Pubmed, Cochrane, Clinical Trial Gov, Scopus and Web of Science. Results Seven published cases of neonatal SE treated with ketamine were identified and analyzed together with our novel case. Seizures typically presented during the first 24 h of life (6/8). Seizures were resistant to a mean of five antiseizure medications. Ketamine, a NMDA receptor antagonist, appeared to be safe and effective in all neonates treated. Neurologic sequelae including hypotonia and spasticity were reported for 4/5 of the surviving children (5/8). 3/5 of them were seizure free at 1-17 months of life. Discussion Neonatal brain is more susceptible to seizures due to a shift towards increased excitation because of a paradoxical excitatory effect of GABA, a greater density of NMDA receptors and higher extracellular concentrations of glutamate. Status epilepticus and neonatal encephalopathy could further enhance these mechanisms, providing a rationale for the use of ketamine in this setting. Conclusions Ketamine in the treatment of neonatal SE showed a promising efficacy and safety profile. However, further in-depth studies and clinical trials on larger populations are needed.
Collapse
Affiliation(s)
- Jacopo Norberto Pin
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
- Master in Pediatrics and Pediatric Subspecialties, University Hospital of Padua, Padova, Italy
| | - Letizia Leonardi
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
| | - Margherita Nosadini
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
- Neuroimmunology Group, Paediatric Research Institute “Città della Speranza”, Padova, Italy
| | - Maria Elena Cavicchiolo
- Department of Women’s and Children’s Health, Neonatal Intensive Care Unit, University Hospital of Padua, Padova, Italy
| | - Chiara Guariento
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
| | - Anna Zarpellon
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
| | - Giorgio Perilongo
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
| | - Alessia Raffagnato
- Department of Women’s and Children’s Health, Child and Adolescent Neuropsychiatric Unit, University Hospital of Padua, Padova, Italy
| | - Irene Toldo
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
| | - Eugenio Baraldi
- Department of Women’s and Children’s Health, Neonatal Intensive Care Unit, University Hospital of Padua, Padova, Italy
| | - Stefano Sartori
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
- Master in Pediatrics and Pediatric Subspecialties, University Hospital of Padua, Padova, Italy
- Neuroimmunology Group, Paediatric Research Institute “Città della Speranza”, Padova, Italy
- Department of Neuroscience, University Hospital of Padua, Padova, Italy
| |
Collapse
|
6
|
DeVine MN, Gordon SE, Press CA. Use of Continuous Ketamine Infusion as an Adjunctive Agent in Young Infants With Refractory and Super Refractory Status Epilepticus: A Case Series. J Pediatr Pharmacol Ther 2023; 28:161-166. [PMID: 37139250 PMCID: PMC10150903 DOI: 10.5863/1551-6776-28.2.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/24/2022] [Indexed: 05/05/2023]
Abstract
Continuous ketamine infusions have been studied as an adjunctive agent for refractory status epilepticus (RSE) and super refractory status epilepticus (SRSE) in older children and adults. However, minimal information exists on the efficacy, safety, and dosing for continuous ketamine in young infants. We present the clinical course of 3 young infants with RSE and SRSE who received continuous ketamine in conjunction with other antiseizure medications. The condition of these patients was refractory to an average of 6 antiseizure medications before initiation of continuous ketamine infusion. For each patient, a continuous ketamine infusion was initiated at a rate of 1 mg/kg/hr with 1 patient requiring titration to a maximum of 6 mg/kg/hr. In 1 case, the concomitant use of continuous ketamine allowed for a reduction in the benzodiazepine continuous infusion rate. In all cases, ketamine was well tolerated especially in the setting of hemodynamic instability. Ketamine may provide a safe adjunct in the acute setting in severe RSE and SRSE. This is the first case series to document the use of continuous ketamine as a treatment modality in young infants with RSE or SRSE secondary to various underlying etiologies, without adverse events. Further studies are needed to evaluate the long-term safety and efficacy of continuous ketamine in this patient population.
