1
|
Samanta D. Evolving treatment strategies for early-life seizures in Tuberous Sclerosis Complex: A review and treatment algorithm. Epilepsy Behav 2024; 161:110123. [PMID: 39488094 DOI: 10.1016/j.yebeh.2024.110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Tuberous sclerosis Complex (TSC) is a genetic disorder characterized by multisystem involvement, with epilepsy affecting 80-90% of patients, often beginning in infancy. Early-life seizures in TSC are associated with poor neurodevelopmental outcomes, underscoring the importance of timely and effective management. This review explores the evolving treatment landscape for TSC-associated seizures in young children, focusing on three recently approved or license-expanded therapies: vigabatrin, everolimus, and cannabidiol. The efficacy and safety profiles of these treatments are examined based on clinical trials and real-world evidence, with a focus on their use in treating seizures in young children. The preemptive use of vigabatrin in clinical studies has also been carefully reviewed. A treatment algorithm is proposed, emphasizing early diagnosis, prompt initiation of appropriate therapy, and a stepwise approach to managing both infantile spasms and focal seizures. The algorithm incorporates these newer therapies alongside traditional antiseizure medications and non-pharmacological approaches. Challenges in optimizing treatment strategies, minimizing side effects, and improving long-term outcomes are discussed. This review aims to guide clinicians in navigating the complex landscape of early-life seizures associated with TSC, ultimately striving for improved seizure control and better developmental outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
2
|
Wechsler RT, Burdette DE, Gidal BE, Hyslop A, McGoldrick PE, Thiele EA, Valeriano J. Consensus panel recommendations for the optimization of EPIDIOLEX® treatment for seizures associated with Lennox-Gastaut syndrome, Dravet syndrome, and tuberous sclerosis complex. Epilepsia Open 2024; 9:1632-1642. [PMID: 39007525 PMCID: PMC11450617 DOI: 10.1002/epi4.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 07/16/2024] Open
Abstract
Following the approval of Epidiolex® (cannabidiol; CBD) for the treatment of seizures associated with Lennox-Gastaut syndrome (LGS), Dravet syndrome (DS), and tuberous sclerosis complex (TSC), healthcare professionals (HCPs) have had substantial experience in treating patients with Epidiolex. However, confusion still remains among HCPs, caregivers, and patients regarding dosing, drug interactions, safety monitoring, and differentiation between Epidiolex and nonapproved CBD products. To establish consensus recommendations for Epidiolex treatment optimization in LGS, DS, and TSC, a panel of seven HCPs with expertise in epilepsy was convened. Panelists participated in a premeeting survey based on a literature review of Epidiolex for the treatment of LGS, DS, and TSC, and survey responses were compiled for discussion. A modified Delphi method was used to assess agreement among panelists regarding recommendation statements following two rounds of discussion. Panelists identified two broad themes - overcoming barriers to initiation and optimization of treatment for seizures associated with LGS, DS, and TSC - for consensus guidelines. Accurate identification of patients with these rare epilepsies is critical for optimization of Epidiolex treatment. Providers should differentiate Epidiolex from nonapproved CBD products and set expectations for the therapeutic effect and safety/tolerability of Epidiolex. Initial target dose and titration rate should be individualized by baseline variables, prior response to antiseizure medications, and therapeutic goals. Awareness of strategies to manage adverse events and concomitant medications, including drug-drug interactions, is critical. Tracking response to the maximum tolerated dose is an important measure of effectiveness. These consensus recommendations provide real-world experience from neurology HCPs with experience in prescribing Epidiolex and can inform optimal use of Epidiolex for the treatment of seizures associated with LGS, DS, and TSC. PLAIN LANGUAGE SUMMARY: Epidiolex® (cannabidiol) is approved for treating seizures in Lennox-Gastaut syndrome, Dravet syndrome, and tuberous sclerosis complex. Although healthcare professionals have experience in treating patients with Epidiolex, there is a need for better understanding of dosing, drug interactions, and safety of this drug. Therefore, a group of epilepsy experts developed guidelines for best practices in Epidiolex treatment. Two main areas were identified: overcoming barriers to starting Epidiolex and considerations related to Epidiolex dosing. Within these areas, topics, including correct disease identification, managing adverse events, and determining individualized dose, were discussed. These guidelines provide real-world experience to inform optimal Epidiolex use.
Collapse
Affiliation(s)
| | | | - Barry E. Gidal
- University of Wisconsin School of PharmacyMadisonWisconsinUSA
| | - Ann Hyslop
- Stanford UniversityPalo AltoCaliforniaUSA
| | | | | | | |
Collapse
|
3
|
Liu Z, Liu W, Han M, Wang M, Li Y, Yao Y, Duan Y. A comprehensive review of natural product-derived compounds acting on P2X7R: The promising therapeutic drugs in disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155334. [PMID: 38554573 DOI: 10.1016/j.phymed.2023.155334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 04/01/2024]
Abstract
BACKGROUND The P2X7 receptor (P2X7R) is known to play a significant role in regulating various pathological processes associated with immune regulation, neuroprotection, and inflammatory responses. It has emerged as a potential target for the treatment of diseases. In addition to chemically synthesized small molecule compounds, natural products have gained attention as an important source for discovering compounds that act on the P2X7R. PURPOSE To explore the research progress made in the field of natural product-derived compounds that act on the P2X7R. METHODS The methods employed in this review involved conducting a thorough search of databases, include PubMed, Web of Science and WIKTROP, to identify studies on natural product-derived compounds that interact with P2X7R. The selected studies were then analyzed to categorize the compounds based on their action on the receptor and to evaluate their therapeutic applications, chemical properties, and pharmacological actions. RESULTS The natural product-derived compounds acting on P2X7R can be classified into three categories: P2X7R antagonists, compounds inhibiting P2X7R expression, and compounds regulating the signaling pathway associated with P2X7R. Moreover, highlight the therapeutic applications, chemical properties and pharmacological actions of these compounds, and indicate areas that require further in-depth study. Finally, discuss the challenges of the natural products-derived compounds exploration, although utilizing compounds from natural products for new drug research offers unique advantages, problems related to solubility, content, and extraction processes still exist. CONCLUSION The detailed information in this review will facilitate further development of P2X7R antagonists and potential therapeutic strategies for P2X7R-associated disorders.
Collapse
Affiliation(s)
- Zhenling Liu
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Wenjin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyao Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingzhu Wang
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongfang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Pingyuan Laboratory (Zhengzhou University), Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongtao Duan
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
4
|
Nachnani R, Knehans A, Neighbors JD, Kocis PT, Lee T, Tegeler K, Trite T, Raup-Konsavage WM, Vrana KE. Systematic review of drug-drug interactions of delta-9-tetrahydrocannabinol, cannabidiol, and Cannabis. Front Pharmacol 2024; 15:1282831. [PMID: 38868665 PMCID: PMC11167383 DOI: 10.3389/fphar.2024.1282831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/22/2024] [Indexed: 06/14/2024] Open
Abstract
Background The recent exponential increase in legalized medical and recreational cannabis, development of medical cannabis programs, and production of unregulated over-the-counter products (e.g., cannabidiol (CBD) oil, and delta-8-tetrahydrocannabinol (delta-8-THC)), has the potential to create unintended health consequences. The major cannabinoids (delta-9-tetrahydrocannabinol and cannabidiol) are metabolized by the same cytochrome P450 (CYP) enzymes that metabolize most prescription medications and xenobiotics (CYP3A4, CYP2C9, CYP2C19). As a result, we predict that there will be instances of drug-drug interactions and the potential for adverse outcomes, especially for prescription medications with a narrow therapeutic index. Methods We conducted a systematic review of all years to 2023 to identify real world reports of documented cannabinoid interactions with prescription medications. We limited our search to a set list of medications with predicted narrow therapeutic indices that may produce unintended adverse drug reactions (ADRs). Our team screened 4,600 reports and selected 151 full-text articles to assess for inclusion and exclusion criteria. Results Our investigation revealed 31 reports for which cannabinoids altered pharmacokinetics and/or produced adverse events. These reports involved 16 different Narrow Therapeutic Index (NTI) medications, under six drug classes, 889 individual subjects and 603 cannabis/cannabinoid users. Interactions between cannabis/cannabinoids and warfarin, valproate, tacrolimus, and sirolimus were the most widely reported and may pose the greatest risk to patients. Common ADRs included bleeding risk, altered mental status, difficulty inducing anesthesia, and gastrointestinal distress. Additionally, we identified 18 instances (58%) in which clinicians uncovered an unexpected serum level of the prescribed drug. The quality of pharmacokinetic evidence for each report was assessed using an internally developed ten-point scale. Conclusion Drug-drug interactions with cannabinoids are likely amongst prescription medications that use common CYP450 systems. Our findings highlight the need for healthcare providers and patients/care-givers to openly communicate about cannabis/cannabinoid use to prevent unintended adverse events. To that end, we have developed a free online tool (www.CANN-DIR.psu.edu) to help identify potential cannabinoid drug-drug interactions with prescription medications.
