1
|
Cecconello DK, Silva KADS, de Senna ECM, Rechenmacher C, Daudt LE, Michalowski MB. Insights into Asparaginase Allergic Responses: Exploring Pharmacogenetic Influences. Pharmaceutics 2024; 16:1134. [PMID: 39339172 PMCID: PMC11435241 DOI: 10.3390/pharmaceutics16091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Acute lymphoblastic leukemia represents the most prevalent childhood cancer. Modern chemotherapy has significantly improved outcomes, achieving EFS rates of 80% and OS rates nearing 90% in developed nations, while in developing regions, rates remain below 50%, highlighting disparities, and this difference is due to several factors. Genetic variability plays a role in these drug response disparities, presenting single-nucleotide variations (SNVs). Pharmacogenetic research aims to pinpoint these SNVs early in treatment to predict specific drug responses effectively. This review aims to explore advancements in pharmacogenetics associated with asparaginase (ASNase). ASNase plays a crucial role in the treatment of ALL and is available in three formulations: E. coli, Erwinia, and PEG ASNase. ASNase therapy presents challenges due to adverse effects, like hypersensitivity reactions. Identifying predictive markers for hypersensitivity development beforehand is crucial for optimizing treatments. Several pharmacogenetic studies have investigated the association between SNVs and the risk of hypersensitivity. Key genes include GRIA1, NFATC2, CNTO3, ARHGAP28, MYBBP1A, and HLA. Studies have highlighted associations between SNVs within these genes and hypersensitivity reactions. Notably, most pharmacogenetic investigations of hypersensitivity have focused on patients treated with E. coli, emphasizing the need for broader exploration across different formulations. Future research investigating these variants holds promise for advancing our understanding of ASNase's pharmacogenetics.
Collapse
Affiliation(s)
- Daiane Keller Cecconello
- Post Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Translational Pediatrics Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Klerize Anecely de Souza Silva
- Post Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Translational Pediatrics Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | | | - Ciliana Rechenmacher
- Post Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Translational Pediatrics Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Liane Esteves Daudt
- Post Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Translational Pediatrics Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Mariana Bohns Michalowski
- Post Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Translational Pediatrics Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| |
Collapse
|
2
|
Lee JK, Kamran H, Lee KY. L-asparaginase induces IP3R-mediated ER Ca 2+ release by targeting µ-OR1 and PAR2 and kills acute lymphoblastic leukemia cells. Cell Death Discov 2024; 10:366. [PMID: 39147734 PMCID: PMC11327372 DOI: 10.1038/s41420-024-02142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
L-asparaginase is a standard therapeutic option for acute lymphoblastic leukemia (aLL), a hematologic cancer that claims the most lives of pediatric cancer patients. Previously, we demonstrated that L-asparaginase kills aLL cells via a lethal rise in [Ca2+]i due to IP3R-mediated ER Ca2+ release followed by calpain-1-Bid-caspase-3/12 activation (Blood, 133, 2222-2232). However, upstream targets of L-asparaginase that trigger IP3R-mediated ER Ca2+ release remain elusive. Here, we show that L-asparaginase targets µ-OR1 and PAR2 and induces IP3R-mediated ER Ca2+ release in aLL cells. In doing so, µ-OR1 plays a major role while PAR2 plays a minor role. Utilizing PAR2- and µ-OR1-knockdown cells, we demonstrate that L-asparaginase stimulation of µ-OR1 and PAR2 relays its signal via Gαi and Gαq, respectively. In PAR2-knockdown cells, stimulation of adenylate cyclase with forskolin or treatment with 8-CPT-cAMP reduces L-asparaginase-induced µ-OR1-mediated ER Ca2+ release, suggesting that activation of µ-OR1 negatively regulates AC and cAMP. In addition, the PKA inhibitor 14-22 amide (myr) alone evokes ER Ca2+ release, and subsequent L-asparaginase treatment does not induce further ER Ca2+ release, indicating the involvement of PKA inhibition in L-asparaginase-induced µ-OR1-mediated ER Ca2+ release, which can bypass the L-asparaginase-µ-OR1-AC-cAMP loop. This coincides with (a) the decreases in PKA-dependent inhibitory PLCβ3 Ser1105 phosphorylation, which prompts PLCβ3 activation and ER Ca2+ release, and (b) BAD Ser118 phosphorylation, which leads to caspase activation and apoptosis. Thus, our findings offer new insights into the Ca2+-mediated mechanisms behind L-asparaginase-induced aLL cell apoptosis and suggest that PKA may be targeted for therapeutic intervention for aLL.