Collapse
Affiliation(s)
| | - Sharon E. Gordon
- Department of Pharmacy (MND, SEG), Children's Hospital Colorado, Aurora, CO
| | - Craig A. Press
- Department of Pediatrics (CAP), Section Child Neurology, University of Colorado Anschutz School of Medicine, Aurora, CO
- Department of Pediatrics and Neurology (CAP), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
7
|
Jacobwitz M, Mulvihill C, Kaufman MC, Gonzalez AK, Resendiz K, MacDonald JM, Francoeur C, Helbig I, Topjian AA, Abend NS. Ketamine for Management of Neonatal and Pediatric Refractory Status Epilepticus. Neurology 2022; 99:e1227-e1238. [PMID: 35817569 PMCID: PMC10499431 DOI: 10.1212/wnl.0000000000200889] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/11/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Few data are available regarding the use of anesthetic infusions for refractory status epilepticus (RSE) in children and neonates, and ketamine use is increasing despite limited data. We aimed to describe the impact of ketamine for RSE in children and neonates. METHODS Retrospective single-center cohort study of consecutive patients admitted to the intensive care units of a quaternary care children's hospital treated with ketamine infusion for RSE. RESULTS Sixty-nine patients were treated with a ketamine infusion for RSE. The median age at onset of RSE was 0.7 years (interquartile range 0.15-7.2), and the cohort included 13 (19%) neonates. Three patients (4%) had adverse events requiring intervention during or within 12 hours of ketamine administration, including hypertension in 2 patients and delirium in 1 patient. Ketamine infusion was followed by seizure termination in 32 patients (46%), seizure reduction in 19 patients (28%), and no change in 18 patients (26%). DISCUSSION Ketamine administration was associated with few adverse events, and seizures often terminated or improved after ketamine administration. Further data are needed comparing first-line and subsequent anesthetic medications for treatment of pediatric and neonatal RSE. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence on the therapeutic utility of ketamine for treatment of RSE in children and neonates.
Collapse
Affiliation(s)
- Marin Jacobwitz
- From the Department of Pediatrics (Division of Neurology) (M.J., C.M., M.C.K., A.K.G., I.H., N.S.A.), Children's Hospital of Philadelphia; The Epilepsy NeuroGenetics Initiative (ENGIN) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia; Department of Biomedical and Health Informatics (DBHi) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia, PA; Department of Anesthesia and Critical Care Medicine (K.R., A.A.T., N.S.A.), Children's Hospital of Philadelphia; Department of Pharmacy Services (K.R.), Children's Hospital of Philadelphia, PA; Division of Critical Care (J.M.M.), Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH; Division of Critical Care (C.F.), Quebec, Department of Pediatrics, CHU de Québec-University of Laval Research Center; Departments of Neurology and Pediatrics (I.H., N.S.A.), University of Pennsylvania Perelman School of Medicine; and Department of Anesthesia & Critical Care (A.A.T.), University of Pennsylvania Perelman School of Medicine.
| | - Caitlyn Mulvihill
- From the Department of Pediatrics (Division of Neurology) (M.J., C.M., M.C.K., A.K.G., I.H., N.S.A.), Children's Hospital of Philadelphia; The Epilepsy NeuroGenetics Initiative (ENGIN) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia; Department of Biomedical and Health Informatics (DBHi) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia, PA; Department of Anesthesia and Critical Care Medicine (K.R., A.A.T., N.S.A.), Children's Hospital of Philadelphia; Department of Pharmacy Services (K.R.), Children's Hospital of Philadelphia, PA; Division of Critical Care (J.M.M.), Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH; Division of Critical Care (C.F.), Quebec, Department of Pediatrics, CHU de Québec-University of Laval Research Center; Departments of Neurology and Pediatrics (I.H., N.S.A.), University of Pennsylvania Perelman School of Medicine; and Department of Anesthesia & Critical Care (A.A.T.), University of Pennsylvania Perelman School of Medicine
| | - Michael C Kaufman
- From the Department of Pediatrics (Division of Neurology) (M.J., C.M., M.C.K., A.K.G., I.H., N.S.A.), Children's Hospital of Philadelphia; The Epilepsy NeuroGenetics Initiative (ENGIN) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia; Department of Biomedical and Health Informatics (DBHi) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia, PA; Department of Anesthesia and Critical Care Medicine (K.R., A.A.T., N.S.A.), Children's Hospital of Philadelphia; Department of Pharmacy Services (K.R.), Children's Hospital of Philadelphia, PA; Division of Critical Care (J.M.M.), Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH; Division of Critical Care (C.F.), Quebec, Department of Pediatrics, CHU de Québec-University of Laval Research Center; Departments of Neurology and Pediatrics (I.H., N.S.A.), University of Pennsylvania Perelman School of Medicine; and Department of Anesthesia & Critical Care (A.A.T.), University of Pennsylvania Perelman School of Medicine
| | - Alexander K Gonzalez
