1
|
Fujimoto M, Nakamura Y, Hosoki K, Iwaki T, Sato E, Ieda D, Hori I, Negishi Y, Hattori A, Shiraishi H, Saitoh S. Genotype-phenotype correlation over time in Angelman syndrome: Researching 134 patients. HGG ADVANCES 2024; 5:100342. [PMID: 39169619 PMCID: PMC11404063 DOI: 10.1016/j.xhgg.2024.100342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of function of maternal UBE3A. The major cause of AS is a maternal deletion in 15q11.2-q13, and the minor causes are a UBE3A mutation, uniparental disomy (UPD), and imprinting defect (ID). Previous reports suggest that all patients with AS exhibit developmental delay, movement or balance disorders, behavioral characteristics, and speech impairment. In contrast, a substantial number of AS patients with a UBE3A mutation, UPD, or ID were reported not to show these consistent features and to show age-dependent changes in their features. In this study, we investigated 134 patients with AS, including 57 patients with a UBE3A mutation and 48 patients with UPD or ID. Although developmental delay was present in all patients, 20% of patients with AS caused by UPD or ID did not exhibit movement or balance disorders. Differences were also seen in hypopigmentation and seizures, depending on the causes. Moreover, patients with a UBE3A mutation, UPD, or ID tended to show fewer of the specific phenotypes depending on their age. In particular, in patients with UPD or ID, easily provoked laughter and hyperactivity tended to become more pronounced as they aged. Therefore, the clinical features of AS based on cause and age should be understood, and genetic testing should not be limited to patients with the typical clinical features of AS.
Collapse
Affiliation(s)
- Masanori Fujimoto
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yuji Nakamura
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Kana Hosoki
- Department of Pediatrics, Hokkaido University Hospital, Sapporo 060-8648, Japan; DigitalX, Astellas Pharma, 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Toshihiko Iwaki
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Emi Sato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Daisuke Ieda
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Ikumi Hori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Pediatrics, Aichi Prefectural Welfare Federation of Agricultural Cooperatives Kainan Hospital, Yatomi 498-8502, Japan
| | - Yutaka Negishi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Ayako Hattori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| |
Collapse
|
2
|
Manssen L, Krey I, Gburek-Augustat J, von Hagen C, Lemke JR, Merkenschlager A, Weigand H, Makowski C. Precision Medicine in Angelman Syndrome. Neuropediatrics 2024. [PMID: 39168152 DOI: 10.1055/a-2399-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Angelman syndrome (AS) is a rare neurogenetic disorder caused by a loss of function of UBE3A on the maternal allele. Clinical features include severe neurodevelopmental delay, epilepsy, sleep disturbances, and behavioral disorders. Therapy currently evolves from conventional symptomatic, supportive, and antiseizure treatments toward alteration of mRNA expression, which is subject of several ongoing clinical trials.This article will provide an overview of clinical research and therapeutic approaches on AS.
Collapse
Affiliation(s)
- Lena Manssen
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Janina Gburek-Augustat
- Division of Neuropediatrics, Hospital for Children and Adolescents, Department of Women and Child Health, University of Leipzig, Leipzig, Germany
| | - Cornelia von Hagen
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Kinderzentrum Munchen gemeinnutzige GmbH, kbo, Munich, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Andreas Merkenschlager
- Division of Neuropediatrics, Hospital for Children and Adolescents, Department of Women and Child Health, University of Leipzig, Leipzig, Germany
| | - Heike Weigand
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Christine Makowski
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| |
Collapse
|
3
|
Fitzgerald PJ. Neural hyperexcitability in Angelman syndrome: Genetic factors and pharmacologic treatment approaches. Epilepsy Res 2024; 200:107286. [PMID: 38217951 DOI: 10.1016/j.eplepsyres.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Angelman syndrome (AS) is a rare neurodevelopmental disorder that is typically caused by deletion or a loss-of-function mutation of the maternal copy of the ubiquitin ligase E3A (UBE3A) gene. The disorder is characterized by severe intellectual disability, deficits in speech, motor abnormalities, altered electroencephalography (EEG) activity, spontaneous epileptic seizures, sleep disturbances, and a happy demeanor with frequent laughter. Regarding electrophysiologic abnormalities in particular, enhanced delta oscillatory power and an elevated excitatory/inhibitory (E/I) ratio have been documented in AS, with E/I ratio especially studied in rodent models. These electrophysiologic characteristics appear to relate with the greatly elevated rates of epilepsy in individuals with AS, and associated hypersynchronous neural activity. Here we briefly review findings on EEG, E/I ratio, and epileptic seizures in AS, including data from rodent models of the disorder. We summarize pharmacologic approaches that have been used to treat behavioral aspects of AS, including neuropsychiatric phenomena and sleep disturbances, as well as seizures in the context of the disorder. Antidepressants such as SSRIs and atypical antipsychotics are among the medications that have been used behaviorally, whereas anticonvulsant drugs such as valproic acid and lamotrigine have frequently been used to control seizures in AS. We end by suggesting novel uses for some existing pharmacologic agents in AS, including noradrenergic transmission reducing drugs (alpha2 agonists, beta blockers, alpha1 antagonists) and cholinesterase inhibitors, where these various classes of drugs may have the ability to ameliorate both behavioral disturbances and seizures.