Collapse
Affiliation(s)
- Jung Kwon Lee
- Department of Cell Biology & Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, University of Calgary, Calgary, AB, Canada
| | - Hamza Kamran
- Department of Cell Biology & Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, University of Calgary, Calgary, AB, Canada
| | - Ki-Young Lee
- Department of Cell Biology & Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
de Andrade B, Renard G, Gennari A, Artico LL, Júnior JR, Kuhn D, Salles PPZ, Volken de Souza CF, Roth G, Chies JM, Yunes JA, Basso LA. Production Process Optimization of Recombinant Erwinia carotovoral-Asparaginase II in Escherichia coli Fed-Batch Cultures and Analysis of Antileukemic Potential. ACS OMEGA 2024; 9:34951-34963. [PMID: 39157126 PMCID: PMC11325515 DOI: 10.1021/acsomega.4c04711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
The aims of this work were to optimize the production of Erwinia carotovoral-asparaginase II enzyme in Escherichia coli by different fed-batch cultivation strategies using a benchtop bioreactor and to evaluate the therapeutic potential of the recombinant enzyme against different acute lymphoblastic leukemia cell lines. The highest enzyme activities (∼98,000 U/L) were obtained in cultures using the DO-stat feeding strategy with induction in 18 h of culture. Under these experimental conditions, the maximum values for recombinant l-asparaginase II (rASNase) yield per substrate, rASNase yield per biomass, and productivity were approximately 1204 U/gglucose, 3660 U/gcells, and 3260 U/(L·h), respectively. This condition was efficient for achieving high yields of the recombinant enzyme, which was purified and used in in vitro antileukemic potential tests. Of all the leukemic cell lines tested, RS4;11 showed the highest sensitivity to rASNase, with an IC50 value of approximately 0.0006 U/mL and more than 70% apoptotic cells. The study demonstrated that the cultivation strategies used were efficient for obtaining high yield and productivity of rASNase with therapeutic potential inasmuch as cytotoxic activity and induction of apoptosis were demonstrated for this protein.
Collapse
Affiliation(s)
- Bruna
Coelho de Andrade
- National
Institute of Science and Technology in Tuberculosis, Research Center
for Molecular and Functional Biology, Pontifical
Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
- Graduate
Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - Gaby Renard
- Quatro
G Pesquisa & Desenvolvimento Ltd., Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Adriano Gennari
- Food
Biotechnology Laboratory, Biotechnology Graduate Program, University of Vale do Taquari (UNIVATES), Lajeado, Rio Grande do Sul 95914-014, Brazil
| | - Leonardo Luís Artico
- Centro
Infantil Boldrini, Campinas, São Paulo 13083-210, Brazil
- Graduate
Program in Genetics and Molecular Biology, Biology Institute, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - José Ricardo
Teixeira Júnior
- Centro
Infantil Boldrini, Campinas, São Paulo 13083-210, Brazil
- Graduate
Program in Genetics and Molecular Biology, Biology Institute, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Daniel Kuhn
- Food
Biotechnology Laboratory, Biotechnology Graduate Program, University of Vale do Taquari (UNIVATES), Lajeado, Rio Grande do Sul 95914-014, Brazil
| | - Priscila Pini Zenatti Salles
- Centro
Infantil Boldrini, Campinas, São Paulo 13083-210, Brazil
- Graduate
Program in Genetics and Molecular Biology, Biology Institute, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Claucia Fernada Volken de Souza
- Food
Biotechnology Laboratory, Biotechnology Graduate Program, University of Vale do Taquari (UNIVATES), Lajeado, Rio Grande do Sul 95914-014, Brazil
| | - Gustavo Roth
- Pontifical
Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Jocelei Maria Chies
- Quatro
G Pesquisa & Desenvolvimento Ltd., Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - José Andrés Yunes
- Centro
Infantil Boldrini, Campinas, São Paulo 13083-210, Brazil
- Department
of Medical Genetics, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Luiz Augusto Basso
- National
Institute of Science and Technology in Tuberculosis, Research Center
for Molecular and Functional Biology, Pontifical
Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
- Graduate
Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
- Graduate
Program in Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| |
Collapse
|
4
|
