1
|
Fang C, Yang L, Xiao F, Yan K, Zhou W. Genotype and phenotype features and prognostic factors of neonatal-onset pyridoxine-dependent epilepsy: A systematic review. Epilepsy Res 2024; 202:107363. [PMID: 38636407 DOI: 10.1016/j.eplepsyres.2024.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is a rare autosomal recessive disorder due to a deficiency of α-aminoadipic semialdehyde dehydrogenase. This study aimed to systematically explore genotypic and phenotypic features and prognostic factors of neonatal-onset PDE. A literature search covering PubMed, Elsevier, and Web of Science was conducted from January 2006 to August 2023. We identified 56 eligible studies involving 169 patients and 334 alleles. The c.1279 G>C variant was the most common variant of neonatal-onset PDE (25.7 %). All patients were treated with pyridoxine; forty patients received dietary intervention therapy. 63.9 % of the patients were completely seizure-free; however, 68.6 % of the patients had neurodevelopmental delays. Additionally, homozygous c.1279 G>C variants were significantly associated with ventriculomegaly, abnormal white matter signal, and cysts (P<0.05). In contrast, homozygous c.1364 T>C was associated with clonic seizure (P=0.031). Pyridoxine used immediately at seizure onset was an independent protective factor for developmental delay (P=0.035; odds ratio [OR]: 3.14). Besides, pyridoxine used early in the neonatal period was a protective factor for language delay (P=0.044; OR: 4.59). In contrast, neonatal respiratory distress (P=0.001; OR: 127.44) and abnormal brain magnetic resonance imaging (P=0.049; OR: 3.64) were risk factors. Prenatal movement abnormality (P=0.041; OR: 20.56) and abnormal white matter signal (P=0.012; OR: 24.30) were risk factors for motor delay. Myoclonic seizure (P=0.023; OR: 7.13) and status epilepticus (P=0.000; OR: 9.93) were risk factors for breakthrough seizures. In conclusion, our study indicated that pyridoxine should be started immediately when unexplained neonatal seizures occur and not later than the neonatal period to prevent poor neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Chuchu Fang
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lin Yang
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Feifan Xiao
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Kai Yan
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Oesch G, Maga AM, Friedman SD, Poliachik SL, Budech CB, Wright JN, Bok LA, Gospe SM. Geometric morphometrics reveal altered corpus callosum shape in pyridoxine-dependent epilepsy. Neurology 2018; 91:e78-e86. [PMID: 29875223 DOI: 10.1212/wnl.0000000000005748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/02/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To evaluate the features and maturational changes in overall callosal shape in patients with pyridoxine-dependent epilepsy (PDE). METHODS Measurements were conducted through landmark-based geometric morphometrics applied on cerebral MRIs of patients with PDE and age-matched control subjects. The outline of the corpus callosum was manually traced in the midsagittal plane. Three hundred semi-landmarks along the outline were collected and underwent statistical generalized Procrustes analysis. An allometric regression was applied to evaluate the callosal shape due to growth over time. RESULTS Thirty-eight patients with PDE and 38 age- and sex-matched control subjects were included. Mean age at the time of the MRI in the patient group was 9.3 years (median 6.3 years, range 0.01-48 years). Significant differences (p < 0.01) in the mean callosal shape between patients and controls were found. The allometric regression model revealed significant shape variations (p < 0.01) between the 2 study groups across the developmental course after controlling for the effect of callosal size on shape. This latter effect turned out to be significant as well (p < 0.001). CONCLUSIONS Patients with PDE show an altered callosal shape and variations in callosal ontogeny, which are likely secondary to the underlying genetic defect with abnormal function of antiquitin, the product of the ALDH7A1 gene.
Collapse
Affiliation(s)
- Gabriela Oesch
- From the Division of Pediatric Neurology (G.O., S.M.G.), Departments of Neurology and Pediatrics, University of Washington, and Seattle Children's Hospital; Division of Craniofacial Medicine (A.M.M.), Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute; Department of Radiology (S.D.F., S.L.P., C.B.B., J.N.W.), Seattle Children's Hospital, WA; and Department of Pediatrics (L.A.B.), Máxima Medical Center, Veldhoven, the Netherlands
| | - A Murat Maga
- From the Division of Pediatric Neurology (G.O., S.M.G.), Departments of Neurology and Pediatrics, University of Washington, and Seattle Children's Hospital; Division of Craniofacial Medicine (A.M.M.), Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute; Department of Radiology (S.D.F., S.L.P., C.B.B., J.N.W.), Seattle Children's Hospital, WA; and Department of Pediatrics (L.A.B.), Máxima Medical Center, Veldhoven, the Netherlands
| | - Seth D Friedman
- From the Division of Pediatric Neurology (G.O., S.M.G.), Departments of Neurology and Pediatrics, University of Washington, and Seattle Children's Hospital; Division of Craniofacial Medicine (A.M.M.), Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute; Department of Radiology (S.D.F., S.L.P., C.B.B., J.N.W.), Seattle Children's Hospital, WA; and Department of Pediatrics (L.A.B.), Máxima Medical Center, Veldhoven, the Netherlands
| | - Sandra L Poliachik
- From the Division of Pediatric Neurology (G.O., S.M.G.), Departments of Neurology and Pediatrics, University of Washington, and Seattle Children's Hospital; Division of Craniofacial Medicine (A.M.M.), Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute; Department of Radiology (S.D.F., S.L.P., C.B.B., J.N.W.), Seattle Children's Hospital, WA; and Department of Pediatrics (L.A.B.), Máxima Medical Center, Veldhoven, the Netherlands
| | - Christopher B Budech
- From the Division of Pediatric Neurology (G.O., S.M.G.), Departments of Neurology and Pediatrics, University of Washington, and Seattle Children's Hospital; Division of Craniofacial Medicine (A.M.M.), Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute; Department of Radiology (S.D.F., S.L.P., C.B.B., J.N.W.), Seattle Children's Hospital, WA; and Department of Pediatrics (L.A.B.), Máxima Medical Center, Veldhoven, the Netherlands
| | - Jason N Wright
- From the Division of Pediatric Neurology (G.O., S.M.G.), Departments of Neurology and Pediatrics, University of Washington, and Seattle Children's Hospital; Division of Craniofacial Medicine (A.M.M.), Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute; Department of Radiology (S.D.F., S.L.P., C.B.B., J.N.W.), Seattle Children's Hospital, WA; and Department of Pediatrics (L.A.B.), Máxima Medical Center, Veldhoven, the Netherlands
| | - Levinus A Bok
- From the Division of Pediatric Neurology (G.O., S.M.G.), Departments of Neurology and Pediatrics, University of Washington, and Seattle Children's Hospital; Division of Craniofacial Medicine (A.M.M.), Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute; Department of Radiology (S.D.F., S.L.P., C.B.B., J.N.W.), Seattle Children's Hospital, WA; and Department of Pediatrics (L.A.B.), Máxima Medical Center, Veldhoven, the Netherlands
| | - Sidney M Gospe
- From the Division of Pediatric Neurology (G.O., S.M.G.), Departments of Neurology and Pediatrics, University of Washington, and Seattle Children's Hospital; Division of Craniofacial Medicine (A.M.M.), Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute; Department of Radiology (S.D.F., S.L.P., C.B.B., J.N.W.), Seattle Children's Hospital, WA; and Department of Pediatrics (L.A.B.), Máxima Medical Center, Veldhoven, the Netherlands.