- From the Department of Pediatrics (Division of Neurology) (M.J., C.M., M.C.K., A.K.G., I.H., N.S.A.), Children's Hospital of Philadelphia; The Epilepsy NeuroGenetics Initiative (ENGIN) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia; Department of Biomedical and Health Informatics (DBHi) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia, PA; Department of Anesthesia and Critical Care Medicine (K.R., A.A.T., N.S.A.), Children's Hospital of Philadelphia; Department of Pharmacy Services (K.R.), Children's Hospital of Philadelphia, PA; Division of Critical Care (J.M.M.), Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH; Division of Critical Care (C.F.), Quebec, Department of Pediatrics, CHU de Québec-University of Laval Research Center; Departments of Neurology and Pediatrics (I.H., N.S.A.), University of Pennsylvania Perelman School of Medicine; and Department of Anesthesia & Critical Care (A.A.T.), University of Pennsylvania Perelman School of Medicine
| | - Karla Resendiz
- From the Department of Pediatrics (Division of Neurology) (M.J., C.M., M.C.K., A.K.G., I.H., N.S.A.), Children's Hospital of Philadelphia; The Epilepsy NeuroGenetics Initiative (ENGIN) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia; Department of Biomedical and Health Informatics (DBHi) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia, PA; Department of Anesthesia and Critical Care Medicine (K.R., A.A.T., N.S.A.), Children's Hospital of Philadelphia; Department of Pharmacy Services (K.R.), Children's Hospital of Philadelphia, PA; Division of Critical Care (J.M.M.), Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH; Division of Critical Care (C.F.), Quebec, Department of Pediatrics, CHU de Québec-University of Laval Research Center; Departments of Neurology and Pediatrics (I.H., N.S.A.), University of Pennsylvania Perelman School of Medicine; and Department of Anesthesia & Critical Care (A.A.T.), University of Pennsylvania Perelman School of Medicine
| | - Jennifer M MacDonald
- From the Department of Pediatrics (Division of Neurology) (M.J., C.M., M.C.K., A.K.G., I.H., N.S.A.), Children's Hospital of Philadelphia; The Epilepsy NeuroGenetics Initiative (ENGIN) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia; Department of Biomedical and Health Informatics (DBHi) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia, PA; Department of Anesthesia and Critical Care Medicine (K.R., A.A.T., N.S.A.), Children's Hospital of Philadelphia; Department of Pharmacy Services (K.R.), Children's Hospital of Philadelphia, PA; Division of Critical Care (J.M.M.), Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH; Division of Critical Care (C.F.), Quebec, Department of Pediatrics, CHU de Québec-University of Laval Research Center; Departments of Neurology and Pediatrics (I.H., N.S.A.), University of Pennsylvania Perelman School of Medicine; and Department of Anesthesia & Critical Care (A.A.T.), University of Pennsylvania Perelman School of Medicine
| | - Conall Francoeur
- From the Department of Pediatrics (Division of Neurology) (M.J., C.M., M.C.K., A.K.G., I.H., N.S.A.), Children's Hospital of Philadelphia; The Epilepsy NeuroGenetics Initiative (ENGIN) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia; Department of Biomedical and Health Informatics (DBHi) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia, PA; Department of Anesthesia and Critical Care Medicine (K.R., A.A.T., N.S.A.), Children's Hospital of Philadelphia; Department of Pharmacy Services (K.R.), Children's Hospital of Philadelphia, PA; Division of Critical Care (J.M.M.), Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH; Division of Critical Care (C.F.), Quebec, Department of Pediatrics, CHU de Québec-University of Laval Research Center; Departments of Neurology and Pediatrics (I.H., N.S.A.), University of Pennsylvania Perelman School of Medicine; and Department of Anesthesia & Critical Care (A.A.T.), University of Pennsylvania Perelman School of Medicine
| | - Ingo Helbig
- From the Department of Pediatrics (Division of Neurology) (M.J., C.M., M.C.K., A.K.G., I.H., N.S.A.), Children's Hospital of Philadelphia; The Epilepsy NeuroGenetics Initiative (ENGIN) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia; Department of Biomedical and Health Informatics (DBHi) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia, PA; Department of Anesthesia and Critical Care Medicine (K.R., A.A.T., N.S.A.), Children's Hospital of Philadelphia; Department of Pharmacy Services (K.R.), Children's Hospital of Philadelphia, PA; Division of Critical Care (J.M.M.), Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH; Division of Critical Care (C.F.), Quebec, Department of Pediatrics, CHU de Québec-University of Laval Research Center; Departments of Neurology and Pediatrics (I.H., N.S.A.), University of Pennsylvania Perelman School of Medicine; and Department of Anesthesia & Critical Care (A.A.T.), University of Pennsylvania Perelman School of Medicine
| | - Alexis A Topjian
- From the Department of Pediatrics (Division of Neurology) (M.J., C.M., M.C.K., A.K.G., I.H., N.S.A.), Children's Hospital of Philadelphia; The Epilepsy NeuroGenetics Initiative (ENGIN) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia; Department of Biomedical and Health Informatics (DBHi) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia, PA; Department of Anesthesia and Critical Care Medicine (K.R., A.A.T., N.S.A.), Children's Hospital of Philadelphia; Department of Pharmacy Services (K.R.), Children's Hospital of Philadelphia, PA; Division of Critical Care (J.M.M.), Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH; Division of Critical Care (C.F.), Quebec, Department of Pediatrics, CHU de Québec-University of Laval Research Center; Departments of Neurology and Pediatrics (I.H., N.S.A.), University of Pennsylvania Perelman School of Medicine; and Department of Anesthesia & Critical Care (A.A.T.), University of Pennsylvania Perelman School of Medicine
| | - Nicholas S Abend