Collapse
Affiliation(s)
- Paul J Fitzgerald
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Xia NY, Grant ML, Benjamin NL, Valencia I. Quality of Life in Angelman Syndrome: A Caregivers' Survey. Pediatr Neurol 2023; 149:19-25. [PMID: 37757661 DOI: 10.1016/j.pediatrneurol.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/29/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Angelman syndrome (AS) is a genetic disorder, characterized by a cheerful disposition with bouts of laughter, developmental delay, speech impairment, ataxia, and seizures. Previous AS surveys have focused on the natural history, describing seizure types and response to anti-seizure medications. METHODS A web-based survey was distributed to caregivers of individuals with AS to characterize motor function, cannabidiol (CBD) use, and factors affecting quality of life (QOL). RESULTS Of a total of 183 individuals with AS (mean age 19.4 ± 13.4 years; 48.1% female), 72% had sleep problems, 80% had seizures, and 32% had one or more emergency department visits in the previous year. Eighty-eight percent were ambulatory (with or without assistance), and half experienced falls, 10.4% resulting in serious injury. Caregivers reported physical therapy, antiseizure medication, CBD, and clonidine as helpful. Inability to walk, falls/drops, sleep problems, and seizures significantly affected QOL (P < 0.002, <0.001, <0.001, P = 0.001, respectively). QOL was not influenced by gender, distance to the hospital, or genetic abnormality. CONCLUSIONS These findings suggest that seizures are the tip of the iceberg. Use of a brief, valid screening tool can assist providers with identifying and addressing issues of primary concern to caregivers of individuals with AS.
Collapse
Affiliation(s)
- Nancy Y Xia
- Section of Neurology, Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania
| | - Mitzie L Grant
- Department of Psychiatry, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania
| | - Nicholas L Benjamin
- Section of Neurology, Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania
| | - Ignacio Valencia
- Section of Neurology, Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania.
| |
Collapse
|
5
|
Tjeertes J, Bacino CA, Bichell TJ, Bird LM, Bustamante M, Crean R, Jeste S, Komorowski RW, Krishnan ML, Miller MT, Nobbs D, Ochoa-Lubinoff C, Parkerson KA, Rotenberg A, Sadhwani A, Shen MD, Squassante L, Tan WH, Vincenzi B, Wheeler AC, Hipp JF, Berry-Kravis E. Enabling endpoint development for interventional clinical trials in individuals with Angelman syndrome: a prospective, longitudinal, observational clinical study (FREESIAS). J Neurodev Disord 2023; 15:22. [PMID: 37495977 PMCID: PMC10373389 DOI: 10.1186/s11689-023-09494-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/04/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by the absence of a functional UBE3A gene, which causes developmental, behavioral, and medical challenges. While currently untreatable, comprehensive data could help identify appropriate endpoints assessing meaningful improvements in clinical trials. Herein are reported the results from the FREESIAS study assessing the feasibility and utility of in-clinic and at-home measures of key AS symptoms. METHODS Fifty-five individuals with AS (aged < 5 years: n = 16, 5-12 years: n = 27, ≥ 18 years: n = 12; deletion genotype: n = 40, nondeletion genotype: n = 15) and 20 typically developing children (aged 1-12 years) were enrolled across six USA sites. Several clinical outcome assessments and digital health technologies were tested, together with overnight 19-lead electroencephalography (EEG) and additional polysomnography (PSG) sensors. Participants were assessed at baseline (Clinic Visit 1), 12 months later (Clinic Visit 2), and during intermittent home visits. RESULTS The participants achieved high completion rates for the clinical outcome assessments (adherence: 89-100% [Clinic Visit 1]; 76-91% [Clinic Visit 2]) and varied feasibility of and adherence to digital health technologies. The coronavirus disease 2019 (COVID-19) pandemic impacted participants' uptake of and/or adherence to some measures. It also potentially impacted the at-home PSG/EEG recordings, which were otherwise feasible. Participants achieved Bayley-III results comparable to the available natural history data, showing similar scores between individuals aged ≥ 18 and 5-12 years. Also, participants without a deletion generally scored higher on most clinical outcome assessments than participants with a deletion. Furthermore, the observed AS EEG phenotype of excess delta-band power was consistent with prior reports. CONCLUSIONS Although feasible clinical outcome assessments and digital health technologies are reported herein, further improved assessments of meaningful AS change are needed. Despite the COVID-19 pandemic, remote assessments facilitated high adherence levels and the results suggested that at-home PSG/EEG might be a feasible alternative to the in-clinic EEG assessments. Taken altogether, the combination of in-clinic/at-home clinical outcome assessments, digital health technologies, and PSG/EEG may improve protocol adherence, reduce patient burden, and optimize study outcomes in AS and other rare disease populations.
