1
|
McMillan HJ, Marshall AE, Venkateswaran S, Hartley T, Warman-Chardon J, Ramani AK, Marshall CR, Michaud J, Boycott KM, Dyment DA, Kernohan KD. Whole genome sequencing reveals biallelic PLA2G6 mutations in siblings with cerebellar atrophy and cap myopathy. Clin Genet 2021; 99:746-748. [PMID: 33576074 DOI: 10.1111/cge.13935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Hugh J McMillan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Aren E Marshall
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Sunita Venkateswaran
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Jodi Warman-Chardon
- Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Arun K Ramani
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christian R Marshall
- Division of Genome Diagnostics, Department of Paediatric Laboratory Medicine, Hospital for Sick Children; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jean Michaud
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Newborn Screening Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Zheng Y, Lv H, Zhang W, Wang Z, Yuan Y. Respiratory Failure as the Presenting Symptom in a Sporadic Case of Cap Myopathy. J Neuropathol Exp Neurol 2020; 79:1382-1384. [PMID: 33064836 DOI: 10.1093/jnen/nlaa117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yiming Zheng
- Department of Neurology, Peking University First Hospital, Peking, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Peking, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Peking, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Peking, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Peking, China
| |
Collapse
|
3
|
A childhood-onset nemaline myopathy caused by novel heterozygote variants in the nebulin gene with literature review. Acta Neurol Belg 2020; 120:1351-1360. [PMID: 31696431 DOI: 10.1007/s13760-019-01230-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
Nemaline myopathy, a rare congenital myopathy, is characterized by generalized muscle weakness, hypotonia, respiratory insufficiency, and the presence of rod structures on muscle biopsy, which is caused by mutations in at least 13 known genes. A patient showing gradually deteriorated proximal muscle weakness and rod-shaped structures found in muscle fibers was suspected of having nemaline myopathy, following by the next-generation sequencing. We report two novel compound heterozygous variants in nebulin gene in a family residing in China. One is an intron event caused by an underlying variant at the + 3 position of the donor site. Another is a novel nonsense variant, which may lead to the end of protein translation and have a significant impact on protein function. The pathogenicity of this novel compound heterozygous variant remains to be verified. Variants reported here could help to diagnose NM for clinicians.
Collapse
|
4
|
Géraud J, Dieterich K, Rendu J, Uro Coste E, Dobrzynski M, Marcorelle P, Ioos C, Romero NB, Baudou E, Brocard J, Coville AC, Fauré J, Koenig M, Juntas Morales R, Lacène E, Madelaine A, Marty I, Pegeot H, Theze C, Siegfried A, Cossee M, Cances C. Clinical phenotype and loss of the slow skeletal muscle troponin T in three new patients with recessive TNNT1 nemaline myopathy. J Med Genet 2020; 58:602-608. [PMID: 32994279 PMCID: PMC8394741 DOI: 10.1136/jmedgenet-2019-106714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 06/12/2020] [Accepted: 07/05/2020] [Indexed: 01/08/2023]
Abstract
Background Congenital nemaline myopathies are rare pathologies characterised by muscle weakness and rod-shaped inclusions in the muscle fibres. Methods Using next-generation sequencing, we identified three patients with pathogenic variants in the Troponin T type 1 (TNNT1) gene, coding for the troponin T (TNT) skeletal muscle isoform. Results The clinical phenotype was similar in all patients, associating hypotonia, orthopaedic deformities and progressive chronic respiratory failure, leading to early death. The anatomopathological phenotype was characterised by a disproportion in the muscle fibre size, endomysial fibrosis and nemaline rods. Molecular analyses of TNNT1 revealed a homozygous deletion of exons 8 and 9 in patient 1; a heterozygous nonsense mutation in exon 9 and retention of part of intron 4 in muscle transcripts in patient 2; and a homozygous, very early nonsense mutation in patient 3. Western blot analyses confirmed the absence of the TNT protein resulting from these mutations. Discussion The clinical and anatomopathological presentations of our patients reinforce the homogeneous character of the phenotype associated with recessive TNNT1 mutations. Previous studies revealed an impact of recessive variants on the tropomyosin-binding affinity of TNT. We report in our patients a complete loss of TNT protein due to open reading frame disruption or to post-translational degradation of TNT.