- From the Department of Pediatrics (Division of Neurology) (M.J., C.M., M.C.K., A.K.G., I.H., N.S.A.), Children's Hospital of Philadelphia; The Epilepsy NeuroGenetics Initiative (ENGIN) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia; Department of Biomedical and Health Informatics (DBHi) (M.C.K., A.K.G., I.H.), Children's Hospital of Philadelphia, PA; Department of Anesthesia and Critical Care Medicine (K.R., A.A.T., N.S.A.), Children's Hospital of Philadelphia; Department of Pharmacy Services (K.R.), Children's Hospital of Philadelphia, PA; Division of Critical Care (J.M.M.), Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH; Division of Critical Care (C.F.), Quebec, Department of Pediatrics, CHU de Québec-University of Laval Research Center; Departments of Neurology and Pediatrics (I.H., N.S.A.), University of Pennsylvania Perelman School of Medicine; and Department of Anesthesia & Critical Care (A.A.T.), University of Pennsylvania Perelman School of Medicine
| |
Collapse
|
8
|
Guidotti I, Lugli L, Ori L, Roversi MF, Casa Muttini ED, Bedetti L, Pugliese M, Cavalleri F, Stefanelli F, Ferrari F, Berardi A. Neonatal seizures treatment based on conventional multichannel EEG monitoring: an overview of therapeutic options. Expert Rev Neurother 2022; 22:623-638. [PMID: 35876114 DOI: 10.1080/14737175.2022.2105698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Seizures are the main neurological emergency during the neonatal period and are mostly acute and focal. The prognosis mainly depends on the underlying etiology. Conventional multichannel video-electroencephalographic (cEEG) monitoring is the gold standard for diagnosis, but treatment remains a challenge. AREAS COVERED : This review, based on PubMed search over the last 4 decades, focuses on the current treatment options for neonatal seizures based on cEEG monitoring. There is still no consensus on seizure therapy, owing to poor scientific evidence. Traditionally, the first-line treatments are phenobarbital and phenytoin, followed by midazolam and lidocaine, but their efficacy is limited. Therefore, current evidence strongly suggests the use of alternative antiseizure medications. Randomized controlled trials of new drugs are ongoing. EXPERT OPINION : Therapy for neonatal seizures should be prompt and tailored, based on semeiology, mirror of the underlying cause, and cEEG features. Further research should focus on antiseizure medications that directly act on the etiopathogenetic mechanism responsible for seizures and are therefore more effective in seizure control.
Collapse
Affiliation(s)
- Isotta Guidotti
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Licia Lugli
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Luca Ori
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Maria Federica Roversi
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Elisa Della Casa Muttini
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Luca Bedetti
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Marisa Pugliese
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Francesca Cavalleri
- Division of Neuroradiology, Department of Neuroscience, Nuovo Ospedale Civile S. Agostino-Estense, Modena, Italy
| | - Francesca Stefanelli
- Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Post Graduate School of Pediatrics, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabrizio Ferrari
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Alberto Berardi
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| |
Collapse
|
9
|
Treatment of refractory status epilepticus with intravenous anesthetic agents: A systematic review. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2022. [DOI: 10.1016/j.tacc.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Howing CE, Razi F, Hakmeh W. Resolution of status epilepticus after ketamine administration. Am J Emerg Med 2021; 54:328.e1-328.e2. [PMID: 34763960 DOI: 10.1016/j.ajem.2021.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Status Epilepticus is the most common non-traumatic neurologic emergency in childhood. Current algorithms prioritize the use of benzodiazepines as first line treatment followed by Levetiracetam or Valproic Acid, possibly Fosphenytoin and eventually high dose Propofol and intubation. CASE REPORT A 9-month old girl was brought to the emergency department with a continuous seizure involving the right upper and lower extremity for 45 min prior to arrival. Patient received a dose of rectal Diazepam, intramuscular Midazolam, 2 doses of Lorazepam, Levetiracetam, Fosphenytoin and 2 additional doses of Lorazepam. The seizure remained refractory and generalized. In anticipation of intubation, and because of its action on the NMDA receptor, Ketamine (1 mg/kg IV) was administered. The clonic movements and eye deviations stopped. Patient was intubated for airway protection, sedated with Propofol, then admitted to the PICU. EEG showed no evidence of a seizure pattern. Labs (CBC, CMP, COVID) were unremarkable except for WBC 24.5, blood glucose of 346 and CO2 of 17 with normal anion gap. Urinalysis showed a urinary tract infection. Patient was at her baseline on 1 week post-discharge re-evaluation. Ketamine theoretically may abort seizures through blockade of NMDA receptors which are unregulated in status epilepticus. To date, no randomized controlled trials have been reported. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Ketamine may have a role in treating status epilepticus. It may be considered for induction for rapid sequence intubation and possibly as a third or fourth line agent in refractory cases.