Collapse
Affiliation(s)
- Jorrit Tjeertes
- F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | | | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Dysmorphology/Genetics, Rady Children's Hospital, San Diego, CA, USA
| | - Mariana Bustamante
- F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | | | - Shafali Jeste
- Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine of USC, Los Angeles, CA, USA
| | | | | | - Meghan T Miller
- F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - David Nobbs
- F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Cesar Ochoa-Lubinoff
- Departments of Pediatrics, Division of Developmental-Behavioral Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | | | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anjali Sadhwani
- Department of Psychiatry and Behavioral Services, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark D Shen
- Carolina Institute for Developmental Disabilities & UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Lisa Squassante
- F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brenda Vincenzi
- F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Anne C Wheeler
- Carolina Institute for Developmental Disabilities, Carrboro, NC, USA
- RTI International, Durham, NC, USA
| | - Joerg F Hipp
- F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, Anatomy and Cell Biology, Rush University Medical Center, 1725 W Harrison St, Suite 718, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
Keary CJ, McDougle CJ. Current and emerging treatment options for Angelman syndrome. Expert Rev Neurother 2023; 23:835-844. [PMID: 37599585 DOI: 10.1080/14737175.2023.2245568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Angelman syndrome (AS) is a neurodevelopmental disorder characterized by intellectual disability, limited expressive language, epilepsy, and motor impairment. Angelman syndrome is caused by haploinsufficiency of the UBE3A gene on the maternal copy of chromosome 15. There have been ongoing advances in the understanding of neurological, behavioral, and sleep-based problems and associated treatments for patients with AS. These results along with gene-based therapies entering into clinical development prompted this review. AREAS COVERED The authors summarize the research basis describing phenomenology of epilepsy and behavioral concerns such as hyperactivity behavior, aggression, self-injury, repetitive behavior, and sleep disorder. The evidence for recent treatment advances in these target symptom domains of concern is reviewed, and the potential for emerging gene therapy treatments is considered. EXPERT OPINION The prospect for emerging gene therapies means that increasing efforts should be directed toward the early identification of AS implemented equitably. Recent studies emphasize the important role of behavioral therapy in addressing mental health concerns such as aggression and disordered sleep.
Collapse
Affiliation(s)
- Christopher J Keary
- Department is department of psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Lurie Center for Autism, Lexington, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Angelman Syndrome Program, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Christopher J McDougle
- Department is department of psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Lurie Center for Autism, Lexington, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Zimmern V, Korff C. Updates on the diagnostic evaluation, genotype-phenotype correlation, and treatments of genetic epilepsies. Curr Opin Pediatr 2022; 34:538-543. [PMID: 36081356 PMCID: PMC9640276 DOI: 10.1097/mop.0000000000001170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW This article reviews the latest publications in genetic epilepsies, with an eye on publications that have had a translational impact. This review is both timely and relevant as translational discoveries in genetic epilepsies are becoming so frequent that it is difficult for the general pediatrician and even the general child neurologist to keep up. RECENT FINDINGS We divide these publications from 2021 and 2022 into three categories: diagnostic testing, genotype-phenotype correlation, and therapies. We also summarize ongoing and upcoming clinical trials. SUMMARY Two meta-analyses and systematic reviews suggest that exome and genome sequencing offer higher diagnostic yield than gene panels. Genotype-phenotype correlation studies continue to increase our knowledge of the clinical evolution of genetic epilepsy syndromes, particularly with regards to sudden death, auditory dysfunction, neonatal presentation, and magnetoencephalographic manifestations. Pyridoxine supplementation may be helpful in seizure management for various genetic epilepsies. There has been interest in using the neurosteroid ganaxolone for various genetic epilepsy syndromes, with clear efficacy in certain trials. Triheptanoin for epilepsy secondary to glucose transporter 1 ( GLUT1 ) deficiency syndrome is not clearly effective but further studies will be needed.