Collapse
Affiliation(s)
- Rahul Nachnani
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, United States
| | - Amy Knehans
- Department of Library, Penn State University College of Medicine, Hershey, PA, United States
| | - Jeffrey D. Neighbors
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, United States
| | - Paul T. Kocis
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, United States
- Department of Pharmacy, Penn State University College of Medicine, Hershey, PA, United States
| | - Tzuo Lee
- PA Options for Wellness, Harrisburg, PA, United States
| | - Kayla Tegeler
- PA Options for Wellness, Harrisburg, PA, United States
| | - Thomas Trite
- PA Options for Wellness, Harrisburg, PA, United States
| | - Wesley M. Raup-Konsavage
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, United States
| | - Kent E. Vrana
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
5
|
Campos MG, China M, Cláudio M, Capinha M, Torres R, Oliveira S, Fortuna A. Drug-Cannabinoid Interactions in Selected Therapeutics for Symptoms Associated with Epilepsy, Autism Spectrum Disorder, Cancer, Multiple Sclerosis, and Pain. Pharmaceuticals (Basel) 2024; 17:613. [PMID: 38794183 PMCID: PMC11124308 DOI: 10.3390/ph17050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Clinical practice entails a translation of research that assists in the use of scientific data and therapeutic evidence for the benefit of the patient. This review critically summarizes the potential impact of cannabinoids in conjunction with other drugs when associated with treatments for epilepsy, autism spectrum disorder, cancer, multiple sclerosis, and chronic pain. In these associations, potential drug interactions may occur and alter the predicted clinical results. Therefore, the potential for drug interactions must always be assessed to avoid therapeutic failures and/or increased side effects. Some effects may be additive, synergistic, or antagonistic, but changes in absorption, distribution, metabolism, particularly through cytochrome P450 (CYP) isoenzymes (e.g., CYP2C9 and CYP3A4), and excretion may also occur. For example, the combination of cannabis-derived compounds and the antifungal drug ketoconazole, a CYP3A4 inhibitor, increases the plasma concentration of Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). In contrast, rifampicin, a CYP3A4 inducer, stands out for reducing plasma THC levels by approximately 20-40% and 50% to 60% for CBD. Other CYP3A4 inhibitors and inducers are likely to have a similar effect on plasma concentrations if co-administered. Pharmacokinetic interactions with anticonvulsant medications have also been reported, as have pharmacodynamic interactions between cannabinoids and medications with sympathomimetic effects (e.g., tachycardia, hypertension), central nervous system depressants (e.g., drowsiness, ataxia), and anticholinergics (e.g., tachycardia and somnolence). Although further studies are still pending, there is currently clinical evidence supporting drug interactions with cannabinoids, requiring doctors to evaluate the risk of drug combinations with cannabinoids and vice versa. The tables provided here were designed to facilitate the identification of biorelevant interactions that may compromise therapeutic efficacy and toxicity.
Collapse
Affiliation(s)
- Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga Santa Comba, 3000-548 Coimbra, Portugal; (M.C.); (S.O.)
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| | - Maria China
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga Santa Comba, 3000-548 Coimbra, Portugal; (M.C.); (S.O.)
| | - Mariana Cláudio
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga Santa Comba, 3000-548 Coimbra, Portugal; (M.C.); (S.O.)
| | - Miguel Capinha
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga Santa Comba, 3000-548 Coimbra, Portugal; (M.C.); (S.O.)
| | - Rita Torres
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga Santa Comba, 3000-548 Coimbra, Portugal; (M.C.); (S.O.)
| | - Simão Oliveira
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga Santa Comba, 3000-548 Coimbra, Portugal; (M.C.); (S.O.)
| | - Ana Fortuna
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga Santa Comba, 3000-548 Coimbra, Portugal; (M.C.); (S.O.)
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, ICNAS, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
6
|
Ho JJY, Goh C, Leong CSA, Ng KY, Bakhtiar A. Evaluation of potential drug-drug interactions with medical cannabis. Clin Transl Sci 2024; 17:e13812. [PMID: 38720531 PMCID: PMC11079547 DOI: 10.1111/cts.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Cannabis-drug interactions have caused significant concerns, mainly due to their role in the cytochrome P450 (CYP) enzyme-mediated metabolic pathway of numerous medications. A systematic review was conducted to gain an overview of the potential interactions of cannabis with different drug classes by extracting pertinent information from published study data. From the inception of the study to October 1, 2023, we performed a systematic search of PubMed, Scopus, clinicaltrials.gov, and Web of Science. We included 54 out of 464 articles, and a total of 20 drug classes were identified to have interactions with medicinal cannabis. The cannabis-drug interactions were assessed and classified according to their probability and severity. The analysis revealed that antiepileptics had the most evidence of interaction with cannabis, followed by clobazam (CLB), warfarin, and tacrolimus. Generally, cannabis-drug interactions result in pharmacokinetic (PK) or pharmacodynamic (PD) changes. Therefore, careful monitoring should be performed to detect any unusual elevations in plasma levels. In addition, dose titrations or treatment withdrawal could help mitigate the adverse effects attributed to cannabis-drug interactions. Nevertheless, novel drugs are constantly emerging, and more research is needed to further identify potential interactions with cannabis.
Collapse
Affiliation(s)
- Jessie Jia Yi Ho
- School of PharmacyMonash University MalaysiaBandar SunwaySelangorMalaysia
| | - Chenyi Goh
- School of PharmacyMonash University MalaysiaBandar SunwaySelangorMalaysia
| | | | - Khuen Yen Ng
- School of PharmacyMonash University MalaysiaBandar SunwaySelangorMalaysia
| | - Athirah Bakhtiar
- School of PharmacyMonash University MalaysiaBandar SunwaySelangorMalaysia
| |
Collapse
|
7
|
Devinsky O, Jones NA, Cunningham MO, Jayasekera BAP, Devore S, Whalley BJ. Cannabinoid treatments in epilepsy and seizure disorders. Physiol Rev 2024; 104:591-649. [PMID: 37882730 DOI: 10.1152/physrev.00049.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy. We briefly review the diverse physiological processes mediating the central nervous system response to cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol, and terpenes. Next, we characterize the anti- and proconvulsive effects of cannabinoids from animal studies of acute seizures and chronic epileptogenesis. We then review the clinical literature on using cannabinoids to treat epilepsy, including anecdotal evidence and case studies as well as the more recent randomized controlled clinical trials that led to US Food and Drug Administration approval of CBD for some types of epilepsy. Overall, we seek to evaluate our current understanding of cannabinoids in epilepsy and focus future research on unanswered questions.
Collapse
Affiliation(s)
- Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, United States
| | | | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - B Ashan P Jayasekera
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Neurosurgery, Royal Victoria Hospital, Newcastle upon Tyne, United Kingdom
| | - Sasha Devore
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
| | | |
Collapse
|
8
|
Qian L, Beers JL, Jackson KD, Zhou Z. CBD and THC in Special Populations: Pharmacokinetics and Drug-Drug Interactions. Pharmaceutics 2024; 16:484. [PMID: 38675145 PMCID: PMC11054161 DOI: 10.3390/pharmaceutics16040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Cannabinoid use has surged in the past decade, with a growing interest in expanding cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) applications into special populations. Consequently, the increased use of CBD and THC raises the risk of drug-drug interactions (DDIs). Nevertheless, DDIs for cannabinoids, especially in special populations, remain inadequately investigated. While some clinical trials have explored DDIs between therapeutic drugs like antiepileptic drugs and CBD/THC, more potential interactions remain to be examined. This review summarizes the published studies on CBD and THC-drug interactions, outlines the mechanisms involved, discusses the physiological considerations in pharmacokinetics (PK) and DDI studies in special populations (including pregnant and lactating women, pediatrics, older adults, patients with hepatic or renal impairments, and others), and presents modeling approaches that can describe the DDIs associated with CBD and THC in special populations. The PK of CBD and THC in special populations remain poorly characterized, with limited studies investigating DDIs involving CBD/THC in these populations. Therefore, it is critical to evaluate potential DDIs between CBD/THC and medications that are commonly used in special populations. Modeling approaches can aid in understanding these interactions.
Collapse
Affiliation(s)
- Lixuan Qian
- Department of Chemistry, York College, City University of New York, Jamaica, NY 11451, USA;
| | - Jessica L. Beers
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (K.D.J.)
| | - Klarissa D. Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (K.D.J.)
| | - Zhu Zhou
- Department of Chemistry, York College, City University of New York, Jamaica, NY 11451, USA;
| |
Collapse
|
9
|
Dell'Isola GB, Verrotti A, Sciaccaluga M, Dini G, Ferrara P, Parnetti L, Costa C. Cannabidiol: metabolism and clinical efficacy in epileptic patients. Expert Opin Drug Metab Toxicol 2024; 20:119-131. [PMID: 38465404 DOI: 10.1080/17425255.2024.2329733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION The landscape of epilepsy treatment has undergone a significant transformation with the emergence of cannabidiol as a potential therapeutic agent. Epidiolex, a pharmaceutical formulation of highly purified CBD, garnered significant attention not just for its therapeutic potential but also for being the first cannabis-derived medication to obtain approval from regulatory bodies. AREA COVERED In this narrative review the authors explore the intricate landscape of CBD as an antiseizure medication, deepening into its pharmacological mechanisms and clinical trials involving various epileptic encephalopathies. This exploration serves as a comprehensive guide, shedding light on a compound that holds promise for individuals contending with the significant challenges of drug-resistant epilepsy. EXPERT OPINION Rigorous studies highlight cannabidiol's efficacy, safety profile, and potential cognitive benefits, warranting further exploration for its approval in various drug-resistant epilepsy forms. As a promising therapeutic option, cannabidiol not only demonstrates efficacy in seizure control but also holds the potential for broader enhancements in the quality of life, especially for patients with epileptic encephalopathies.
Collapse
Affiliation(s)
| | | | - Miriam Sciaccaluga
- Section of Neurology, Laboratory of Experimental Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- "Mauro Baschirotto" Institute for Rare Diseases - BIRD Foundation Onlus, Longare, Vicenza, Italy
| | - Gianluca Dini
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | - Pietro Ferrara
- Unit of Pediatrics, Campus Bio-Medico University, Rome, Italy
| | - Lucilla Parnetti
- Section of Neurology, Laboratory of Experimental Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Costa
- Section of Neurology, Laboratory of Experimental Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
10
|
Cuñetti L, Oricchio F, Vázquez M, Peyraube R, Manzo L, Nalerio C, Curi L, Maldonado C. Drug-Drug Interaction Between Cannabidiol, Cyclosporine, and Mycophenolate Mofetil: A Case Report. Transplant Proc 2024; 56:252-256. [PMID: 38212169 DOI: 10.1016/j.transproceed.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024]
Abstract
Kidney transplantation remains the optimal therapy for many patients with end-stage kidney disease (ESKD). Chronic pain is one of the most common and distressing symptoms among patients with ESKD, and its treatment is a complex and challenging task to accomplish. The benefits of cannabidiol (CBD) in chronic pain treatment have been reported recently. Cannabidiol is metabolized by cytochrome P450, mainly CYP3A4 and CYP2C19, and can also undergo direct conjugation via UDP-glucuronosyltransferase enzymes, with a growing body of evidence suggesting it is also a potent inhibitor or inducer of these pathways. Cannabidiol was also found to be a potent inhibitor of carboxylesterases in vitro. Because cytochrome P450 enzymes and carboxylesterases are also responsible for the clearance and activation of immunosuppressants, respectively, drug-drug interactions are likely to occur. Here, we report a pharmacokinetic drug interaction between CBD and cyclosporine and mycophenolate mofetil in a patient with ESKD with a kidney transplantation. It is thus crucial to take into account these interactions and monitor drug levels to avoid drug toxicity or a lack of efficacy. This study is in accordance with the guidelines of the Declaration of Helsinki and the Declaration of Istanbul.
