1
|
Huang W, Dai Z. Predicting brain tumor presence using machine learning models. MULTISCALE AND MULTIDISCIPLINARY MODELING, EXPERIMENTS AND DESIGN 2025; 8:64. [DOI: 10.1007/s41939-024-00663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/03/2024] [Indexed: 01/04/2025]
|
2
|
Siegel BI, Gust J. How Cancer Harms the Developing Brain: Long-Term Outcomes in Pediatric Cancer Survivors. Pediatr Neurol 2024; 156:91-98. [PMID: 38735088 DOI: 10.1016/j.pediatrneurol.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/22/2024] [Accepted: 03/31/2024] [Indexed: 05/14/2024]
Abstract
Survival rates for pediatric cancer are improving, resulting in a rising need to understand and address long-term sequelae. In this narrative review, we summarize the effects of cancer and its treatment on the developing brain, with a focus on neurocognitive function in leukemia and pediatric brain tumor survivors. We then discuss possible mechanisms of brain injury and management considerations.
Collapse
Affiliation(s)
- Benjamin I Siegel
- Brain Tumor Institute, Children's National Hospital, Washington, District of Columbia; Division of Pediatric Hematology and Oncology, Children's National Hospital, Washington, District of Columbia
| | - Juliane Gust
- Department of Neurology, University of Washinton, Seattle, Washington; Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, Washington.
| |
Collapse
|
3
|
Du Y, Li R, Fu D, Zhang B, Cui A, Shao Y, Lai Z, Chen R, Chen B, Wang Z, Zhang W, Chu L. Multi-omics technologies and molecular biomarkers in brain tumor-related epilepsy. CNS Neurosci Ther 2024; 30:e14717. [PMID: 38641945 PMCID: PMC11031674 DOI: 10.1111/cns.14717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Brain tumors are one of the leading causes of epilepsy, and brain tumor-related epilepsy (BTRE) is recognized as the major cause of intractable epilepsy, resulting in huge treatment cost and burden to patients, their families, and society. Although optimal treatment regimens are available, the majority of patients with BTRE show poor resolution of symptoms. BTRE has a very complex and multifactorial etiology, which includes several influencing factors such as genetic and molecular biomarkers. Advances in multi-omics technologies have enabled to elucidate the pathophysiological mechanisms and related biomarkers of BTRE. Here, we reviewed multi-omics technology-based research studies on BTRE published in the last few decades and discussed the present status, development, opportunities, challenges, and prospects in treating BTRE. METHODS First, we provided a general review of epilepsy, BTRE, and multi-omics techniques. Next, we described the specific multi-omics (including genomics, transcriptomics, epigenomics, proteomics, and metabolomics) techniques and related molecular biomarkers for BTRE. We then presented the associated pathogenetic mechanisms of BTRE. Finally, we discussed the development and application of novel omics techniques for diagnosing and treating BTRE. RESULTS Genomics studies have shown that the BRAF gene plays a role in BTRE development. Furthermore, the BRAF V600E variant was found to induce epileptogenesis in the neuronal cell lineage and tumorigenesis in the glial cell lineage. Several genomics studies have linked IDH variants with glioma-related epilepsy, and the overproduction of D2HG is considered to play a role in neuronal excitation that leads to seizure occurrence. The high expression level of Forkhead Box O4 (FOXO4) was associated with a reduced risk of epilepsy occurrence. In transcriptomics studies, VLGR1 was noted as a biomarker of epileptic onset in patients. Several miRNAs such as miR-128 and miRNA-196b participate in BTRE development. miR-128 might be negatively associated with the possibility of tumor-related epilepsy development. The lncRNA UBE2R2-AS1 inhibits the growth and invasion of glioma cells and promotes apoptosis. Quantitative proteomics has been used to determine dynamic changes of protein acetylation in epileptic and non-epileptic gliomas. In another proteomics study, a high expression of AQP-4 was detected in the brain of GBM patients with seizures. By using quantitative RT-PCR and immunohistochemistry assay, a study revealed that patients with astrocytomas and oligoastrocytomas showed high BCL2A1 expression and poor seizure control. By performing immunohistochemistry, several studies have reported the relationship between D2HG overproduction and seizure occurrence. Ki-67 overexpression in WHO grade II gliomas was found to be associated with poor postoperative seizure control. According to metabolomics research, the PI3K/AKT/mTOR pathway is associated with the development of glioma-related epileptogenesis. Another metabolomics study found that SV2A, P-gb, and CAD65/67 have the potential to function as biomarkers for BTRE. CONCLUSIONS Based on the synthesized information, this review provided new research perspectives and insights into the early diagnosis, etiological factors, and personalized treatment of BTRE.