Collapse
Affiliation(s)
- Vincent Zimmern
- Division of Child Neurology, University of Texas Southwestern, Dallas, Texas, USA
| | - Christian Korff
- Pediatric Neurology Unit, University Hospitals, Geneva, Switzerland
| |
Collapse
|
8
|
Samanta D. Pharmacotherapeutic management of seizures in patients with Angleman syndrome. Expert Opin Pharmacother 2022; 23:1511-1522. [PMID: 35862628 DOI: 10.1080/14656566.2022.2105141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Approximately 80-90% of patients with Angelman syndrome (AS) develop childhood-onset intractable seizures with major negative impact on the quality of life.Thus adequate management of seizures is the most critical priority to improve health-related quality of life in children with AS. AREAS COVERED The primary focus of the review is on pharmacotherapeutic management of seizures. The first part of the review briefly discusses epileptogenesis and polymorphic seizure phenotypes associated with AS to understand pharmacotherapeutic decision-making better. Next, the review explores individual antiseizure medicines (ASMs) and their potential therapeutic utility. Lastly, some future and emerging treatment options are discussed that can transform the management of seizures in patients with AS. EXPERT OPINION Evidence for treating seizures in AS mainly derives from low-quality studies. Levetiracetam and clobazam are the most commonly used ASMs. Although the potential utility of several other ASMs(valproate, topiramate, lamotrigine, ethosuximide, clonazepam) has been well documented for some time, the treatment landscape may rapidly evolve due to the availability of newer and better tolerated ASMs(cannabidiol oil, brivaracetam, perampanel). In addition, a better understanding of the underlying pathogenesis and the development of molecular therapeutics offer hope for precision therapies for seizures.
Collapse
Affiliation(s)
- Debopam Samanta
- Child Neurology Section, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
9
|
Triono A, Iskandar K, Nugrahanto AP, Hadiyanto ML, Gunadi, Herini ES. The role of whole exome sequencing in the UBE3A point mutation of Angelman Syndrome: A case report. Ann Med Surg (Lond) 2022; 73:103170. [PMID: 34976390 PMCID: PMC8683671 DOI: 10.1016/j.amsu.2021.103170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Angelman Syndrome (AS) is a rare disorder with a relatively well-defined phenotype caused by lack of expression of the maternally inherited ubiquitin-protein ligase E3A (UBE3A) gene in the brain. This article describes the role of genetic testing using whole-exome sequencing (WES) in detecting rare AS variants, a point mutation in the UBE3A gene. CASE PRESENTATION We describe a rarely reported clinical presentation of AS in a two year and ten months old girl with severe developmental delay, movement and balance disorder, frequent smiling, apparent happy demeanor, speech impairment, absence of seizure, lack of sleep, and abnormal food-related behavior. Physical examination showed microcephaly, with facial characteristics of AS, ataxia gait, and truncal hypotonia. The electroencephalogram showed medium amplitude rhythmic 2-3c/s. Brain Magnetic Resonance Imaging revealed microcephaly, corpus callosum dysgenesis, and heterotopia grey matter on the bilateral lateral ventricle. WES was conducted to search pathogenic variants and showed a heterozygous mutation in exon 9 of the UBE3A gene, c.1513C > T (p.Arg505Ter). CONCLUSION Angelman syndrome is a neurodevelopmental disorder that has several underlying genetic etiologies. WES could detect a rare variant of Angelman syndrome, identified as the point mutation of the UBE3A gene, which cannot be seen with other modalities.
Collapse
Affiliation(s)
- Agung Triono
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Kristy Iskandar
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Andika Priamas Nugrahanto
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Marissa Leviani Hadiyanto
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Gunadi
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
- Pediatric Surgery Division, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Elisabeth Siti Herini
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| |
Collapse
|