Collapse
Affiliation(s)
- Leticia Cuñetti
- Kidney Transplant Unit, Nephrology and Urology Institute, Montevideo, Uruguay
| | - Florencia Oricchio
- Graduate Program in Chemistry, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Marta Vázquez
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Raquel Peyraube
- International Diploma in Endocannabinology Cannabis and Cannabinoids, Instituto de Investigaciones Biológicas Clemente Estable-MEC, Montevideo, Uruguay
| | - Laura Manzo
- Kidney Transplant Unit, Nephrology and Urology Institute, Montevideo, Uruguay
| | - Catheryn Nalerio
- Kidney Transplant Unit, Nephrology and Urology Institute, Montevideo, Uruguay
| | - Lilian Curi
- Kidney Transplant Unit, Nephrology and Urology Institute, Montevideo, Uruguay
| | - Cecilia Maldonado
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
11
|
Maldonado C, Peyraube R, Fagiolino P, Oricchio F, Cuñetti L, Vázquez M. Human Data on Pharmacokinetic Interactions of Cannabinoids: A Narrative Review. Curr Pharm Des 2024; 30:241-254. [PMID: 38288797 DOI: 10.2174/0113816128288510240113170116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/02/2024] [Indexed: 05/08/2024]
Abstract
Concomitant use of cannabinoids with other drugs may result in pharmacokinetic drug-drug interactions, mainly due to the mechanism involving Phase I and Phase II enzymes and/or efflux transporters. Cannabinoids are not only substrates but also inhibitors or inducers of some of these enzymes and/or transporters. This narrative review aims to provide the available information reported in the literature regarding human data on the pharmacokinetic interactions of cannabinoids with other medications. A search on Pubmed/Medline, Google Scholar, and Cochrane Library was performed. Some studies were identified with Google search. Additional articles of interest were obtained through cross-referencing of published literature. All original research papers discussing interactions between cannabinoids, used for medical or recreational/adult-use purposes, and other medications in humans were included. Thirty-two studies with medicinal or recreational/adult-use cannabis were identified (seventeen case reports/series, thirteen clinical trials, and two retrospective analyses). In three of these studies, a bidirectional pharmacokinetic drug-drug interaction was reported. In the rest of the studies, cannabinoids were the perpetrators, as in most of them, concentrations of cannabinoids were not measured. In light of the widespread use of prescribed and non-prescribed cannabinoids with other medications, pharmacokinetic interactions are likely to occur. Physicians should be aware of these potential interactions and closely monitor drug levels and/or responses. The existing literature regarding pharmacokinetic interactions is limited, and for some drugs, studies have relatively small cohorts or are only case reports. Therefore, there is a need for high-quality pharmacological studies on cannabinoid-drug interactions.
Collapse
Affiliation(s)
- Cecilia Maldonado
- Department of Pharmaceutical Sciences, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Raquel Peyraube
- Instituto de Investigaciones Biológicas Clemente Estable - MEC, Montevideo, Uruguay
| | - Pietro Fagiolino
- Department of Pharmaceutical Sciences, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Florencia Oricchio
- Department of Pharmaceutical Sciences, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Leticia Cuñetti
- Kidney Transplant Unit, Nephrology and Urology Institute, Montevideo, Uruguay
| | - Marta Vázquez
- Department of Pharmaceutical Sciences, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
12
|
Stöllberger C, Finsterer J. Cannabidiol's impact on drug-metabolization. Eur J Intern Med 2023; 118:6-13. [PMID: 37541924 DOI: 10.1016/j.ejim.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023]
Abstract
IMPORTANCE Products containing cannabidiol(CBD) are easily accessible. CBD is reported to inhibit the drug-metabolizing proteins(DMP) Cytochrome P450(CYP)3A4/5, CYP2C9, CYP2B6, CYP2D6, CYP2E1, CYP1A2, CYP2C19, carboxylesterase 1(CES1), uridine 5'diphospho-glucoronosyltransferase(UGT)1A9, UGT2B7, P-glycoprotein(P-gp) and Breast Cancer Resistance Protein(BCRP). The relevance of CBD-drug interactions is largely unknown. Aim of the study was to identify drugs, potentially interacting with orally ingested CBD, to assess whether CBD-drug interactions have been reported, and if substrates of DMP are frequently prescribed drugs. OBSERVATIONS Identified were 403 drugs as substrates of DMP. CBD-drug interactions were reported for 53/403 substrates in humans (n = 25), in vivo (n = 13) or in vitro (n = 15). In 31/53 substrates, CBD induced an increase, in 1/53 a decrease, in 4/53 no change in the substrate level. For 5/53 substrates, the results were controversial, and in 12/53 no substrate levels were reported. Among the 30 most frequently prescribed drugs in Germany were 67% substrates of DMP and among the 50 most frequently prescribed drugs in the USA 68%. RELEVANCE AND CONCLUSIONS There is an urgent need for pharmacologic studies on CBD-drug interactions. Patients should be educated on the potential risk and awareness should be increased among physicians. Regulatory authorities should become aware of the problem and start an initiative on an international level to increase the safety of CBD.
Collapse
|
13
|
Specchio N, Nabbout R, Aronica E, Auvin S, Benvenuto A, de Palma L, Feucht M, Jansen F, Kotulska K, Sarnat H, Lagae L, Jozwiak S, Curatolo P. Updated clinical recommendations for the management of tuberous sclerosis complex associated epilepsy. Eur J Paediatr Neurol 2023; 47:25-34. [PMID: 37669572 DOI: 10.1016/j.ejpn.2023.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Children with tuberous sclerosis complex (TSC), may experience a variety of seizure types in the first year of life, most often focal seizure sand epileptic spasms. Drug resistance is seen early in many patients, and the management of TSC associated epilepsy remain a major challenge for clinicians. In 2018 clinical recommendations for the management of TSC associated epilepsy were published by a panel of European experts. In the last five years considerable progress has been made in understanding the neurobiology of epileptogenesis and three interventional randomized controlled trials have changed the therapeutic approach for the management of TSC associated epilepsy. Pre-symptomatic treatment with vigabatrin may delay seizure onset, may reduce seizure severity and reduce the risk of epileptic encephalopathy. The efficacy of mTOR inhibition with adjunctive everolimus was documented in patients with TSC associated refractory seizures and cannabidiol could be another therapeutic option. Epilepsy surgery has significantly improved seizure outcome in selected patients and should be considered early in all patients with drug resistant epilepsy. There is a need to identify patients who may have a higher risk of developing epilepsy and autism spectrum disorder (ASD). In the recent years significant progress has been made owing to the early identification of risk factors for the development of drug-resistant epilepsy. Better understanding of the mechanism underlying epileptogenesis may improve the management for TSC-related epilepsy. Developmental neurobiology and neuropathology give opportunities for the implementation of concepts related to clinical findings, and an early genetic diagnosis and use of EEG and MRI biomarkers may improve the development of pre-symptomatic and disease-modifying strategies.
Collapse
Affiliation(s)
- Nicola Specchio
- Clinical and Experimental Neurology, Bambino Gesu' Children's Hospital IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies EpiCARE, Rome, Italy.
| | - Rima Nabbout
- Department of Pediatric Neurology, Necker Enfants Malades Hospital, Université Paris Cité, Member of the European Reference Network on Rare and Complex Epilepsies EpiCARE, INSERM U1163, Institut Imagine, Paris, France
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam, Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Stephane Auvin
- APHP, Service de Neurologie Pédiatrique, Centre Epilepsies Rares, Member of the European Reference Network on Rare and Complex Epilepsies EpiCARE, Hôpital Robert Debré, Paris, France; Université Paris-Cité, INSERM NeuroDiderot, Paris, France; Institut Universitaire de France (IUF), Paris, France
| | | | - Luca de Palma
- Clinical and Experimental Neurology, Bambino Gesu' Children's Hospital IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies EpiCARE, Rome, Italy
| | - Martha Feucht
- Epilepsy Center, Department of Pediatrics, Medical University Vienna, Austria
| | - Floor Jansen
- Department of Pediatric Neurology, Brain Center UMC Utrecht, the Netherlands
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Harvey Sarnat
- Department of Paediatrics (Neurology), Pathology and Laboratory Medicine (Neuropathology) and Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute (Owerko Centre), Calgary, AB, Canada
| | - Lieven Lagae
- Department of Paediatric Neurology, University of Leuven, Leuven, Belgium
| | - Sergiusz Jozwiak
- Research Department, The Children's Memorial Health Institute, ERN EPICARE, Warsaw, Poland
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| |
Collapse
|
14
|
Wray L, Berwaerts J, Critchley D, Hyland K, Chen C, Thai C, Tayo B. Pharmacokinetic Drug-Drug Interaction With Coadministration of Cannabidiol and Everolimus in a Phase 1 Healthy Volunteer Trial. Clin Pharmacol Drug Dev 2023; 12:911-919. [PMID: 37132402 DOI: 10.1002/cpdd.1262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/02/2023] [Indexed: 05/04/2023]
Abstract
When highly purified cannabidiol (CBD; Epidiolex) and the mammalian target of rapamycin inhibitor everolimus are used concomitantly in the treatment of tuberous sclerosis complex, there is evidence of a pharmacokinetic (PK) interaction, leading to increased everolimus systemic exposure. We evaluated the effect of steady-state CBD exposure following multiple clinically relevant CBD doses on everolimus PK in healthy adult participants in a single-center, fixed-sequence, open-label, phase 1 study. All participants received oral everolimus 5 mg on day 1, followed by a 7-day washout. On days 9-17, participants received CBD (100 mg/mL oral solution) at 12.5 mg/kg in the morning and evening. On the morning of day 13, participants also received a single dose of oral everolimus 5 mg. Medications were taken 30 or 45 minutes (morning or evening dose) after starting a standardized meal. Maximum concentration and area under the concentration-time curve (AUC) from time of dosing to the last measurable concentration and extrapolated to infinity, of everolimus in whole blood were estimated using noncompartmental analysis, with geometric mean ratios and 90% confidence intervals for the ratios of everolimus dosed with CBD to everolimus dosed alone. A single dose of everolimus 5 mg was well tolerated when administered with multiple doses of CBD. Log-transformed everolimus maximum concentration, AUC from time of dosing to the last measurable concentration, and AUC extrapolated to infinity values increased by ≈2.5-fold, and everolimus half-life remained largely unchanged in the presence of steady-state CBD relative to everolimus dosed alone. Everolimus blood concentration monitoring should be strongly advised with appropriate dose reduction when coadministered with CBD.