Collapse
Affiliation(s)
- Yaoqiang Du
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Rusong Li
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Danqing Fu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Biqin Zhang
- Cancer Center, Department of HematologyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Ailin Cui
- Cancer Center, Department of Ultrasound MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Yutian Shao
- Zhejiang BioAsia Life Science InstitutePinghuChina
| | - Zeyu Lai
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Rongrong Chen
- School of Clinical MedicineHangzhou Normal UniversityHangzhouChina
| | - Bingyu Chen
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Zhen Wang
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Wei Zhang
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Lisheng Chu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
4
|
Dang H, Khan AB, Gadgil N, Sharma H, Trandafir C, Malbari F, Weiner HL. Behavioral Improvements following Lesion Resection for Pediatric Epilepsy: Pediatric Psychosurgery? Pediatr Neurosurg 2023; 58:80-88. [PMID: 36787706 PMCID: PMC10233708 DOI: 10.1159/000529683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Resection of brain lesions associated with refractory epilepsy to achieve seizure control is well accepted. However, concurrent behavioral effects of these lesions such as changes in mood, personality, and cognition and the effects of surgery on behavior have not been well characterized. We describe 5 such children with epileptogenic lesions and significant behavioral abnormalities which improved after surgery. CASE DESCRIPTIONS Five children (ages 3-14 years) with major behavioral abnormalities and lesional epilepsy were identified and treated at our center. Behavioral problems included academic impairment, impulsivity, self-injurious behavior, and decreased social interaction with diagnoses of ADHD, oppositional defiant disorder, and autism. Pre-operative neuropsychiatric testing was performed in 4/5 patients and revealed low-average cognitive and intellectual abilities for their age, attentional difficulties, and poor memory. Lesions were located in the temporal (2 gangliogliomas, 1 JPA, 1 cavernoma) and parietal (1 DNET) lobes. Gross total resection was achieved in all cases. At mean 1-year follow-up, seizure freedom (Engel 1a in 3 patients, Engel 1c in 2 patients) and significant behavioral improvements (academic performance, attention, socialization, and aggression) were achieved in all. Two patients manifested violence pre-operatively; one had extreme behavior with violence toward teachers and peers despite low seizure burden. Since surgery, his behavior has normalized. CONCLUSION We identified 5 patients with severe behavioral disorders in the setting of lesional epilepsy, all of whom demonstrated improvement after surgery. The degree of behavioral abnormality was disproportionate to epilepsy severity, suggesting a more complicated mechanism by which lesional epilepsy impacts behavior. We propose a novel paradigm in which lesionectomy may offer behavioral benefit even when seizures are not refractory. Thus, behavioral improvement may be an important novel goal for neurosurgical resection in children with epileptic brain lesions.