Collapse
Affiliation(s)
- Colleen Elizabeth Howing
- Department of Emergency Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, 1000 Oakland Drive, Kalamazoo, MI 49008, United States of America
| | - Farzad Razi
- Wayne State University School of Medicine, 540 E. Canfield St., Detroit, MI 48201, United States of America
| | - Wael Hakmeh
- Department of Emergency Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, 1000 Oakland Drive, Kalamazoo, MI 49008, United States of America.
| |
Collapse
|
11
|
Ziobro JM, Eschbach K, Shellhaas RA. Novel Therapeutics for Neonatal Seizures. Neurotherapeutics 2021; 18:1564-1581. [PMID: 34386906 PMCID: PMC8608938 DOI: 10.1007/s13311-021-01085-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
Neonatal seizures are a common neurologic emergency for which therapies have not significantly changed in decades. Improvements in diagnosis and pathophysiologic understanding of the distinct features of acute symptomatic seizures and neonatal-onset epilepsies present exceptional opportunities for development of precision therapies with potential to improve outcomes. Herein, we discuss the pathophysiology of neonatal seizures and review the evidence for currently available treatment. We present emerging therapies in clinical and preclinical development for the treatment of acute symptomatic neonatal seizures. Lastly, we discuss the role of precision therapies for genetic neonatal-onset epilepsies and address barriers and goals for developing new therapies for clinical care.
Collapse
Affiliation(s)
- Julie M Ziobro
- Department of Pediatrics, Michigan Medicine, C.S. Mott Children's Hospital, University of Michigan, 1540 E. Hospital Dr, Ann Arbor, MI, USA.
| | - Krista Eschbach
- Department of Pediatrics, Section of Neurology, Denver Anschutz School of Medicine, Children's Hospital Colorado, University of Colorado, Aurora, CO, 80045, USA
| | - Renée A Shellhaas
- Department of Pediatrics, Michigan Medicine, C.S. Mott Children's Hospital, University of Michigan, 1540 E. Hospital Dr, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Falsaperla R, Scalia B, Giugno A, Pavone P, Motta M, Caccamo M, Ruggieri M. Treating the symptom or treating the disease in neonatal seizures: a systematic review of the literature. Ital J Pediatr 2021; 47:85. [PMID: 33827647 PMCID: PMC8028713 DOI: 10.1186/s13052-021-01027-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
Aim The existing treatment options for neonatal seizures have expanded over the last few decades, but no consensus has been reached regarding the optimal therapeutic protocols. We systematically reviewed the available literature examining neonatal seizure treatments to clarify which drugs are the most effective for the treatment of specific neurologic disorders in newborns. Method We reviewed all available, published, literature, identified using PubMed (published between August 1949 and November 2020), that focused on the pharmacological treatment of electroencephalogram (EEG)-confirmed neonatal seizures. Results Our search identified 427 articles, of which 67 were included in this review. Current knowledge allowed us to highlight the good clinical and electrographic responses of genetic early-onset epilepsies to sodium channel blockers and the overall good response to levetiracetam, whose administration has also been demonstrated to be safe in both full-term and preterm newborns. Interpretation Our work contributes by confirming the limited availability of evidence that can be used to guide the use of anticonvulsants to treat newborns in clinical practice and examining the efficacy and potentially harmful side effects of currently available drugs when used to treat the developing newborn brain; therefore, our work might also serve as a clinical reference for future studies.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit, A.O.U. San Marco-Policlinico, University of Catania, Via Carlo Azeglio Ciampi, 95121, Catania, Italy
| | - Bruna Scalia
- Neonatal Intensive Care Unit, A.O.U. San Marco-Policlinico, University of Catania, Via Carlo Azeglio Ciampi, 95121, Catania, Italy.