Taurino G, Dander E, Chiu M, Pozzi G, Maccari C, Starace R, Silvestri D, Griffini E, Bianchi MG, Carubbi C, Andreoli R, Mirandola P, Valsecchi MG, Rizzari C, D'Amico G, Bussolati O. Asparagine transport through SLC1A5/ASCT2 and SLC38A5/SNAT5 is essential for BCP-ALL cell survival and a potential therapeutic target. Br J Haematol 2024; 205:175-188. [PMID: 38736325 DOI: 10.1111/bjh.19516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) blasts strictly depend on the transport of extra-cellular asparagine (Asn), yielding a rationale for L-asparaginase (ASNase) therapy. However, the carriers used by ALL blasts for Asn transport have not been identified yet. Exploiting RS4;11 cells as BCP-ALL model, we have found that cell Asn is lowered by either silencing or inhibition of the transporters ASCT2 or SNAT5. The inhibitors V-9302 (for ASCT2) and GluγHA (for SNAT5) markedly lower cell proliferation and, when used together, suppress mTOR activity, induce autophagy and cause a severe nutritional stress, leading to a proliferative arrest and a massive cell death in both the ASNase-sensitive RS4;11 cells and the relatively ASNase-insensitive NALM-6 cells. The cytotoxic effect is not prevented by coculturing leukaemic cells with primary mesenchymal stromal cells. Leukaemic blasts of paediatric ALL patients express ASCT2 and SNAT5 at diagnosis and undergo marked cytotoxicity when exposed to the inhibitors. ASCT2 expression is positively correlated with the minimal residual disease at the end of the induction therapy. In conclusion, ASCT2 and SNAT5 are the carriers exploited by ALL cells to transport Asn, and ASCT2 expression is associated with a lower therapeutic response. ASCT2 may thus represent a novel therapeutic target in BCP-ALL.
Collapse
Affiliation(s)
- Giuseppe Taurino
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Erica Dander
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Martina Chiu
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giulia Pozzi
- Laboratory of Human Anatomy, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Chiara Maccari
- Laboratory of Industrial Toxicology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rita Starace
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Daniela Silvestri
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Erika Griffini
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Massimiliano G Bianchi
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- MRH-Microbiome Research Hub, Parco Area Delle Scienze 11/A, University of Parma, Parma, Italy
| | - Cecilia Carubbi
- Laboratory of Human Anatomy, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Andreoli
- Laboratory of Industrial Toxicology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- CERT-Center of Excellence for Toxicological Research, University of Parma, Parma, Italy
| | - Prisco Mirandola
- Laboratory of Human Anatomy, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria Grazia Valsecchi
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Carmelo Rizzari
- Department of Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Giovanna D'Amico
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- MRH-Microbiome Research Hub, Parco Area Delle Scienze 11/A, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Patial V, Kumar S, Joshi R, Singh D. Biochemical characterization of glutaminase-free L-asparaginases from Himalayan Pseudomonas and Rahnella spp. for acrylamide mitigation. Int J Biol Macromol 2024; 257:128576. [PMID: 38048933 DOI: 10.1016/j.ijbiomac.2023.128576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
L-asparaginase having low glutaminase activity is important in clinical and food applications. Herein, glutaminase-free L-asparaginase (type I) coding genes from Pseudomonas sp. PCH182 (Ps-ASNase I) and Rahnella sp. PCH162 (Rs-ASNase I) was amplified using gene-specific primers, cloned into a pET-47b(+) vector, and plasmids were transformed into Escherichia coli (E. coli). Further, affinity chromatography purified recombinant proteins to homogeneity with monomer sizes of ~37.0 kDa. Purified Ps-ASNase I and Rs-ASNase I were active at wide pHs and temperatures with optimum activity at 50 °C (492 ± 5 U/mg) and 37 °C (308 ± 4 U/mg), respectively. Kinetic constant Km and Vmax for L-asparagine (Asn) were 2.7 ± 0.06 mM and 526.31 ± 4.0 U/mg for Ps-ASNase I, and 4.43 ± 1.06 mM and 434.78 ± 4.0 U/mg for Rs-ASNase I. Circular dichroism study revealed 29.3 % and 24.12 % α-helix structures in Ps-ASNase I and Rs-ASNase I, respectively. Upon their evaluation to mitigate acrylamide formation, 43 % and 34 % acrylamide (AA) reduction were achieved after pre-treatment of raw potato slices, consistent with 65 % and 59 % Asn reduction for Ps-ASNase I and Rs-ASNase I, respectively. Current findings suggested the potential of less explored intracellular L-asparaginase in AA mitigation for food safety.