Collapse
Affiliation(s)
| | | | | | | | - Cuiping Chen
- Jazz Pharmaceuticals, Palo Alto, California, USA
| | | | | |
Collapse
|
15
|
Smegal LF, Vedmurthy P, Ryan M, Eagen M, Andrejow NW, Sweeney K, Reidy TG, Yeom S, Lin DD, Suskauer SJ, Kalb LG, Salpekar JA, Zabel TA, Comi AM. Cannabidiol Treatment for Neurological, Cognitive, and Psychiatric Symptoms in Sturge-Weber Syndrome. Pediatr Neurol 2023; 139:24-34. [PMID: 36508880 DOI: 10.1016/j.pediatrneurol.2022.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/20/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND A prior drug trial of cannabidiol for treatment-resistant epilepsy in patients with Sturge-Weber syndrome (SWS), a rare neurovascular condition, implicated improvements in neurological, quality of life (QOL), neuropsychologic, psychiatric, and motor outcomes. METHODS Ten subjects with SWS brain involvement, controlled seizures, and cognitive impairments received study drug in this Johns Hopkins institutional review board-approved, open-label, prospective drug trial. Oral cannabidiol was taken for six months (dose ranged from 5 to 20 mg/kg/day). SWS neuroscore, port-wine birthmark score, QOL, and adverse events were recorded every four to 12 weeks. Neuropsychologic, psychiatric, and motor assessments were administered at baseline and six months' follow-up. Most evaluations were conducted virtually due to the coronavirus disease 2019 pandemic. RESULTS Cannabidiol was generally well tolerated. Six subjects reported mild to moderate side effects related to study drug and continued on drug; one subject withdrew early due to moderate side effects. No seizures were reported. Significant improvements in SWS neuroscore, patient-reported QOL, anxiety and emotional regulation, and report of bimanual ability use were noted. Migraine QOL scores were high at baseline in these subjects, and remained high. Neuropsychologic and other QOL and motor outcomes remained stable, with some within-subject improvements noted. CONCLUSIONS Further studies are needed to determine whether Epidiolex can improve quality of life and be beneficial for neurological, anxiety, and motor impairments in SWS independent of seizure control. Large multicentered studies are needed to extend these preliminary findings.
Collapse
Affiliation(s)
- Lindsay F Smegal
- Department of Neurology and Developmental Medicine, Hugo Moser Kennedy Krieger Research Institute, Baltimore, Maryland; Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Pooja Vedmurthy
- Department of Neurology and Developmental Medicine, Hugo Moser Kennedy Krieger Research Institute, Baltimore, Maryland
| | - Matthew Ryan
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland
| | - Melissa Eagen
- Fairmount Rehabilitation Programs, Kennedy Krieger Institute, Baltimore, Maryland
| | | | - Kristie Sweeney
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland
| | - Teressa Garcia Reidy
- Fairmount Rehabilitation Programs, Kennedy Krieger Institute, Baltimore, Maryland
| | - SangEun Yeom
- Department of Neurology and Developmental Medicine, Hugo Moser Kennedy Krieger Research Institute, Baltimore, Maryland
| | - Doris D Lin
- Division of Neuroradiology, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stacy J Suskauer
- Pediatric Rehabilitation Medicine, Kennedy Krieger Institute, Baltimore, Maryland; Departments of Physical Medicine & Rehabilitation and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Luther G Kalb
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Kennedy Krieger Institute, Baltimore, Maryland
| | - Jay A Salpekar
- Departments of Psychiatry and Neurology, Johns Hopkins University School of Medicine, Kennedy Krieger Institute, Baltimore, Maryland
| | - T Andrew Zabel
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anne M Comi
- Department of Neurology, Hugo Moser Kennedy Krieger Research Institute, Baltimore, Maryland; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
16
|
Reddy DS. Therapeutic and clinical foundations of cannabidiol therapy for difficult-to-treat seizures in children and adults with refractory epilepsies. Exp Neurol 2023; 359:114237. [PMID: 36206806 DOI: 10.1016/j.expneurol.2022.114237] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Novel and effective antiseizure medications are needed to treat refractory and rare forms of epilepsy. Cannabinoids, which are obtained from the cannabis plant, have a long history of medical use, including for neurologic conditions. In 2018, the US Food and Drug Administration approved the first phytocannabinoid, cannabidiol (CBD, Epidiolex), which is now indicated for severe seizures associated with three rare forms of developmental and epileptic encephalopathy: Dravet syndrome, Lennox-Gastaut syndrome, and tuberous sclerosis complex. Compelling evidence supports the efficacy of CBD in experimental models and patients with epilepsy. In randomized clinical trials, highly-purified CBD has demonstrated efficacy with an acceptable safety profile in children and adults with difficult-to-treat seizures. Although the underlying antiseizure mechanisms of CBD in humans have not yet been elucidated, the identification of novel antiseizure targets of CBD preclinically indicates multimodal mechanisms that include non-cannabinoid pathways. In addition to antiseizure effects, CBD possesses strong anti-inflammatory and neuroprotective activities, which might contribute to protective effects in epilepsy and other conditions. This article provides a succinct overview of therapeutic approaches and clinical foundations of CBD, emphasizing the clinical utility of CBD for the treatment of seizures associated with refractory and rare epilepsies. CBD has shown to be a safe and effective antiseizure medicine, demonstrating a broad spectrum of efficacy across multiple seizure types, including those associated with severe epilepsies with childhood onset. Despite such promise, there are many perils with CBD that hampers its widespread use, including limited understanding of pharmacodynamics, limited exposure-response relationship, limited information for seizure freedom with continued use, complex pharmacokinetics with drug interactions, risk of adverse effects, and lack of expert therapeutic guidelines. These scientific issues need to be resolved by further investigations, which would decide the unique role of CBD in the management of refractory epilepsy.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Health Institute of Pharmacology and Neurotherapeutics, School of Medicine, Texas A&M University, Bryan, TX, USA; Engineering Medicine, Intercollegiate School of Engineering Medicine, Texas A&M University, Houston, TX, USA; Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
17
|
Madeo G, Kapoor A, Giorgetti R, Busardò FP, Carlier J. Update on Cannabidiol Clinical Toxicity and Adverse Effects: A Systematic Review. Curr Neuropharmacol 2023; 21:2323-2342. [PMID: 36946485 PMCID: PMC10556379 DOI: 10.2174/1570159x21666230322143401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Compelling evidence from preclinical and clinical studies supports the therapeutic role of cannabidiol (CBD) in several medical disorders. We reviewed the scientific evidence on CBD-related toxicity and adverse events (AEs) in 2019, at the beginning of the spike in clinical studies involving CBD. However, CBD safety remained uncertain. OBJECTIVE With the benefit of hindsight, we aimed to provide an update on CBD-related toxicity and AEs in humans. METHODS A systematic literature search was conducted following PRISMA guidelines. PubMed, Cochrane, and Embase were accessed in October 2022 to identify clinical studies mentioning CBDrelated toxicity/AEs from February 2019 to September 2022. Study design, population characteristics, CBD doses, treatment duration, co-medications, and AEs were compiled. RESULTS A total of 51 reports were included. Most studies investigated CBD efficacy and safety in neurological conditions, such as treatment-resistant epilepsies, although a growing number of studies are focusing on specific psychopathological conditions, such as substance use disorders, chronic psychosis, and anxiety. Most studies report mild or moderate severity of AEs. The most common AEs are diarrhea, somnolence, sedation, and upper respiratory disturbances. Few serious AEs have been reported, especially when CBD is co-administered with other classes of drugs, such as clobazam and valproate. CONCLUSION Clinical data suggest that CBD is well tolerated and associated with few serious AEs at therapeutic doses both in children and adults. However, interactions with other medications should be monitored carefully. Additional data are needed to investigate CBD's long-term efficacy and safety, and CBD use in medical conditions other than epilepsy syndromes.