Collapse
Affiliation(s)
- Justine Géraud
- Neuropediatric Department, University Hospital Centre Toulouse, Toulouse, France
| | - Klaus Dieterich
- INSERM U1216, Grenoble Alpes University Hospital, Grenoble, France.,INSERM U1037, Cancer Research Center of Toulouse (CRCT), Department of Pathology, Toulouse University Hospital, Toulouse, France
| | - John Rendu
- INSERM U1216, Grenoble Alpes University Hospital, Grenoble, France.,INSERM U1216, University of Grenoble Alpes, Grenoble, France
| | - Emmanuelle Uro Coste
- INSERM U1037, Cancer Research Center of Toulouse (CRCT), Department of Pathology, Toulouse University Hospital, Toulouse, France
| | | | - Pascale Marcorelle
- Pathology Department, Brest University Hospital, Morvan Hospital, Brest, France
| | - Christine Ioos
- Neuropediatric Department, Garches University Hospital Center, Garches, France
| | - Norma Beatriz Romero
- UMRS974, CNRS FRE3617, Center for Research in Myology, INSERM, CNRS, Sorbonne University, UPMC University of Paris 06, Paris, France.,Myology Institute, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital, Paris, France
| | - Eloise Baudou
- Neuropediatric Department, University Hospital Centre Toulouse, Toulouse, France
| | - Julie Brocard
- INSERM U1216, Grenoble Alpes University Hospital, Grenoble, France.,INSERM U1216, University of Grenoble Alpes, Grenoble, France
| | - Anne-Cécile Coville
- Neuropediatric Department, University Hospital Centre Toulouse, Toulouse, France
| | - Julien Fauré
- INSERM U1216, Grenoble Alpes University Hospital, Grenoble, France.,INSERM U1216, University of Grenoble Alpes, Grenoble, France
| | - Michel Koenig
- Molecular Genetics Laboratory, LGMR, Montpellier University Hospital Centre, University of Montpellier, Montpellier, France
| | - Raul Juntas Morales
- Molecular Genetics Laboratory, LGMR, Montpellier University Hospital Centre, University of Montpellier, Montpellier, France
| | - Emmanuelle Lacène
- UMRS974, CNRS FRE3617, Center for Research in Myology, INSERM, CNRS, Sorbonne University, UPMC University of Paris 06, Paris, France.,Myology Institute, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital, Paris, France
| | - Angéline Madelaine
- UMRS974, CNRS FRE3617, Center for Research in Myology, INSERM, CNRS, Sorbonne University, UPMC University of Paris 06, Paris, France.,Myology Institute, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital, Paris, France
| | - Isabelle Marty
- INSERM U1216, Grenoble Alpes University Hospital, Grenoble, France.,INSERM U1216, University of Grenoble Alpes, Grenoble, France
| | - Henri Pegeot
- Molecular Genetics Laboratory, LGMR, Montpellier University Hospital Centre, University of Montpellier, Montpellier, France
| | - Corinne Theze
- Molecular Genetics Laboratory, LGMR, Montpellier University Hospital Centre, University of Montpellier, Montpellier, France
| | | | - Mireille Cossee
- Molecular Genetics Laboratory, LGMR, Montpellier University Hospital Centre, University of Montpellier, Montpellier, France
| | - Claude Cances
- Neuropediatric Department, University Hospital Centre Toulouse, Toulouse, France
| |
Collapse
|
5
|
Abstract
Congenital myopathies comprise a clinical, histopathological, and genetic heterogeneous group of rare hereditary muscle diseases that are defined by architectural abnormalities in the muscle fibres. They are subdivided by the predominant structural pathological change on muscle biopsy, resulting in five subgroups: (1) core myopathies; (2) nemaline myopathies; (3) centronuclear myopathies; (4) congenital fibre type disproportion myopathy; and (5) myosin storage myopathy. Besides the clinical features, muscle biopsy, muscle imaging, and genetic analyses are essential in the diagnosis of congenital myopathies. Using next-generation sequencing techniques, a large number of new genes are being identified as the cause of congenital myopathies as well as new mutations in known genes, broadening the phenotype-genotype spectrum of congenital myopathies. Management is performed by a multidisciplinary team specialized in neuromuscular disorders, where the (paediatric) neurologist has an essential role. To date, only supportive treatment is available, but novel pathomechanisms are being discovered and gene therapies are being explored. WHAT THIS PAPER ADDS: Many new genes are being identified in congenital myopathies, broadening the phenotype-genotype spectrum. Management is performed by a multidisciplinary team specialized in neuromuscular disorders.