| | - Andrea Giugno
- Post graduate programme in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Piero Pavone
- Unit of Clinical Pediatrics, A.O.U. "Policlinico", P.O. "G. Rodolico", University of Catania, Catania, Italy
| | - Milena Motta
- Neonatal Intensive Care Unit, A.O.U. San Marco-Policlinico, University of Catania, Via Carlo Azeglio Ciampi, 95121, Catania, Italy
| | - Martina Caccamo
- Neonatal Intensive Care Unit, A.O.U. San Marco-Policlinico, University of Catania, Via Carlo Azeglio Ciampi, 95121, Catania, Italy
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine Section of Pediatrics and Child Neuropsychiatry, A.O.U. San Marco- Policlinico, University of Catania, Catania, Italy
| |
Collapse
|
13
|
Huntsman RJ, Strueby L, Bingham W. Are Ketamine Infusions a Viable Therapeutic Option for Refractory Neonatal Seizures? Pediatr Neurol 2020; 103:8-11. [PMID: 31601453 DOI: 10.1016/j.pediatrneurol.2019.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
Abstract
Ketamine is an N-methyl-d-aspartate (NMDA) receptor antagonist that works by binding to the phencyclidine-binding site, thereby blocking influx of cations through the NMDA receptor channel. The use of ketamine to treat refractory status epilepticus in adults and older children is well documented. Maturational changes in neonatal NMDA and γ-aminobutyric acid receptor expression and function make NMDA receptor antagonists, like ketamine, attractive potential therapeutic agents for treatment of refractory seizures in the newborn. However, descriptions of its use in this age group are limited to two case reports. Concerns regarding potential ketamine-mediated neurotoxicity in the immature brain require further investigation.
Collapse
Affiliation(s)
- Richard J Huntsman
- Division of Pediatric Neurology, Department of Pediatrics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Lannae Strueby
- Division of Neonatology, Department of Pediatrics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - William Bingham
- Division of Neonatology, Department of Pediatrics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
14
|
Golub D, Yanai A, Darzi K, Papadopoulos J, Kaufman B. Potential consequences of high-dose infusion of ketamine for refractory status epilepticus: case reports and systematic literature review. Anaesth Intensive Care 2018; 46:516-528. [PMID: 30189827 DOI: 10.1177/0310057x1804600514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our goal was to provide comprehensive data on the effectiveness of ketamine in refractory status epilepticus (RSE) and to describe the potential consequences of long-term ketamine infusion. Ketamine, an N-methyl D-aspartate (NMDA) receptor antagonist, blocks excitatory pathways contributing to ongoing seizure. While ketamine use is standard in anaesthetic induction, no definitive protocol exists for its use in RSE, and little is known about its adverse effects in long-term, high-dose administration. We present two cases of RSE that responded rapidly to ketamine infusion, both with fatal outcomes secondary to metabolic acidosis and cardiovascular collapse. We performed a systematic review of the application and consequences of ketamine use in RSE. PubMed, Ovid, MEDLINE and PMC were searched for articles describing ketamine treatment for RSE according to a predetermined search strategy and inclusion criteria. The systematic review revealed wide discrepancies in ketamine dosing (infusion maintenance dose range 0.0075-10.5 mg/kg/hour), but good outcomes in medically managed RSE (75% of studies reported moderate or complete seizure control in adults, 62.5% in paediatrics). Additionally, literature review elucidated a potentially causal relationship between prolonged ketamine infusion and both cardiovascular and metabolic dysregulation. Ketamine is effective in RSE by antagonising excitotoxic NMDA receptors. However, there is high variability in ketamine dosing and scarce data on its safety in long-term infusion. Metabolic acidosis and haemodynamic instability associated with the use of long-term, high-dose ketamine infusions must be of concern to clinicians administering ketamine to critically ill patients.