Collapse
Affiliation(s)
- Graziella Madeo
- Clinical Center of Neurology and Psychiatry, Brain&Care Group, Rimini, Italy
| | - Ashita Kapoor
- Unit of Forensic Toxicology, Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Raffaele Giorgetti
- Unit of Forensic Toxicology, Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Francesco Paolo Busardò
- Unit of Forensic Toxicology, Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Jeremy Carlier
- Unit of Forensic Toxicology, Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
18
|
Graham M, Martin J, Lucas C, Murnion B, Schneider J. Cannabidiol drug interaction considerations for prescribers and pharmacists. Expert Rev Clin Pharmacol 2022; 15:1383-1397. [DOI: 10.1080/17512433.2022.2142114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Myfanwy Graham
- Australian Centre for Cannabinoid Clinical and Research Excellence, Newcastle, New South Wales, Australia
- Centre for Drug Repurposing & Medicines Research, School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Jennifer Martin
- Australian Centre for Cannabinoid Clinical and Research Excellence, Newcastle, New South Wales, Australia
- Centre for Drug Repurposing & Medicines Research, School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Catherine Lucas
- Australian Centre for Cannabinoid Clinical and Research Excellence, Newcastle, New South Wales, Australia
- Centre for Drug Repurposing & Medicines Research, School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Bridin Murnion
- Discipline of Addiction Medicine, University of Sydney, New South Wales, Australia
| | - Jennifer Schneider
- Australian Centre for Cannabinoid Clinical and Research Excellence, Newcastle, New South Wales, Australia
- Centre for Drug Repurposing & Medicines Research, School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| |
Collapse
|
19
|
Genetic pathogenesis of the epileptogenic lesions in Tuberous Sclerosis Complex: Therapeutic targeting of the mTOR pathway. Epilepsy Behav 2022; 131:107713. [PMID: 33431351 DOI: 10.1016/j.yebeh.2020.107713] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022]
Abstract
Tuberous sclerosis complex (TSC) is a genetic multisystem disease due to the mutation in one of the two genes TSC1 and TSC2, affecting several organs and systems and carrying a significant risk of early onset and refractory seizures. The pathogenesis of this complex disorder is now well known, with most of TSC-related manifestations being a consequence of the overactivation of the mammalian Target of Rapamycin (mTOR) complex. The discovery of this underlying mechanism paved the way for the use of a class of drugs called mTOR inhibitors including rapamycin and everolimus and specifically targeting this pathway. Rapamycin has been widely used in different animal models of TSC-related epilepsy and proved to be able not only to suppress seizures but also to prevent the development of epilepsy, thus demonstrating an antiepileptogenic potential. In some models, it also showed some benefit on neuropsychiatric manifestations associated with TSC. Everolimus has recently been approved by the US Food and Drug Administration and the European Medical Agency for the treatment of refractory seizures associated with TSC starting from the age of 2 years. It demonstrated a clear benefit when compared to placebo on reducing the frequency of different seizure types and exerting a higher effect in younger children. In conclusion, mTOR cascade can be a potentially major cause of TSC-associated epilepsy and neurodevelopmental disability, and additional research should investigate if early suppression of abnormal mTOR signal with mTOR inhibitors before seizure onset can be a more efficient approach and an effective antiepileptogenic and disease-modifying strategy in infants with TSC.
Collapse
|
20
|
Oshiro CA, Castro LHM. Cannabidiol and epilepsy in Brazil: a current review. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:182-192. [PMID: 35976327 PMCID: PMC9491442 DOI: 10.1590/0004-282x-anp-2022-s137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cannabidiol (CBD) has become a promising therapeutic option in the treatment of epilepsy. Recent studies provide robust evidence that CBD is effective and safe. Limitations in current knowledge and regulatory issues still limit CBD use. CBD use regarding epilepsy types still lacks clear guidelines. OBJECTIVE To critically review the main current pharmacological features and clinical issues regarding CBD use in epilepsy, to provide current regulatory background regarding CBD use in Brazil, and to suggest a practical CBD therapeutic guide in Brazil. METHODS Non-systematic literature review (up to February 2022) of current concepts of CBD and epilepsy, including the authors' personal experience. RESULTS Five pivotal trials have led to CBD approval as an adjunctive treatment for Dravet and Lennox-Gastaut syndromes, and for the tuberous sclerosis complex. Efficacy of CBD in other drug-resistant epilepsies remains not completely understood. CBD adverse event profile and drug interactions are better understood. CBD is well tolerated. In Brazil, CBD is not classified as a medication, but as a product subject to a distinct regulatory legislation. CBD is still not offered by the National Brazilian health system, but can be purchased in authorized pharmacies or imported under prescription and signed informed consent. CONCLUSION CBD is a recognized novel treatment for epilepsy. Future well-designed studies and public health strategies are needed to offer widespread access to CBD, and to improve the quality of life of people living with epilepsy in Brazil.
Collapse
Affiliation(s)
- Carlos André Oshiro
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo, SP, Brazil
| | - Luiz Henrique Martins Castro
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo, SP, Brazil
| |
Collapse
|
21
|
Lawson J, O'Brien T, Graham M, Renaud E, Jones D, Freeman J, Lawn N, Martin JH. Expert advice for prescribing cannabis medicines for patients with epilepsy-drawn from the Australian clinical experience. Br J Clin Pharmacol 2022; 88:3101-3113. [PMID: 35261078 PMCID: PMC9311726 DOI: 10.1111/bcp.15262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 12/26/2022] Open
Abstract
There is international interest for consensus advice for prescribers working in the field of drug resistant epilepsy intending to trial potential therapies that are nonregistered or off‐label. Cannabinoids are one such therapy. In 2017, the New South Wales State Government (Australia) set up a cannabinoid prescribing guidance service for a wide variety of indications, based on known pharmacology together with the relevant new literature as it became available. Increasing interest in cannabis medicines use outside this State over the following 5 years together with a paucity of registration‐standard clinical trials, lack of information around dosing issues, drug interactions and biological plausibility meant there remained a large unmet need for such advice. To address the unmet need in epilepsy, and until medicines were registered or regulator quality data were available, it was agreed to bring together a working group comprising paediatric and adult epilepsy specialists, clinical pharmacists., clinical pharmacologists and cannabis researchers from across Australia to develop interim consensus advice for prescribers. Although interim, this consensus advice addresses much of the current practice gap by providing an informed overview of the different cannabis medicines currently available for use in the treatment of epilepsy in paediatric and adult settings, with information on dose, drug interactions, toxicity, type of seizure and frequency of symptom relief. As such it supplements the limited evidence currently available from clinical trials with experience from front‐line practice. It is expected that this consensus advice will be updated as new evidence emerges and will provide guidance for a subsequent Guideline.
Collapse
Affiliation(s)
- John Lawson
- Sydney Children's Hospital Randwick, Neurology; University of New South Wales - Randwick Campus, School of Women and Children's Health, Sydney, New South Wales, Australia.,Australian Centre for Cannabis Clinical and Research Excellence, Australia
| | - Terry O'Brien
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Myfanwy Graham
- Australian Centre for Cannabis Clinical and Research Excellence, Australia.,Centre for Drug Repurposing and Medicines Research, Clinical Pharmacology, Hunter Medical Research Institute, University of Newcastle, Australia
| | - Elianne Renaud
- Australian Centre for Cannabis Clinical and Research Excellence, Australia.,Centre for Drug Repurposing and Medicines Research, Clinical Pharmacology, Hunter Medical Research Institute, University of Newcastle, Australia
| | - Dean Jones
- University of Technology, Sydney, New South Wales, Australia
| | - Jeremy Freeman
- Murdoch Children's Research Institute; The Royal Children's Hospital Melbourne, Western Australian Adult Epilepsy service in Perth, Western Australia
| | | | - Jennifer H Martin
- Australian Centre for Cannabis Clinical and Research Excellence, Australia.,Centre for Drug Repurposing and Medicines Research, Clinical Pharmacology, Hunter Medical Research Institute, University of Newcastle, Australia
| |
Collapse
|
22
|
A scoping review on cannabidiol therapy in tuberous sclerosis: Current evidence and perspectives for future development. Epilepsy Behav 2022; 128:108577. [PMID: 35151190 DOI: 10.1016/j.yebeh.2022.108577] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 12/30/2022]
Abstract
Cannabidiol (CBD) has recently been approved as an add-on therapy by various regulatory agencies for tuberous sclerosis complex (TSC)-associated seizures based on its short-term efficacy and safety in a pivotal randomized controlled trial. However, critical information about which patients with TSC and seizure types respond best to CBD (clinical, electrophysiological, and genetic predictors of responsiveness), when to use CBD in the treatment algorithm, and how CBD can be combined with other antiseizure medications (ASMs) in the form of a rational polypharmacy therapy is still lacking. In general, there is a limited in-depth critical review of CBD for the treatment of TSC to facilitate its optimal use in a clinical context. Here, we utilized a scoping review approach to report the current evidence of efficacy and safety of pharmaceutical-grade CBD in patients with TSC, including relevant mechanism of action and drug-drug interactions with other ASMs. We also discussed emerging information about CBD's long-term efficacy and safety data in patients with TSC. Finally, we discussed some critical unanswered questions in several domains related to effective clinical management of TSC using CBD, including barriers to early and aggressive treatment in infants, difficulty with universal access to CBD, a lack of studies to understand CBD's impact on seizure severity and specific seizure types, insufficient exploration of CBD in TSC-related cognitive and behavioral issues, and the need for more research into CBD's effects on various biomarkers.
Collapse
|
23
|
Nabavi Nouri M, Zak M, Jain P, Whitney R. Epilepsy Management in Tuberous Sclerosis Complex: Existing and Evolving Therapies and Future Considerations. Pediatr Neurol 2022; 126:11-19. [PMID: 34740132 DOI: 10.1016/j.pediatrneurol.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Tuberous sclerosis complex (TSC) is a rare autosomal dominant condition that affects multiple body systems. Disruption of the mammalian target of rapamycin (mTOR) pathway results in abnormal cell growth, proliferation, protein synthesis, and cell differentiation and migration in TSC. In the central nervous system, mTOR disruption is also believed to influence neuronal excitability and promote epileptogenesis. Epilepsy is the most common neurological manifestation of TSC and affects 80% to 90% of individuals with high rates of treatment resistance (up to 75%). The onset of epilepsy in the majority of individuals with TSC occurs before the age of two years, which is a critical time in neurodevelopment. Both medically refractory epilepsy and early-onset epilepsy are associated with intellectual disability in TSC, while seizure control and remission are associated with lower rates of cognitive impairment. Our current knowledge of the treatment of epilepsy in TSC has expanded immensely over the last decade. Several new therapies such as preemptive vigabatrin therapy in infants, cannabidiol, and mTOR inhibitors have emerged in recent years for the treatment of epilepsy in TSC. This review will provide clinicians with a comprehensive overview of the pharmacological and nonpharmacological therapies available for the treatment of epilepsy related to TSC.