Collapse
Affiliation(s)
- Huy Dang
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA,
| | - Abdul Basit Khan
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Nisha Gadgil
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, USA
| | - Himanshu Sharma
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Cristina Trandafir
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Fatema Malbari
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Howard L Weiner
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
5
|
Prevalence of seizures in brain tumor: A meta-analysis. Epilepsy Res 2022; 187:107033. [DOI: 10.1016/j.eplepsyres.2022.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022]
|
6
|
Wang J, Luo X, Chen C, Deng J, Long H, Yang K, Qi S. Preoperative MRI for postoperative seizure prediction: a radiomics study of dysembryoplastic neuroepithelial tumor and a systematic review. Neurosurg Focus 2022; 53:E7. [DOI: 10.3171/2022.7.focus2254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE
In this systematic review the authors aimed to evaluate the effectiveness and superiority of radiomics in detecting tiny epilepsy lesions and to conduct original research in the use of radiomics for preliminary prediction of postoperative seizures in patients with dysembryoplastic neuroepithelial tumor (DNET).
METHODS
The PubMed and Web of Science databases were searched from the earliest record, January 1, 2018, to December 29, 2021, for reports of the detection of epilepsy using radiomics, and the resulting articles were carefully checked according to the PRISMA 2020 guidelines. The authors then conducted original research by evaluating MR images in 18 patients, who were then separated into two groups, the epilepsy recurrence group (ERG) and the epilepsy nonrecurrence group. The tumor region and the edema region were segmented manually by 3D Slicer. The radiomics data were extracted from MR images by using “Slicer Radiomics” running on Mac OS X. Tumor regions were observed with T1-weighted imaging, and edema with FLAIR imaging. Radiomics features with significant differences were selected through comparison according to epilepsy relapses performed with the Mann-Whitney U-test. The edema and tumor regions were also compared within groups to identify their distinctive features. Radiomics features were tested to verify their ability to predict recurrence epilepsy by receiver operating characteristic curve.
RESULTS
This systematic review located 9 original articles related to epilepsy and radiomics published from 2018 to 2021. The reported studies demonstrated that radiomics is useful for detecting tiny epilepsy lesions. Among the radiomics features used, the predictive ability of the area under the curve was more than 0.8. The heterogeneity of the peritumoral edema region was found to be higher in the ERG.
CONCLUSIONS
Satellite lesions in the peritumoral edema region of DNET patients may cause epilepsy recurrence, and radiomics is an emerging method to detect and evaluate these epilepsy-associated lesions.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University
- The First Clinical Medicine College, Southern Medical University; and
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Xinyi Luo
- The First Clinical Medicine College, Southern Medical University; and
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Chenghan Chen
- The First Clinical Medicine College, Southern Medical University; and
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Jiahong Deng
- The First Clinical Medicine College, Southern Medical University; and
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Hao Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University
- The First Clinical Medicine College, Southern Medical University; and
| | - Kaijun Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University
- The First Clinical Medicine College, Southern Medical University; and
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University
- The First Clinical Medicine College, Southern Medical University; and
| |
Collapse
|
7
|
Garcia JH, Winkler EA, Morshed RA, Lu A, Ammanuel SG, Saggi S, Wang EJ, Braunstein S, Fox CK, Fullerton HJ, Kim H, Cooke DL, Hetts SW, Lawton MT, Abla AA, Gupta N. Factors associated with seizures at initial presentation in pediatric patients with cerebral arteriovenous malformations. J Neurosurg Pediatr 2021; 28:663-668. [PMID: 34560640 DOI: 10.3171/2021.6.peds21126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/07/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Children with cerebral arteriovenous malformations (AVMs) can present with seizures, potentially increasing morbidity and impacting clinical management. However, the factors that lead to seizures as a presenting sign are not well defined. While AVM-related seizures have been described in case series, most studies have focused on adults and have included patients who developed seizures after an AVM rupture. To address this, the authors sought to analyze demographic and morphological characteristics of AVMs in a large cohort of children. METHODS The demographic, clinical, and AVM morphological characteristics of 189 pediatric patients from a single-center database were studied. Univariate and multivariate logistic regression models were used to test the effect of these characteristics on seizures as an initial presenting symptom in patients with unruptured brain AVMs. RESULTS Overall, 28 of 189 patients initially presented with seizures (14.8%). By univariate comparison, frontal lobe location (p = 0.02), larger AVM size (p = 0.003), older patient age (p = 0.04), and the Supplemented Spetzler-Martin (Supp-SM) grade (0.0006) were associated with seizure presentation. Multivariate analysis confirmed an independent effect of frontal lobe AVM location and higher Supp-SM grade. All patients presenting with seizures had AVMs in the cortex or subcortical white matter. CONCLUSIONS While children and adults share some risk factors for seizure presentation, their risk factor profiles do not entirely overlap. Pediatric patients with cortical AVMs in the frontal lobe were more likely to present with seizures. Additionally, the Supp-SM grade was highly associated with seizure presentation. Future clinical research should focus on the effect of therapeutic interventions targeting AVMs on seizure control in these patients.