Collapse
Affiliation(s)
| | | | | | | | - B Kaufman
- Professor, Departments of Medicine, Anesthesiology, Neurology and Neurosurgery, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
15
|
Abstract
BACKGROUND Ketamine is an emerging third-line medication for refractory status epilepticus, a medical and neurological emergency requiring prompt and appropriate treatment. Owing to its pharmacological properties, ketamine represents a practical alternative to conventional anaesthetics. OBJECTIVE The objective of this study was to assess the efficacy and safety of ketamine to treat refractory status epilepticus in paediatric and adult populations. METHODS We conducted a literature search using the PubMed database, Cochrane Database of Systematic Reviews and ClinicalTrials.gov website. RESULTS We found no results from randomised controlled trials. The literature included 27 case reports accounting for 30 individuals and 14 case series, six of which included children. Overall, 248 individuals (29 children) with a median age of 43.5 years (range 2 months to 67 years) were treated in 12 case series whose sample size ranged from 5 to 67 patients (median 11). Regardless of the status epilepticus type, ketamine was twice as effective if administered early, with an efficacy rate as high as 64% in refractory status epilepticus lasting 3 days and dropping to 32% when the mean refractory status epilepticus duration was 26.5 days. Ketamine doses were extremely heterogeneous and did not appear to be an independent prognostic factor. Endotracheal intubation, a negative prognostic factor for status epilepticus, was unnecessary in 12 individuals (10 children), seven of whom were treated with oral ketamine for non-convulsive status epilepticus. CONCLUSIONS Although ketamine has proven to be effective in treating refractory status epilepticus, available studies are hampered by methodological limitations that prevent any firm conclusion. Results from two ongoing studies (ClinicalTrials.gov identification number: NCT02431663 and NCT03115489) and further clinical trials will hopefully confirm the better efficacy and safety profile of ketamine compared with conventional anaesthetics as third-line therapy in refractory status epilepticus, both in paediatric and adult populations.
Collapse
Affiliation(s)
- Anna Rosati
- Neuroscience Department, Children's Hospital Anna Meyer, University of Florence, Viale Pieraccini 24, 50139, Florence, Italy
| | | | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Anna Meyer, University of Florence, Viale Pieraccini 24, 50139, Florence, Italy.
| |
Collapse
|
16
|
Höfler J, Trinka E. Intravenous ketamine in status epilepticus. Epilepsia 2018; 59 Suppl 2:198-206. [DOI: 10.1111/epi.14480] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Julia Höfler
- Department of Neurology; Paracelsus Medical University Salzburg and Christian Doppler Medical Center; Salzburg Austria
| | - Eugen Trinka
- Department of Neurology; Paracelsus Medical University Salzburg and Christian Doppler Medical Center; Salzburg Austria
| |
Collapse
|
17
|
Amengual-Gual M, Sánchez Fernández I, Wainwright MS. Novel drugs and early polypharmacotherapy in status epilepticus. Seizure 2018; 68:79-88. [PMID: 30473267 DOI: 10.1016/j.seizure.2018.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/05/2018] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Rescue medications for status epilepticus (SE) have a relatively high rate of failure. The purpose of this review is to summarize the evidence for the efficacy of novel drugs and early polypharmacotherapy for SE. METHOD Literature review. RESULTS New drugs and treatment strategies aim to target the pathophysiology of SE in order to improve seizure control and outcomes. Changes at the synapse level during SE include a progressive decrease in synaptic GABAA receptors and increase in synaptic NMDA receptors. These changes tend to promote self-sustaining seizures. Current SE guidelines recommend a rapid stepwise treatment using benzodiazepines in monotherapy as the first-line treatment, targeting GABAA synaptic receptors. Novel treatment approaches target GABAA synaptic and extrasynaptic receptors with allopregnanolone, and NMDA receptors with ketamine. Novel rescue treatments used for SE include topiramate, brivaracetam, and perampanel, which are already marketed in epilepsy. Some available drugs not marketed for use in epilepsy have been used in the treatment of SE, and other agents are being studied for this purpose. Early polytherapy, most frequently combining a benzodiazepine with a second-line drug or an NMDA receptor antagonist, might potentially increase seizure control with relatively minor increase in side effects. Although many preclinical studies support novel drugs and early polytherapy in SE, human studies are scarce and inconclusive. Currently, evidence is lacking to recommend specific combinations of these new agents. CONCLUSIONS Novel drugs and strategies target the underlying pathophysiology of SE with the intent to improve seizure control and outcomes.