| |
Collapse
|
3
|
Friedman SD, Poliakov AV, Budech C, Shaw DWW, Breiger D, Jinguji T, Krabak B, Coppel D, Lewis TM, Browd S, Ojemann JG. GABA alterations in pediatric sport concussion. Neurology 2017; 89:2151-2156. [PMID: 29030453 DOI: 10.1212/wnl.0000000000004666] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To evaluate whether frontal-lobe magnetic resonance spectroscopy measures of γ-aminobutyric acid (GABA) would be altered in a sample of adolescents scanned after sport concussion because mild traumatic brain injury is often associated with working memory problems. METHODS Eleven adolescents (age 14-17 years) who had sustained a first-time sport concussion were studied with MRI/magnetic resonance spectroscopy within 23 to 44 days after injury (mean 30.4 ± 6.1 days). Age- and sex-matched healthy controls, being seen for sports-related injuries not involving the head and with no history of concussion, were also examined. GABA/creatine + phosphocreatine (Cre) was measured in left-sided frontal lobe and central posterior cingulate regions. The frontal voxel was positioned to overlap with patient-specific activation on a 1-back working memory task. RESULTS Increased GABA/Cre was shown in the frontal lobe for the concussed group. A decreased relationship was observed in the parietal region. High correlations between GABA/Cre and task activation were observed for the control group in the frontal lobe, a relationship not shown in the concussed participants. CONCLUSIONS GABA/Cre appears increased in a region colocalized with working memory task activation after sport concussion. Further work extending these results in larger samples and at time points across the injury episode will aid in refining the clinical significance of these observations.
Collapse
Affiliation(s)
- Seth D Friedman
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - Andrew V Poliakov
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - Christopher Budech
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - Dennis W W Shaw
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - David Breiger
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - Thomas Jinguji
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - Brian Krabak
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - David Coppel
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - Tressa Mattioli Lewis
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - Samuel Browd
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - Jeffrey G Ojemann
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle.
| |
Collapse
|
4
|
Pena IA, MacKenzie A, Van Karnebeek CDM. Current knowledge for pyridoxine-dependent epilepsy: a 2016 update. Expert Rev Endocrinol Metab 2017; 12:5-20. [PMID: 30058881 DOI: 10.1080/17446651.2017.1273107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare genetic condition characterized by intractable and recurrent neonatal seizures that are uniquely alleviated by high doses of pyridoxine (vitamin B6). This recessive disease is caused by mutations in ALDH7A1, a gene encoding Antiquitin, an enzyme central to lysine degradation. This results in the pathogenic accumulation of the lysine intermediates Aminoadipate Semialdehyde (AASA) and its cyclic equilibrium form Piperideine-6-carboxylate (P6C) in body fluids; P6C reacts with pyridoxal-5'-phosphate (PLP, the active form of vitamin B6) causing its inactivation and leading to pyridoxine-dependent seizures. While PDE is responsive to pharmacological dosages of pyridoxine, despite lifelong supplementation, neurodevelopment delays are observed in >75% of PDE cases. Thus, adjunct treatment strategies are emerging to both improve seizure control and moderate the delays in cognition. These adjunctive therapies, lysine restriction and arginine supplementation, separately or in combination (with pyridoxine thus termed 'triple therapy'), have shown promising results and are recommended in all PDE patients. Other new therapeutic strategies currently in preclinical phase of study include antisense therapy and substrate reduction therapy. We present here a comprehensive review of current treatment options as well as PDE phenotype, differential diagnosis, current management and views upon the future of PDE research.
Collapse
Affiliation(s)
- Izabella Agostinho Pena
- a Children's Hospital of Eastern Ontario (CHEO) Research Institute , Ottawa , ON , Canada
- b Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , ON , Canada
| | - Alex MacKenzie
- a Children's Hospital of Eastern Ontario (CHEO) Research Institute , Ottawa , ON , Canada
- b Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , ON , Canada
| | - Clara D M Van Karnebeek
- c Department of Pediatrics, BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics , University of British Columbia , Vancouver BC , Canada
| |
Collapse
|