Collapse
Affiliation(s)
- Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.,Department of Neurosciences, Laboratory for Muscle Diseases and Neuropathies, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Abstract
Nebulin, encoded by NEB, is a giant skeletal muscle protein of about 6669 amino acids which forms an integral part of the sarcomeric thin filament. In recent years, the nebula around this protein has been largely lifted resulting in the discovery that nebulin is critical for a number of tasks in skeletal muscle. In this review, we firstly discussed nebulin’s role as a structural component of the thin filament and the Z-disk, regulating the length and the mechanical properties of the thin filament as well as providing stability to myofibrils by interacting with structural proteins within the Z-disk. Secondly, we reviewed nebulin’s involvement in the regulation of muscle contraction, cross-bridge cycling kinetics, Ca2+-homeostasis and excitation contraction (EC) coupling. While its role in Ca2+-homeostasis and EC coupling is still poorly understood, a large number of studies have helped to improve our knowledge on how nebulin affects skeletal muscle contractile mechanics. These studies suggest that nebulin affects the number of force generating actin-myosin cross-bridges and may also affect the force that each cross-bridge produces. It may exert this effect by interacting directly with actin and myosin and/or indirectly by potentially changing the localisation and function of the regulatory complex (troponin and tropomyosin). Besides unravelling the biology of nebulin, these studies are particularly helpful in understanding the patho-mechanism of myopathies caused by NEB mutations, providing knowledge which constitutes the critical first step towards the development of therapeutic interventions. Currently, effective treatments are not available, although a number of therapeutic strategies are being investigated.
Collapse
|
7
|
Abstract
Congenital myopathies (CM) are a genetically heterogeneous group of neuromuscular disorders most commonly presenting with neonatal/childhood-onset hypotonia and muscle weakness, a relatively static or slowly progressive disease course, and originally classified into subcategories based on characteristic histopathologic findings in muscle biopsies. This enduring concept of disease definition and classification based on the clinicopathologic phenotype was pioneered in the premolecular era. Advances in molecular genetics have brought into focus the increased blurring of the original seemingly "watertight" categories through broadening of the clinical phenotypes in existing genes, and continuous identification of novel genetic backgrounds. This review summarizes the histopathologic landscape of the 4 "classical" subtypes of CM-nemaline myopathies, core myopathies, centronuclear myopathies, and congenital fiber type disproportion and some of the emerging and novel genetic diseases with a CM presentation.