Collapse
Affiliation(s)
- Joseph H Garcia
- 1Department of Neurological Surgery, University of California San Francisco, San Francisco
| | - Ethan A Winkler
- 1Department of Neurological Surgery, University of California San Francisco, San Francisco
| | - Ramin A Morshed
- 1Department of Neurological Surgery, University of California San Francisco, San Francisco
| | - Alex Lu
- 1Department of Neurological Surgery, University of California San Francisco, San Francisco
| | - Simon G Ammanuel
- 1Department of Neurological Surgery, University of California San Francisco, San Francisco
| | - Satvir Saggi
- 1Department of Neurological Surgery, University of California San Francisco, San Francisco
| | - Elaina J Wang
- 1Department of Neurological Surgery, University of California San Francisco, San Francisco
| | - Steve Braunstein
- 2Department of Radiation Oncology, University of California San Francisco, San Francisco
| | - Christine K Fox
- 3Pediatric Stroke and Cerebrovascular Disease Center, Department of Neurology, University of California San Francisco, San Francisco
| | - Heather J Fullerton
- 3Pediatric Stroke and Cerebrovascular Disease Center, Department of Neurology, University of California San Francisco, San Francisco
| | - Helen Kim
- 4Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco
| | - Daniel L Cooke
- 5Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco
| | - Steven W Hetts
- 5Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco
| | - Michael T Lawton
- 1Department of Neurological Surgery, University of California San Francisco, San Francisco
- 6Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona
| | - Adib A Abla
- 1Department of Neurological Surgery, University of California San Francisco, San Francisco
| | - Nalin Gupta
- 1Department of Neurological Surgery, University of California San Francisco, San Francisco
- 7Department of Pediatrics, University of California San Francisco, San Francisco, California; and
| |
Collapse
|
8
|
Zhu L, Chen L, Xu P, Lu D, Dai S, Zhong L, Han Y, Zhang M, Xiao B, Chang L, Wu Q. Genetic and molecular basis of epilepsy-related cognitive dysfunction. Epilepsy Behav 2020; 104:106848. [PMID: 32028124 DOI: 10.1016/j.yebeh.2019.106848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
Epilepsy is a common neurological disease characterized by recurrent seizures. About 70 million people were affected by epilepsy or epileptic seizures. Epilepsy is a complicated complex or symptomatic syndromes induced by structural, functional, and genetic causes. Meanwhile, several comorbidities are accompanied by epileptic seizures. Cognitive dysfunction is a long-standing complication associated with epileptic seizures, which severely impairs quality of life. Although the definitive pathogenic mechanisms underlying epilepsy-related cognitive dysfunction remain unclear, accumulating evidence indicates that multiple risk factors are probably involved in the development and progression of cognitive dysfunction in patients with epilepsy. These factors include the underlying etiology, recurrent seizures or status epilepticus, structural damage that induced secondary epilepsy, genetic variants, and molecular alterations. In this review, we summarize several theories that may explain the genetic and molecular basis of epilepsy-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Puying Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Di Lu
- Biomedicine Engineering Research Center, Kunming Medical University, 1168 Chun Rong West Road, Kunming, Yunnan 650500, PR China
| | - Shujuan Dai
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lianmei Zhong
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|