Collapse
Affiliation(s)
- Maryam Nabavi Nouri
- Division of Neurology, Department of Pediatrics, Western University, London, Ontario, Canada
| | - Maria Zak
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Puneet Jain
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
24
|
Thiele EA, Bebin EM, Filloux F, Kwan P, Loftus R, Sahebkar F, Sparagana S, Wheless J. Long-term cannabidiol treatment for seizures in patients with tuberous sclerosis complex: An open-label extension trial. Epilepsia 2021; 63:426-439. [PMID: 34957550 PMCID: PMC9305454 DOI: 10.1111/epi.17150] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/01/2022]
Abstract
Objective To evaluate the long‐term safety and efficacy of add‐on cannabidiol (CBD) in patients with seizures associated with tuberous sclerosis complex (TSC) in the open‐label extension (OLE) of the randomized, placebo‐controlled phase 3 trial GWPCARE6 (NCT02544763). Results of an interim (February 2019 data cut) analysis are reported. Methods Patients who completed the randomized trial enrolled to receive CBD (Epidiolex® in the United States; Epidyolex® in the EU; 100 mg/mL oral solution). The initial target dose was 25 mg/kg/day, which, based on response and tolerability, could be decreased or increased up to 50 mg/kg/day. The primary end point was safety. Key secondary end points included percentage reduction in TSC‐associated (countable focal and generalized) seizures, responder rates, and Subject/Caregiver Global Impression of Change (S/CGIC). Results Of 201 patients who completed the randomized phase, 199 (99%) entered the OLE. Mean age was 13 years (range, 1–57). At the time of analysis, 5% of patients had completed treatment, 20% had withdrawn, and 75% were ongoing. One‐year retention rate was 79%. Median treatment time was 267 days (range, 18–910) at a 27 mg/kg/day mean modal dose. Most patients (92%) had an adverse event (AE). Most common AEs were diarrhea (42%), seizure (22%), and decreased appetite (20%). AEs led to permanent discontinuation in 6% of patients. There was one death that was deemed treatment unrelated by the investigator. Elevated liver transaminases occurred in 17 patients (9%) patients; 12 were taking valproate. Median percentage reductions in seizure frequency (12‐week windows across 48 weeks) were 54%–68%. Seizure responder rates (≥50%, ≥75%, 100% reduction) were 53%–61%, 29%–45%, and 6%–11% across 12‐week windows for 48 weeks. Improvement on the S/CGIC scale was reported by 87% of patients/caregivers at 26 weeks. Significance In patients with TSC, long‐term add‐on CBD treatment was well tolerated and sustainably reduced seizures through 48 weeks, with most patients/caregivers reporting global improvement.
Collapse
Affiliation(s)
| | - E Martina Bebin
- University of Alabama School of Medicine, Birmingham, Alabama, USA
| | - Francis Filloux
- University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Patrick Kwan
- Monash University and the University of Melbourne, Melbourne, Victoria, Australia
| | | | | | - Steven Sparagana
- Scottish Rite for Children and the University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James Wheless
- Le Bonheur Children's Hospital and the University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
25
|
Moloney PB, Cavalleri GL, Delanty N. Epilepsy in the mTORopathies: opportunities for precision medicine. Brain Commun 2021; 3:fcab222. [PMID: 34632383 PMCID: PMC8495134 DOI: 10.1093/braincomms/fcab222] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 01/16/2023] Open
Abstract
The mechanistic target of rapamycin signalling pathway serves as a ubiquitous regulator of cell metabolism, growth, proliferation and survival. The main cellular activity of the mechanistic target of rapamycin cascade funnels through mechanistic target of rapamycin complex 1, which is inhibited by rapamycin, a macrolide compound produced by the bacterium Streptomyces hygroscopicus. Pathogenic variants in genes encoding upstream regulators of mechanistic target of rapamycin complex 1 cause epilepsies and neurodevelopmental disorders. Tuberous sclerosis complex is a multisystem disorder caused by mutations in mechanistic target of rapamycin regulators TSC1 or TSC2, with prominent neurological manifestations including epilepsy, focal cortical dysplasia and neuropsychiatric disorders. Focal cortical dysplasia type II results from somatic brain mutations in mechanistic target of rapamycin pathway activators MTOR, AKT3, PIK3CA and RHEB and is a major cause of drug-resistant epilepsy. DEPDC5, NPRL2 and NPRL3 code for subunits of the GTPase-activating protein (GAP) activity towards Rags 1 complex (GATOR1), the principal amino acid-sensing regulator of mechanistic target of rapamycin complex 1. Germline pathogenic variants in GATOR1 genes cause non-lesional focal epilepsies and epilepsies associated with malformations of cortical development. Collectively, the mTORopathies are characterized by excessive mechanistic target of rapamycin pathway activation and drug-resistant epilepsy. In the first large-scale precision medicine trial in a genetically mediated epilepsy, everolimus (a synthetic analogue of rapamycin) was effective at reducing seizure frequency in people with tuberous sclerosis complex. Rapamycin reduced seizures in rodent models of DEPDC5-related epilepsy and focal cortical dysplasia type II. This review outlines a personalized medicine approach to the management of epilepsies in the mTORopathies. We advocate for early diagnostic sequencing of mechanistic target of rapamycin pathway genes in drug-resistant epilepsy, as identification of a pathogenic variant may point to an occult dysplasia in apparently non-lesional epilepsy or may uncover important prognostic information including, an increased risk of sudden unexpected death in epilepsy in the GATORopathies or favourable epilepsy surgery outcomes in focal cortical dysplasia type II due to somatic brain mutations. Lastly, we discuss the potential therapeutic application of mechanistic target of rapamycin inhibitors for drug-resistant seizures in GATOR1-related epilepsies and focal cortical dysplasia type II.
Collapse
Affiliation(s)
- Patrick B Moloney
- FutureNeuro, the Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
| | - Gianpiero L Cavalleri
- FutureNeuro, the Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
| | - Norman Delanty
- FutureNeuro, the Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
| |
Collapse
|
26
|
Updated International Tuberous Sclerosis Complex Diagnostic Criteria and Surveillance and Management Recommendations. Pediatr Neurol 2021; 123:50-66. [PMID: 34399110 DOI: 10.1016/j.pediatrneurol.2021.07.011] [Citation(s) in RCA: 266] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disease affecting multiple body systems with wide variability in presentation. In 2013, Pediatric Neurology published articles outlining updated diagnostic criteria and recommendations for surveillance and management of disease manifestations. Advances in knowledge and approvals of new therapies necessitated a revision of those criteria and recommendations. METHODS Chairs and working group cochairs from the 2012 International TSC Consensus Group were invited to meet face-to-face over two days at the 2018 World TSC Conference on July 25 and 26 in Dallas, TX, USA. Before the meeting, working group cochairs worked with group members via e-mail and telephone to (1) review TSC literature since the 2013 publication, (2) confirm or amend prior recommendations, and (3) provide new recommendations as required. RESULTS Only two changes were made to clinical diagnostic criteria reported in 2013: "multiple cortical tubers and/or radial migration lines" replaced the more general term "cortical dysplasias," and sclerotic bone lesions were reinstated as a minor criterion. Genetic diagnostic criteria were reaffirmed, including highlighting recent findings that some individuals with TSC are genetically mosaic for variants in TSC1 or TSC2. Changes to surveillance and management criteria largely reflected increased emphasis on early screening for electroencephalographic abnormalities, enhanced surveillance and management of TSC-associated neuropsychiatric disorders, and new medication approvals. CONCLUSIONS Updated TSC diagnostic criteria and surveillance and management recommendations presented here should provide an improved framework for optimal care of those living with TSC and their families.
Collapse
|
27
|
Nabbout R, Kuchenbuch M, Chiron C, Curatolo P. Pharmacotherapy for Seizures in Tuberous Sclerosis Complex. CNS Drugs 2021; 35:965-983. [PMID: 34417984 DOI: 10.1007/s40263-021-00835-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2021] [Indexed: 01/18/2023]
Abstract
Epilepsy is one of the main symptoms affecting the lives of individuals with tuberous sclerosis complex (TSC), causing a high rate of morbidity. Individuals with TSC can present with various types of seizures, epilepsies, and epilepsy syndromes that can coexist or appear in relation to age. Focal epilepsy is the most frequent epilepsy type with two developmental and epileptic encephalopathies: infantile spasms syndrome and Lennox-Gastaut syndrome. Active screening and early management of epilepsy is recommended in individuals with TSC to limit its consequences and its impact on quality of life, cognitive outcome and the economic burden of the disease. The progress in the knowledge of the mechanisms underlying epilepsy in TSC has paved the way for new concepts in the management of epilepsy related to TSC. In addition, we are moving from traditional "reactive" and therapeutic choices with current antiseizure medications used after the onset of seizures, to a proactive approach, aimed at predicting and preventing epileptogenesis and the onset of epilepsy with vigabatrin, and to personalized treatments with mechanistic therapies, namely mechanistic/mammalian target of rapamycin inhibitors. Indeed, epilepsy linked to TSC is one of the only epilepsies for which a predictive and preventive approach can delay seizure onset and improve seizure response. However, the efficacy of such interventions on long-term cognitive and psychiatric outcomes is still under investigation.
Collapse
Affiliation(s)
- Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, APHP, Université de Paris, 149 rue de Sèvres, 75015, Paris, France.