Collapse
Affiliation(s)
- Rahul Phadke
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children and Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
8
|
Dominantly inherited distal nemaline/cap myopathy caused by a large deletion in the nebulin gene. Neuromuscul Disord 2018; 29:97-107. [PMID: 30679003 DOI: 10.1016/j.nmd.2018.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/29/2018] [Accepted: 12/16/2018] [Indexed: 11/20/2022]
Abstract
We report the first family with a dominantly inherited mutation of the nebulin gene (NEB). This ∼100 kb in-frame deletion encompasses NEB exons 14-89, causing distal nemaline/cap myopathy in a three-generation family. It is the largest deletion characterized in NEB hitherto. The mutated allele was shown to be expressed at the mRNA level and furthermore, for the first time, a deletion was shown to cause the production of a smaller mutant nebulin protein. Thus, we suggest that this novel mutant nebulin protein has a dominant-negative effect, explaining the first documented dominant inheritance of nebulin-caused myopathy. The index patient, a young man, was more severely affected than his mother and grandmother. His first symptom was foot drop at the age of three, followed by distal muscle atrophy, slight hypomimia, high-arched palate, and weakness of the neck and elbow flexors, hands, tibialis anterior and toe extensors. Muscle biopsies showed myopathic features with type 1 fibre predominance in the index patient and nemaline bodies and cap-like structures in biopsies from his mother and grandmother. The muscle biopsy findings constitute a further example of nemaline bodies and cap-like structures being part of the same spectrum of pathological changes.
Collapse
|
9
|
Sewry CA, Wallgren-Pettersson C. Myopathology in congenital myopathies. Neuropathol Appl Neurobiol 2018; 43:5-23. [PMID: 27976420 DOI: 10.1111/nan.12369] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/03/2016] [Indexed: 12/18/2022]
Abstract
Congenital myopathies are clinically and genetically a heterogeneous group of early onset neuromuscular disorders, characterized by hypotonia and muscle weakness. Clinical severity and age of onset are variable. Many patients are severely affected at birth while others have a milder, moderately progressive or nonprogressive phenotype. Respiratory weakness is a major clinical aspect that requires regular monitoring. Causative mutations in several genes have been identified that are inherited in a dominant, recessive or X-linked manner, or arise de novo. Muscle biopsies show characteristic pathological features such as nemaline rods/bodies, cores, central nuclei or caps. Small type 1 fibres expressing slow myosin are a common feature and may sometimes be the only abnormality. Small cores (minicores) devoid of mitochondria and areas showing variable myofibrillar disruption occur in several neuromuscular disorders including several forms of congenital myopathy. Muscle biopsies can also show more than one structural defect. There is considerable clinical, pathological and genetic overlap with mutations in one gene resulting in more than one pathological feature, and the same pathological feature being associated with defects in more than one gene. Increasing application of whole exome sequencing is broadening the clinical and pathological spectra in congenital myopathies, but pathology still has a role in clarifying the pathogenicity of gene variants as well as directing molecular analysis.
Collapse
Affiliation(s)
- C A Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital for Children, London, UK.,Wolfson Centre for Inherited Neuromuscular Diseases, RJAH Orthopaedic Hospital, Oswestry, UK
| | - C Wallgren-Pettersson
- The Folkhälsan Institute of Genetics and the Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Cassandrini D, Trovato R, Rubegni A, Lenzi S, Fiorillo C, Baldacci J, Minetti C, Astrea G, Bruno C, Santorelli FM. Congenital myopathies: clinical phenotypes and new diagnostic tools. Ital J Pediatr 2017; 43:101. [PMID: 29141652 PMCID: PMC5688763 DOI: 10.1186/s13052-017-0419-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022] Open
Abstract
Congenital myopathies are a group of genetic muscle disorders characterized clinically by hypotonia and weakness, usually from birth, and a static or slowly progressive clinical course. Historically, congenital myopathies have been classified on the basis of major morphological features seen on muscle biopsy. However, different genes have now been identified as associated with the various phenotypic and histological expressions of these disorders, and in recent years, because of their unexpectedly wide genetic and clinical heterogeneity, next-generation sequencing has increasingly been used for their diagnosis. We reviewed clinical and genetic forms of congenital myopathy and defined possible strategies to improve cost-effectiveness in histological and imaging diagnosis.