Collapse
Affiliation(s)
- Vijeta Patial
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061, Himachal Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Subhash Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061, Himachal Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061, Himachal Pradesh, India
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061, Himachal Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
6
|
Ekpa QL, Akahara PC, Anderson AM, Adekoya OO, Ajayi OO, Alabi PO, Okobi OE, Jaiyeola O, Ekanem MS. A Review of Acute Lymphocytic Leukemia (ALL) in the Pediatric Population: Evaluating Current Trends and Changes in Guidelines in the Past Decade. Cureus 2023; 15:e49930. [PMID: 38179374 PMCID: PMC10766210 DOI: 10.7759/cureus.49930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Acute lymphocytic leukemia (ALL) is a commonly diagnosed cancer in children. Despite technological advancements to improve treatment and survival rates, there has been a steady increase in the incidence of ALL and treatment failures. This paper discusses the pathogenic interaction between genetic and environmental factors leading to childhood ALL. It evaluates the current treatment guidelines and notable obstacles leading to resistance, relapse, and treatment toxicities. The review evaluates a 10-year trend in the management guidelines of pediatric ALL through a systematic literature review of records from 2012 to 2023. Findings show that improvement in the five-year survival rates, notwithstanding rates of relapse and incurable diseases, is still high. Furthermore, several risk factors, including an interplay between genetic and environmental factors, are largely contributory to the outcome of ALL treatments and its overall incidence. Moreover, huge financial costs have remained a significant challenge in outcomes. There remains a need to provide individualized treatment plans, shared decision-making, and goals of care as parts of the management guidelines for the best possible outcomes. We expect that future advancements will increase overall survival rates and disease-free years.
Collapse
Affiliation(s)
- Queen L Ekpa
- General Practice, Conestoga College, Kitchener, CAN
| | | | - Alexis M Anderson
- Pediatric Medicine, St. George's University, School of Medicine, St. George's, GRD
| | | | - Olamide O Ajayi
- Pediatrics, Medway Maritime Hospital, Kent, GBR
- Internal Medicine, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu, NGA
| | - Peace O Alabi
- Pediatrics, University of Abuja Teaching Hospital, Abuja, NGA
| | - Okelue E Okobi
- Family Medicine, Larkin Community Hospital Palm Springs Campus, Hialeah, USA
- Family Medicine, Medficient Health Systems, Laurel, USA
- Family Medicine, Lakeside Medical Center, Belle Glade, USA
| | | | - Medara S Ekanem
- General Medicine, Babcock University Teaching Hospital, Ilishan-Remo, NGA
| |
Collapse
|
7
|
Costa IM, Effer B, Costa-Silva TA, Chen C, Ciccone MF, Pessoa A, dos Santos CO, Monteiro G. Cathepsin B Is Not an Intrinsic Factor Related to Asparaginase Resistance of the Acute Lymphoblastic Leukemia REH Cell Line. Int J Mol Sci 2023; 24:11215. [PMID: 37446393 PMCID: PMC10342508 DOI: 10.3390/ijms241311215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
L-Asparaginase (ASNase) is a biopharmaceutical used as an essential drug in the treatment of acute lymphoblastic leukemia (ALL). Yet, some cases of ALL are naturally resistant to ASNase treatment, which results in poor prognosis. The REH ALL cell line, used as a model for studying the most common subtype of ALL, is considered resistant to treatment with ASNase. Cathepsin B (CTSB) is one of the proteases involved in the regulation of in vivo ASNase serum half-life and it has also been associated with the progression and resistance to treatment of several solid tumors. Previous works have shown that, in vitro, ASNase is degraded when incubated with REH cell lysate, which is prevented by a specific CTSB inhibitor, suggesting a function of this protease in the ASNase resistance of REH cells. In this work, we utilized a combination of CRISPR/Cas9 gene targeting and enzymatic measurements to investigate the relevance of CTSB on ASNase treatment resistance in the ALL model cell line. We found that deletion of CTSB in REH ALL cells did not confer ASNase treatment sensitivity, thus suggesting that intrinsic expression of CTSB is not a mechanism that drives the resistant nature of these ALL cells to enzymes used as the first-line treatment against leukemia.
Collapse
Affiliation(s)
- Iris Munhoz Costa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (I.M.C.); (B.E.); (T.A.C.-S.); (A.P.)
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; (C.C.); (M.F.C.); (C.O.d.S.)
| | - Brian Effer
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (I.M.C.); (B.E.); (T.A.C.-S.); (A.P.)
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; (C.C.); (M.F.C.); (C.O.d.S.)
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile
| | - Tales Alexandre Costa-Silva
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (I.M.C.); (B.E.); (T.A.C.-S.); (A.P.)