Collapse
Affiliation(s)
- Marta Amengual-Gual
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitari Son Espases, Universitat de les Illes Balears, Palma, Spain.
| | - Iván Sánchez Fernández
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Child Neurology, Hospital Sant Joan de Déu, Universidad de Barcelona, Spain
| | - Mark S Wainwright
- Department of Neurology, Division of Pediatric Neurology. University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
18
|
Cho YJ, Kim H, Kim WJ, Chung S, Kim YH, Cho I, Lee BI, Heo K. Trafficking patterns of NMDA and GABA A receptors in a Mg 2+-free cultured hippocampal neuron model of status epilepticus. Epilepsy Res 2017; 136:143-148. [PMID: 28858777 DOI: 10.1016/j.eplepsyres.2017.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 07/01/2017] [Accepted: 08/12/2017] [Indexed: 11/27/2022]
Abstract
An altered pattern of receptor trafficking is one of the pathophysiologic mechanisms of status epilepticus (SE). The gradual internalization of GABAA receptors (GABARs) occurs in both in vitro and in vivo models of SE and is thought to be a cause of decreased GABAergic inhibition. Unlike GABARs, little is known about alterations in NMDA receptor (NMDAR) trafficking during SE, even though increased activity of NMDARs is indispensable for the induction and maintenance of SE. Therefore, we aimed to simultaneously investigate the changes in the trafficking patterns of GABARs and NMDARs in an in vitro cultured hippocampal neuron model of SE. For induction of epileptiform discharges, hippocampal neurons were exposed to external medium without Mg2+. Biotinylation assay and immunofluorescence staining for GABAR β2,3 and NMDAR NR1 subunits were performed to quantify and visualize surface GABARs and NMDARs, respectively. The frequency of spontaneous action potentials increased more than 4-fold after Mg2+-free induction. The level of surface GABARs decreased over time after Mg2+-free induction, dropping to approximately 50% of control levels an hour after Mg2+-free induction. By contrast, the trafficking of NMDARs to the surface was enhanced after a slight time lag, increasing by 30% of control levels an hour after Mg2+-free induction. Our data showed the changes of both NMDAR and GABAR trafficking during prolonged SE induced by a Mg2+-free extracellular environment and confirmed that this in vitro SE model is suitable for examining alterations in the receptor trafficking pattern by prolonged seizure activity. These results suggest that targeting of surface NMDAR could be a promising method in controlling benzodiazepine-resistant SE.
Collapse
Affiliation(s)
- Yang-Je Cho
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyunjeong Kim
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Won-Joo Kim
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Seungsoo Chung
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young-Hwan Kim
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Inja Cho
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Byung In Lee
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Department of Neurology, Inje University Haeundae Paik Hospital, 875 Haeun-daero, Haeundae-gu, Busan 48108, Republic of Korea
| | - Kyoung Heo
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
19
|
Keros S, Buraniqi E, Alex B, Antonetty A, Fialho H, Hafeez B, Jackson MC, Jawahar R, Kjelleren S, Stewart E, Morgan LA, Wainwright MS, Sogawa Y, Patel AD, Loddenkemper T, Grinspan ZM. Increasing Ketamine Use for Refractory Status Epilepticus in US Pediatric Hospitals. J Child Neurol 2017; 32:638-646. [PMID: 28349774 DOI: 10.1177/0883073817698629] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ketamine is an emerging therapy for pediatric refractory status epilepticus. The circumstances of its use, however, are understudied. The authors described pediatric refractory status epilepticus treated with ketamine from 2010 to 2014 at 45 centers using the Pediatric Hospital Inpatient System database. For comparison, they described children treated with pentobarbital. The authors estimated that 48 children received ketamine and pentobarbital for refractory status epilepticus, and 630 pentobarbital without ketamine. Those receiving only pentobarbital were median age 3 [interquartile range 0-10], and spent 30 [18-52] days in-hospital, including 17 [9-28] intensive care unit (ICU) days; 17% died. Median cost was $148 000 [81 000-241 000]. The pentobarbital-ketamine group was older (7 [2-11]) with longer hospital stays (51 [30-93]) and more ICU days (29 [20-56]); 29% died. Median cost was $298 000 [176 000-607 000]. For 71%, ketamine was given ≥1 day after pentobarbital. Ketamine cases per half-year increased from 2 to 9 ( P < .05). Ketamine is increasingly used for severe pediatric refractory status epilepticus, typically after pentobarbital. Research on its effectiveness is indicated.
Collapse
Affiliation(s)
- Sotirios Keros
- 1 Weill Cornell Medicine, New York, NY, USA.,2 Sanford Children's Hospital, Sioux Falls, SD, USA.,3 New York Presbyterian Hospital, New York, NY, USA
| | | | - Byron Alex
- 1 Weill Cornell Medicine, New York, NY, USA.,3 New York Presbyterian Hospital, New York, NY, USA
| | | | - Hugo Fialho
- 4 Boston Children's Hospital, Boston, MA, USA
| | | | | | | | | | | | - Lindsey A Morgan
- 5 Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Mark S Wainwright
- 5 Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Yoshimi Sogawa
- 6 Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Anup D Patel
- 7 Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Zachary M Grinspan
- 1 Weill Cornell Medicine, New York, NY, USA.,3 New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
20
|
|