Collapse
Affiliation(s)
| | - Rosanna Trovato
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Anna Rubegni
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Sara Lenzi
- Neurology, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Chiara Fiorillo
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Jacopo Baldacci
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Carlo Minetti
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G. Gaslini, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Guja Astrea
- Neurology, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Claudio Bruno
- Department of Neuroscience, Center of Myology and Neurodegenerative Disorders, Istituto G. Gaslini, Genoa, Italy
| | | | | |
Collapse
|
11
|
Lornage X, Malfatti E, Chéraud C, Schneider R, Biancalana V, Cuisset JM, Garibaldi M, Eymard B, Fardeau M, Boland A, Deleuze JF, Thompson J, Carlier RY, Böhm J, Romero NB, Laporte J. Recessive MYPN mutations cause cap myopathy with occasional nemaline rods. Ann Neurol 2017; 81:467-473. [PMID: 28220527 DOI: 10.1002/ana.24900] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022]
Abstract
Congenital myopathies are phenotypically and genetically heterogeneous. We describe homozygous truncating mutations in MYPN in 2 unrelated families with a slowly progressive congenital cap myopathy. MYPN encodes the Z-line protein myopalladin implicated in sarcomere integrity. Functional experiments demonstrate that the mutations lead to mRNA defects and to a strong reduction in full-length protein expression. Myopalladin signals accumulate in the caps together with alpha-actinin. Dominant MYPN mutations were previously reported in cardiomyopathies. Our data uncover that mutations in MYPN cause either a cardiac or a congenital skeletal muscle disorder through different modes of inheritance. Ann Neurol 2017;81:467-473.
Collapse
Affiliation(s)
- Xavière Lornage
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France.,National Institute of Health and Medical Research, Illkirch, France.,National Center for Scientific Research, Illkirch, France.,Strasbourg Federation of Translational Medicine, University of Strasbourg, Illkirch, France
| | - Edoardo Malfatti
- Sorbonne Universities, Pierre and Marie Curie University, National Institute of Health and Medical Research, National Center for Scientific Research, Center for Research in Myology, Pitié-Salpêtrière Hospital, Paris, France.,Unit of Neuromuscular Morphology, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France.,Reference Center for Neuromuscular Pathology Paris-East, Institute of Myology, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France
| | - Chrystel Chéraud
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France.,National Institute of Health and Medical Research, Illkirch, France.,National Center for Scientific Research, Illkirch, France.,Strasbourg Federation of Translational Medicine, University of Strasbourg, Illkirch, France
| | - Raphaël Schneider
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France.,National Institute of Health and Medical Research, Illkirch, France.,National Center for Scientific Research, Illkirch, France.,Strasbourg Federation of Translational Medicine, University of Strasbourg, Illkirch, France.,Department of Computer Science, ICube, National Center for Scientific Research, Strasbourg, France
| | - Valérie Biancalana
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France.,National Institute of Health and Medical Research, Illkirch, France.,National Center for Scientific Research, Illkirch, France.,Strasbourg Federation of Translational Medicine, University of Strasbourg, Illkirch, France.,Diagnostic Genetic Laboratory, New Civil Hospital, Regional University Hospital Center, Strasbourg, France
| | - Jean-Marie Cuisset
- Department of Neuropediatrics, Reference Center for Neuromuscular Diseases, Roger-Salengro Hospital, Regional University Hospital Center, Lille, France
| | - Matteo Garibaldi
- Unit of Neuromuscular Morphology, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France.,Unit of Neuromuscular Diseases, Department of Neurology, Mental Health, and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Neuromuscular Diseases Centre, Department of Clinical Neurosciences, University Hospital of Nice, Nice, France
| | - Bruno Eymard
- Sorbonne Universities, Pierre and Marie Curie University, National Institute of Health and Medical Research, National Center for Scientific Research, Center for Research in Myology, Pitié-Salpêtrière Hospital, Paris, France.,Reference Center for Neuromuscular Pathology Paris-East, Institute of Myology, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France
| | - Michel Fardeau