- UMR 1163, Institut National de la Santé et de la Recherche Médicale (INSERM), Imagine Institute, Université de Paris, Paris, France.
| | - Mathieu Kuchenbuch
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, APHP, Université de Paris, 149 rue de Sèvres, 75015, Paris, France
- UMR 1163, Institut National de la Santé et de la Recherche Médicale (INSERM), Imagine Institute, Université de Paris, Paris, France
| | - Catherine Chiron
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, APHP, Université de Paris, 149 rue de Sèvres, 75015, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1141, Neurospin, Gif sur Yvette, France
| | - Paolo Curatolo
- Department of System Medicine, Child Neurology and Psychiatry Unit, Tor Vergata University Hospital, Rome, Italy
| |
Collapse
|
28
|
Schubert-Bast S, Strzelczyk A. Review of the treatment options for epilepsy in tuberous sclerosis complex: towards precision medicine. Ther Adv Neurol Disord 2021; 14:17562864211031100. [PMID: 34349839 PMCID: PMC8290505 DOI: 10.1177/17562864211031100] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disorder caused by mutations in the TSC1 or TSC2 genes, which encode proteins that antagonise the mammalian isoform of the target of rapamycin complex 1 (mTORC1) - a key mediator of cell growth and metabolism. TSC is characterised by the development of benign tumours in multiple organs, together with neurological manifestations including epilepsy and TSC-associated neuropsychiatric disorders (TAND). Epilepsy occurs frequently and is associated with significant morbidity and mortality; however, the management is challenging due to the intractable nature of the seizures. Preventative epilepsy treatment is a key aim, especially as patients with epilepsy may be at a higher risk of developing severe cognitive and behavioural impairment. Vigabatrin given preventatively reduces the risk and severity of epilepsy although the benefits for TAND are inconclusive. These promising results could pave the way for evaluating other treatments in a preventative capacity, especially those that may address the underlying pathophysiology of TSC, including everolimus, cannabidiol and the ketogenic diet (KD). Everolimus is an mTOR inhibitor approved for the adjunctive treatment of refractory TSC-associated seizures that has demonstrated significant reductions in seizure frequency compared with placebo, improvements that were sustained after 2 years of treatment. Highly purified cannabidiol, recently approved in the US as Epidiolex® for TSC-associated seizures in patients ⩾1 years of age, and the KD, may also participate in the regulation of the mTOR pathway. This review focusses on the pivotal clinical evidence surrounding these potential targeted therapies that may form the foundation of precision medicine for TSC-associated epilepsy, as well as other current treatments including anti-seizure drugs, vagus nerve stimulation and surgery. New future therapies are also discussed, together with the potential for preventative treatment with targeted therapies. Due to advances in understanding the molecular genetics and pathophysiology, TSC represents a prototypic clinical syndrome for studying epileptogenesis and the impact of precision medicine.
Collapse
Affiliation(s)
- Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Goethe-University Frankfurt, Schleusenweg 2-16, Frankfurt am Main, 60528, Germany
| |
Collapse
|
29
|
Thiele EA, Bebin EM, Bhathal H, Jansen FE, Kotulska K, Lawson JA, O'Callaghan FJ, Wong M, Sahebkar F, Checketts D, Knappertz V. Add-on Cannabidiol Treatment for Drug-Resistant Seizures in Tuberous Sclerosis Complex: A Placebo-Controlled Randomized Clinical Trial. JAMA Neurol 2021; 78:285-292. [PMID: 33346789 PMCID: PMC7754080 DOI: 10.1001/jamaneurol.2020.4607] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Question Is add-on cannabidiol superior to placebo in reducing the number of seizures associated with tuberous sclerosis complex? Findings In this randomized clinical trial, 224 patients with tuberous sclerosis complex were treated with cannabidiol (25 or 50 mg/kg/day) or matched placebo for 16 weeks. The percentage reduction in the type of seizures regarded as the primary end point was 27% for placebo, 49% for 25 mg/kg/day of cannabidiol, and 48% for 50 mg/kg/day of cannabidiol; a dosage of 25 mg/kg/day led to fewer adverse events than the 50-mg/kg/day dosage. Meaning In this study, both cannabidiol dosages were equally efficacious in reducing tuberous sclerosis complex–associated seizures compared with placebo, but the smaller dosage led to fewer adverse events. Importance Efficacy of cannabidiol has been demonstrated in seizures associated with Lennox-Gastaut and Dravet syndromes but appears not yet to have been established in conditions with primarily focal seizures, such as tuberous sclerosis complex (TSC). Objective To evaluate efficacy and safety of 25-mg/kg/day and 50-mg/kg/day cannabidiol dosages vs placebo against seizures associated with TSC. Design, Setting, and Participants This double-blind, placebo-controlled randomized clinical trial (GWPCARE6) enrolled patients between April 6, 2016, and October 4, 2018; follow-up was completed on February 15, 2019. The trial was conducted at 46 sites in Australia, Poland, Spain, the Netherlands, United Kingdom, and United States. Eligible patients (aged 1-65 years) were those with a clinical diagnosis of TSC and medication-resistant epilepsy who had had at least 8 TSC-associated seizures during the 4-week baseline period, with at least 1 seizure occurring in at least 3 of the 4 weeks, and were currently taking at least 1 antiepileptic medication. Interventions Patients received oral cannabidiol at 25 mg/kg/day (CBD25) or 50 mg/kg/day (CBD50) or a matched placebo for 16 weeks. Main Outcomes and Measures The prespecified primary outcome was the change from baseline in number of TSC-associated seizures for cannabidiol vs placebo during the treatment period. Results Of 255 patients screened for eligibility, 31 were excluded and 224 were randomized. Of the 224 included patients (median [range] age, 11.4 [1.1-56.8] years; 93 female patients [41.5%]), 75 were randomized to CBD25, 73 to CBD50, and 76 to placebo, with 201 completing treatment. The percentage reduction from baseline in the type of seizures considered the primary end point was 48.6% (95% CI, 40.4%-55.8%) for the CBD25 group, 47.5% (95% CI, 39.0%-54.8%) for the CBD50 group, and 26.5% (95% CI, 14.9%-36.5%) for the placebo group; the percentage reduction from placebo was 30.1% (95% CI, 13.9%-43.3%; P < .001) for the CBD25 group and 28.5% (95% CI, 11.9%-42.0%; nominal P = .002) for the CBD50 group. The most common adverse events were diarrhea (placebo group, 19 [25%]; CBD25 group, 23 [31%]; CBD50 group, 41 [56%]) and somnolence (placebo group, 7 [9%]; CBD25 group, 10 [13%]; CBD50 group, 19 [26%]), which occurred more frequently with cannabidiol than placebo. Eight patients in CBD25 group, 10 in CBD50 group, and 2 in the placebo group discontinued treatment because of adverse events. Twenty-eight patients taking cannabidiol (18.9%) had elevated liver transaminase levels vs none taking placebo. Conclusions and Relevance Cannabidiol significantly reduced TSC-associated seizures compared with placebo. The 25-mg/kg/day dosage had a better safety profile than the 50-mg/kg/day dosage. Trial Registration ClinicalTrials.gov Identifier: NCT02544763
Collapse
Affiliation(s)
| | - E Martina Bebin
- Department of Neurology and Pediatrics, University of Alabama School of Medicine, Birmingham
| | - Hari Bhathal
- Centro Médico Teknon, Neurocenter Barcelona, Barcelona, Spain
| | - Floor E Jansen
- Department of Pediatric Neurology, Brain Center University Medical Center, Utrecht, the Netherlands
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland.,EpiCare: A European Reference Network for Rare or Low Prevalence Complex Diseases, Bron, France
| | - John A Lawson
- Neurology Department, Sydney Children's Hospital, Randwick, Australia
| | | | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | | | | | | | | |
Collapse
|
30
|
Lattanzi S, Trinka E, Striano P, Rocchi C, Salvemini S, Silvestrini M, Brigo F. Highly Purified Cannabidiol for Epilepsy Treatment: A Systematic Review of Epileptic Conditions Beyond Dravet Syndrome and Lennox-Gastaut Syndrome. CNS Drugs 2021; 35:265-281. [PMID: 33754312 PMCID: PMC8005394 DOI: 10.1007/s40263-021-00807-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cannabidiol (CBD), which is one major constituent of the Cannabis sativa plant, has anti-seizure properties and does not produce euphoric or intrusive side effects. A plant-derived, highly purified CBD formulation with a known and constant composition has been approved by the US Food and Drug Administration for the treatment of seizures associated with Dravet syndrome, Lennox-Gastaut syndrome, and tuberous sclerosis complex. In the European Union, the drug has been authorized by the European Medicines Agency for the treatment of seizures associated with Dravet syndrome and Lennox-Gastaut syndrome, in conjunction with clobazam, and is under regulatory review for the treatment of seizures in patients with tuberous sclerosis complex. OBJECTIVES This systematic review aimed to summarize the currently available body of knowledge about the use of this US Food and Drug Administration/European Medicines Agency-approved oral formulation of pharmaceutical-grade CBD in patients with epileptic conditions, especially developmental and epileptic encephalopathies other than Dravet syndrome and Lennox-Gastaut syndrome. METHODS The relevant studies were identified through MEDLINE and the US National Institutes of Health Clinical Trials Registry in October 2020. There were no date limitations or language restrictions. The following types of studies were included: clinical trials, cohorts, case-control, cross-sectional, clinical series, and case reports. Participants had to meet the following criteria: any sex, any ethnicity, any age, diagnosis of epilepsy, receiving plant-derived, highly purified (> 98% w/w) CBD in a sesame oil-based oral solution for the treatment of seizures. Data extracted from selected records included efficacy, tolerability, and safety outcomes. RESULTS Five hundred and seventy records were identified by database and trial register searching. Fifty-seven studies were retrieved for detailed assessment, of which 42 were eventually included for the review. The participants of the studies included patients of both pediatric and adult age. Across the trials, purified CBD was administered at dosages up to 50 mg/kg/day. In a randomized double-blind controlled trial in patients with tuberous sclerosis complex, CBD was associated with a significantly greater percent reduction in seizure frequency than placebo over the treatment period. Open-label studies suggested the effectiveness of CBD in the treatment of children and adults presenting with other epilepsy syndromes than those addressed by regulatory trials, including CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes, SYNGAP1 encephalopathy, and epilepsy with myoclonic absences. The most common adverse events observed during treatment with CBD included somnolence, decreased appetite, diarrhea, and increased serum aminotransferases. CONCLUSIONS The currently available data suggest that response to treatment with a highly purified, plant-derived CBD oil-based solution can be seen in patients across a broad range of epilepsy disorders and etiologies. The existing evidence can provide preliminary support for additional research.