- Sorbonne Universities, Pierre and Marie Curie University, National Institute of Health and Medical Research, National Center for Scientific Research, Center for Research in Myology, Pitié-Salpêtrière Hospital, Paris, France.,Unit of Neuromuscular Morphology, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France.,Reference Center for Neuromuscular Pathology Paris-East, Institute of Myology, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France
| | - Anne Boland
- National Genotyping Center, Genomics Institute, Office of Atomic Energy and Alternative Energies, Evry, France
| | - Jean-François Deleuze
- National Genotyping Center, Genomics Institute, Office of Atomic Energy and Alternative Energies, Evry, France
| | - Julie Thompson
- Department of Computer Science, ICube, National Center for Scientific Research, Strasbourg, France
| | - Robert-Yves Carlier
- Department of Radiology, Neurolocomotor Division, Raymond Poincaré Hospital, University Hospitals Paris-Ile-de-France West, Public Hospital Network of Paris, Garches, France.,Versailles Saint-Quentin-en-Yvelines University, Versailles, France
| | - Johann Böhm
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France.,National Institute of Health and Medical Research, Illkirch, France.,National Center for Scientific Research, Illkirch, France.,Strasbourg Federation of Translational Medicine, University of Strasbourg, Illkirch, France
| | - Norma B Romero
- Sorbonne Universities, Pierre and Marie Curie University, National Institute of Health and Medical Research, National Center for Scientific Research, Center for Research in Myology, Pitié-Salpêtrière Hospital, Paris, France.,Unit of Neuromuscular Morphology, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France.,Reference Center for Neuromuscular Pathology Paris-East, Institute of Myology, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France
| | - Jocelyn Laporte
- Institute of Genetics and Molecular and Cellular Biology, Illkirch, France.,National Institute of Health and Medical Research, Illkirch, France.,National Center for Scientific Research, Illkirch, France.,Strasbourg Federation of Translational Medicine, University of Strasbourg, Illkirch, France
| |
Collapse
|
12
|
Massalska D, Zimowski JG, Bijok J, Kucińska-Chahwan A, Łusakowska A, Jakiel G, Roszkowski T. Prenatal diagnosis of congenital myopathies and muscular dystrophies. Clin Genet 2016; 90:199-210. [PMID: 27197572 DOI: 10.1111/cge.12801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/05/2016] [Accepted: 05/08/2016] [Indexed: 12/14/2022]
Abstract
Congenital myopathies and muscular dystrophies constitute a genetically and phenotypically heterogeneous group of rare inherited diseases characterized by muscle weakness and atrophy, motor delay and respiratory insufficiency. To date, curative care is not available for these diseases, which may severely affect both life-span and quality of life. We discuss prenatal diagnosis and genetic counseling for families at risk, as well as diagnostic possibilities in sporadic cases.
Collapse
Affiliation(s)
- D Massalska
- Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - J G Zimowski
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - J Bijok
- Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - A Kucińska-Chahwan
- Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - A Łusakowska
- Department of Neurology, Medical University of Warsaw, Poland
| | - G Jakiel
- Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - T Roszkowski
- Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
13
|
New massive parallel sequencing approach improves the genetic characterization of congenital myopathies. J Hum Genet 2016; 61:497-505. [PMID: 26841830 DOI: 10.1038/jhg.2016.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/28/2015] [Accepted: 01/05/2016] [Indexed: 01/08/2023]
Abstract
Congenital myopathies (CMs) are a heterogeneous group of muscle diseases characterized by hypotonia, delayed motor skills and muscle weakness with onset during the first years of life. The diagnostic workup of CM is highly dependent on the interpretation of the muscle histology, where typical pathognomonic findings are suggestive of a CM but are not necessarily gene specific. Over 20 loci have been linked to these myopathies, including three exceptionally large genes (TTN, NEB and RYR1), which are a challenge for molecular diagnosis. We developed a new approach using massive parallel sequencing (MPS) technology to simultaneously analyze 20 genes linked to CMs. Assay design was based on the Ion AmpliSeq strategy and sequencing runs were performed on an Ion PGM system. A total of 12 patients were analyzed in this study. Among the 2534 variants detected, 14 pathogenic mutations were successfully identified in the DNM2, NEB, RYR1, SEPN1 and TTN genes. Most of these had not been documented and/or fully characterized, hereby contributing to expand the CM mutational spectrum. The utility of this approach was demonstrated by the identification of mutations in 70% of the patients included in this study, which is relevant for CMs especially considering its wide phenotypic and genetic heterogeneity.