Collapse
Affiliation(s)
- Simona Lattanzi
- Department of Experimental and Clinical Medicine, Neurological Clinic, Marche Polytechnic University, Via Conca 71, 60020, Ancona, Italy.
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria.,Center for Cognitive Neuroscience, Salzburg, Austria.,Public Health, Health Services Research and HTA, University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genoa, Italy
| | - Chiara Rocchi
- Department of Experimental and Clinical Medicine, Neurological Clinic, Marche Polytechnic University, Via Conca 71, 60020, Ancona, Italy
| | - Sergio Salvemini
- Department of Experimental and Clinical Medicine, Neurological Clinic, Marche Polytechnic University, Via Conca 71, 60020, Ancona, Italy
| | - Mauro Silvestrini
- Department of Experimental and Clinical Medicine, Neurological Clinic, Marche Polytechnic University, Via Conca 71, 60020, Ancona, Italy
| | - Francesco Brigo
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy.,Division of Neurology, "Franz Tappeiner" Hospital, Merano, BZ, Italy
| |
Collapse
|
31
|
Amin S, Mallick AA, Edwards H, Cortina-Borja M, Laugharne M, Likeman M, O'Callaghan FJ. The metformin in tuberous sclerosis (MiTS) study: A randomised double-blind placebo-controlled trial. EClinicalMedicine 2021; 32:100715. [PMID: 33681737 PMCID: PMC7910694 DOI: 10.1016/j.eclinm.2020.100715] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tuberous Sclerosis Complex (TSC) is a genetic disorder characterised by the development of benign tumours secondary to loss of inhibitory regulation of the mTOR (mechanistic Target of Rapamycin) intracellular growth pathway. Metformin inhibits the mTOR pathway. We investigated whether metformin would reduce growth of hamartomas associated with tuberous sclerosis complex. METHODS In this multicentre randomized, double-blind, placebo-controlled trial, patients with a clinical diagnosis of tuberous sclerosis, aged over 10 years and with at least one renal angiomyolipoma of greater than 1 cm in diameter were enrolled. Participants were randomly allocated (1:1) by a secure website to receive metformin or placebo for 12 months. The primary outcome was percentage volume change of renal angiomyolipomas (AML) at 12 months compared to baseline. Secondary outcomes were percentage change at 12 months from baseline in volume of cerebral Subependymal Giant Cell Astrocytomas (SEGA); appearance of facial and ungual hamartomas; frequency of epileptic seizures; and adaptive behaviour. The trial is registered with The International Standard Randomised Controlled Trial Number (ISRCTN), number 92545532, and the European Union Drug Regulating Authorities Clinical Trials (EUDRACT), number 2011-001319-30. FINDINGS Between 1 November 2012 and 30 September 2015 72 patients were screened and 55 were randomly assigned to metformin (28) or placebo (27). Four participants withdrew between randomisation and starting treatment. All 51 patients who started therapy completed the trial and were assessed for outcome at 12 months. The median percentage change in angiomyolipoma (AML) volume was +7.6% (IQR -1.8% to +42.6%) for the placebo group and +8.9% (IQR 1.3% to 19.5%) for the metformin group (p = 0.28). Twenty-seven patients had SEGAs: 13 received placebo and 14 metformin. The median percentage change in SEGA volume was +3.0% (IQR -22.8% to +27.7%) for the placebo group and - 20.8% (IQR - 47.1% to - 5.0%) for the metformin group (p = 0.03). Twenty-one patients were assessed for seizure frequency: 9 received placebo and 12 received metformin. In the metformin group, a mean reduction of 43.7% from baseline in seizures was observed and in the placebo group a 3.1% mean reduction was observed, with a difference in response of 40.6% (95% CI -3.1% to +84.2%, p = 0.03). There were no significant differences between metformin and placebo groups for the other secondary outcomes. There were no deaths. Three serious adverse events (SAEs) occurred during the trial (all patients on metformin). INTERPRETATION Metformin did not reduce AML volume. Metformin did reduce SEGA volume and seizure frequency compared with placebo. There may be a role for metformin in slowing or reversing growth of some life-threatening hamartomas in TSC and for reducing seizure frequency. Further study is justified. FUNDING This study was funded by the National Institute for Health and Research (NIHR) through the The Research for Patient Benefit Programme (RfPB).
Collapse
Affiliation(s)
- Sam Amin
- Clinical Neurosciences Section, Room 41, 4th Floor PUW South, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
- Children's Department, Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath BA1 3NG, United Kingdom
- Department of Paediatric Neurology, Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol BS3 8AE, United Kingdom
| | - Andrew A Mallick
- Department of Paediatric Neurology, Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol BS3 8AE, United Kingdom
| | - Hannah Edwards
- Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Mario Cortina-Borja
- Population, Policy and Practice Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Matthew Laugharne
- Radiology Department, Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath BA1 3NG, United Kingdom
| | - Marcus Likeman
- Department of Paediatric Radiology, Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol BS3 8AE, United Kingdom
| | - Finbar J.K. O'Callaghan
- Clinical Neurosciences Section, Room 41, 4th Floor PUW South, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
- Department of Paediatric Neurology, Brain Directorate, Great Ormond Street Hospital NHS Trust, London WC1N 3JH, United Kingdom
- Children's Department, Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath BA1 3NG, United Kingdom
- Corresponding author at: Clinical Neurosciences Section, Room 41, 4th Floor PUW South, Institute of Child Health, University College London, London WC1N 1EH, United Kingdom. f.o'
| |
Collapse
|
32
|
Franco V, Bialer M, Perucca E. Cannabidiol in the treatment of epilepsy: Current evidence and perspectives for further research. Neuropharmacology 2021; 185:108442. [PMID: 33347884 DOI: 10.1016/j.neuropharm.2020.108442] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
The therapeutic potential of cannabidiol (CBD) in seizure disorders has been known for many years, but it is only in the last decade that major progress has been made in characterizing its preclinical and clinical properties as an antiseizure medication. The mechanisms responsible for protection against seizures are not fully understood, but they are likely to be multifactorial and to include, among others, antagonism of G protein-coupled receptor, desensitization of transient receptor potential vanilloid type 1 channels, potentiation of adenosine-mediated signaling, and enhancement of GABAergic transmission. CBD has a low and highly variable oral bioavailability, and can be a victim and perpetrator of many drug-drug interactions. A pharmaceutical-grade formulation of purified CBD derived from Cannabis sativa has been evaluated in several randomized placebo-controlled adjunctive-therapy trials, which resulted in its regulatory approval for the treatment of seizures associated with Dravet syndrome, Lennox-Gastaut syndrome and tuberous sclerosis complex. Interpretation of results of these trials, however, has been complicated by the occurrence of an interaction with clobazam, which leads to a prominent increase in the plasma concentration of the active metabolite N-desmethylclobazam in CBD-treated patients. Despite impressive advances, significant gaps in knowledge still remain. Areas that require further investigation include the mechanisms underlying the antiseizure activity of CBD in different syndromes, its pharmacokinetic profile in infants and children, potential relationships between plasma drug concentration and clinical response, interactions with other co-administered medications, potential efficacy in other epilepsy syndromes, and magnitude of antiseizure effects independent from interactions with clobazam. This article is part of the special issue on 'Cannabinoids'.
Collapse
Affiliation(s)
- Valentina Franco
- Division of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia and IRCCS Mondino Foundation (member of the ERN EpiCARE), Pavia, Italy
| | - Meir Bialer
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel and David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Emilio Perucca
- Division of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia and IRCCS Mondino Foundation (member of the ERN EpiCARE), Pavia, Italy.
| |
Collapse
|
33
|
Cannabidiol anticonvulsant effect is mediated by the PI3Kγ pathway. Neuropharmacology 2020; 176:108156. [DOI: 10.1016/j.neuropharm.2020.108156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
|
34
|
Moavero R, Curatolo P. Long-term use of mTORC1 inhibitors in tuberous sclerosis complex associated neurological aspects. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1789862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University of Rome, Rome, Italy
- Child Neurology Unit, Neuroscience and Neurorehabilitation Department, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
35
|
Wang DD, Chen X, Xu H, Li ZP. Initial Dosage Recommendation for Sirolimus in Children With Tuberous Sclerosis Complex. Front Pharmacol 2020; 11:890. [PMID: 32595509 PMCID: PMC7300220 DOI: 10.3389/fphar.2020.00890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Sirolimus is already used in the treatment of tuberous sclerosis complex (TSC), however, with narrow therapeutic range and considerable inter- and intra-individual pharmacokinetic variability, making it hard to develop an appropriate sirolimus initial dosage regimen, especially in children with TSC. The aim of this study was to recommend the optimal sirolimus initial dosing regimen in pediatric patients with TSC. Underlying physiological and genetic factors were collected to explore the effects on clinical sirolimus concentrations by establishing a nonlinear mixed effect (NONMEM) model, and to further simulate the optimal sirolimus initial dosing regimen using Monte Carlo method in pediatric patients with TSC. The once-daily regimen and the twice-daily regimen were recommended, respectively. For once-daily regimen, the dosages of 0.10, 0.07, 0.05, 0.04, 0.03 mg/kg/day were recommended for children with weights of 5–10, 10–20, 20–30, 30–50, and 50–60 kg, respectively. For twice-daily regimen, the dosages of 0.04, 0.03, 0.02 mg/kg/day (the daily dose was divided evenly into two doses) were recommended for children with weights of 5–20, 20–40, 40–60 kg, respectively. The initial dosages of sirolimus in children with TSC were recommended for the first time.
Collapse
Affiliation(s)
- Dong-Dong Wang
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai, China
| | - Xiao Chen
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Zhi-Ping Li
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|