Collapse
|
14
|
Lévesque S, Auray-Blais C, Gravel E, Boutin M, Dempsey-Nunez L, Jacques PE, Chenier S, Larue S, Rioux MF, Al-Hertani W, Nadeau A, Mathieu J, Maranda B, Désilets V, Waters PJ, Keutzer J, Austin S, Kishnani P. Diagnosis of late-onset Pompe disease and other muscle disorders by next-generation sequencing. Orphanet J Rare Dis 2016; 11:8. [PMID: 26809617 PMCID: PMC4727295 DOI: 10.1186/s13023-016-0390-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/17/2016] [Indexed: 11/16/2022] Open
Abstract
Background Late-onset Pompe disease (LOPD) is a rare treatable lysosomal storage disorder characterized by progressive lysosomal glycogen accumulation and muscle weakness, with often a limb-girdle pattern. Despite published guidelines, testing for LOPD is often overlooked or delayed in adults, owing to its low frequency compared to other muscle disorders with similar muscle patterns. Next-generation sequencing has the capability to test concurrently for several muscle disorders. This could potentially lead to increased diagnosis of LOPD, disorders with non-specific muscle weakness or atypical patients. Methods We developed a gene panel to further study its clinical utility in a cohort of patients with suspected muscle disorders. We designed a gene panel to analyze the coding sequences and splice site junctions of GAA causing LOPD, along with 77 other genes causing muscle disorders with overlapping phenotypes. Results At a median coverage of ~200X (sequences per base), all GAA exons were successfully covered with >20X and only 0.3 % of exons across all genes were <20X. The panel showed an excellent sensitivity (100 %) and specificity (98 %) across all selected genes, using known variations in Pompe patients and controls. We determined its clinical utility by analyzing 34 patients with suspected muscle disorders of undetermined etiology and various muscle patterns, who were referred or followed in neuromuscular and genetics clinics. A putative diagnosis was found in up to 32 % of patients. The gene panel was instrumental in reaching a diagnosis in atypical patients, including one LOPD case. Acid alpha-glucosidase activity was used to confirm the molecular results in all patients. Conclusion This work highlights the high clinical utility of gene panels in patients with suspected muscle disorders and its potential to facilitate the diagnosis of patients showing non-specific muscle weakness or atypical phenotypes. We propose that gene panels should be used as a first-tier test in patients with suspected muscle disorders of undetermined etiology, which could further increase overall diagnosis of muscle conditions, and potentially reduce diagnostic delay. Further studies are necessary to determine the impact of first-tier gene panels on diagnostic delay and on treatment outcome for LOPD. Electronic supplementary material The online version of this article (doi:10.1186/s13023-016-0390-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sébastien Lévesque
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| | - Christiane Auray-Blais
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Elaine Gravel
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Michel Boutin
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Laura Dempsey-Nunez
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Pierre-Etienne Jacques
- Departments of Biology and Computer Science, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sébastien Chenier
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Sandrine Larue
- Department of Neurology, Notre-Dame Hospital, Université de Montréal, Montreal, QC, Canada
| | - Marie-France Rioux
- Department of Neurology, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Walla Al-Hertani
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, and Alberta Children's Hospital, Calgary, AB, Canada
| | - Amelie Nadeau
- Department of Pediatrics, Division of Pediatric Neurology, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean Mathieu
- Neuromuscular Clinic, Centre de réadaptation en déficience physique de Jonquière, Saguenay, QC, Canada
| | - Bruno Maranda
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Valérie Désilets
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Paula J Waters
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Joan Keutzer
- Genzyme Corporation, a Sanofi Company, Cambridge, MA, USA
| | - Stephanie Austin
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, USA
| | - Priya Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|