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 14040-903, SP, Brazil
| | - Chen Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; (C.C.); (M.F.C.); (C.O.d.S.)
| | - Michael F. Ciccone
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; (C.C.); (M.F.C.); (C.O.d.S.)
| | - Adalberto Pessoa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (I.M.C.); (B.E.); (T.A.C.-S.); (A.P.)
| | - Camila O. dos Santos
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; (C.C.); (M.F.C.); (C.O.d.S.)
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (I.M.C.); (B.E.); (T.A.C.-S.); (A.P.)
| |
Collapse
|
8
|
Wang R, Wang W, Liu X, Wang H, Zhang B, Li S, Zhang H, Yang J, Zhao J, He Q, Zhang J, Liu D, Hao L. Treatment for a B-cell acute lymphoblastic leukemia patient carrying a rare TP53 c.C275T mutation: A case report. Front Oncol 2023; 12:1018250. [PMID: 36798689 PMCID: PMC9928200 DOI: 10.3389/fonc.2022.1018250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/17/2022] [Indexed: 02/03/2023] Open
Abstract
TP53 mutations are associated with poor prognosis in the vast majority of cancers. In this study, we present a pediatric B-cell acute lymphoblastic leukemia (B-ALL) patient carrying a rare TP53 c.C275T mutation. This extremely rare mutation affects an amino acid residue located between the TAD domain and the DNA-binding domain of p53. The patient was resistant to most conventional chemotherapy regimens and remained minimal residual disease (MRD)-positive after five rounds of such regimens. We tested the sensitivity of the patient's leukemic cells to 21 anti-cancer drugs by performing in vitro drug sensitivity assays. The results showed that bortezomib had a very strong killing effect on the patient's leukemic cells. Therefore, we subsequently treated the patient with bortezomib combined with vindesine, cytarabine, and fludarabine. After one course of treatment, the patient became MRD-negative, and there was no recurrence during a 9-month follow-up. In conclusion, our report suggests that the TP53 c.C275T mutation is associated with poor prognosis in B-ALL. Fortunately, bortezomib combined with chemotherapy could achieve a better therapeutic effect than conventional regimens in this type of ALL.
Collapse
Affiliation(s)
- Runan Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Wenliang Wang
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Xuan Liu
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Huan Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Bin Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Shuang Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Haining Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Jiawei Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Jishun Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Qiuying He
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Jihong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Danping Liu
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Liangchun Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shengyang, Liangning, China,*Correspondence: Liangchun Hao,
| |
Collapse
|
9
|
Yan Z, Yao S, Wang Z, Zhou W, Yao Z, Liu Y. Treatment of extranodal NK/T-cell lymphoma: From past to future. Front Immunol 2023; 14:1088685. [PMID: 36825002 PMCID: PMC9941192 DOI: 10.3389/fimmu.2023.1088685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Extranodal NK/T-cell lymphoma (ENKTCL) is the most common subtype of T/NK-cell lymphoma in Asia and Latin America, but very rare in North American and Europe. Patient survival has improved significantly over the past two decades. However, standard treatment has not yet been established, although dozens of prospective trials have been conducted. To help understand how the treatment of ENKTCL has evolved in the past and what trends lie ahead, we have comprehensively reviewed the treatment of this aggressive malignancy, with a particular focus on neglected or unanswered issues, such as the optimal staging method, the best partner of asparaginase (Asp), the individualized administration of Asp, the preferred sequence of CT and RT and so on. Overall, the 5-year overall survival (OS) of patients with Ann Arbor stage I/II disease increased from < 50% in the early 20th century to > 80% in recent years, and the median OS of patients with Ann Arbor stage III/IV disease increased from < 1 year to more than 3 years. The improvement in patient survival is largely attributable to advances in radiation technology and the introduction of Asp and anti-PD-1/PD-L1 immunotherapy into practice. Radiotherapy is essential for patients with early-stage disease, while Asp-based chemotherapy (CT) and PD-1/PD-L1 inhibitors significantly improved the prognosis of patients with advanced-stage disease. ENKTCL management is trending toward simpler regimens, less toxicity, and higher efficacy. Novel drugs, such as manufactured T cells, monoclonal antibodies, and small molecule inhibitors, are being intensively investigated. Based on the fact that ENKTCL is highly resistant to cytotoxic drugs except Asp, and aggressive CT leads to higher toxicity rather than better outcomes, we recommend it is unnecessary to expend additional resources to compare different combinations of Asp with cytotoxic agents. Instead, more efforts should be made to optimize the use of Asp and immunotherapy to maximize efficacy and minimize toxicity, explore ways to overcome resistance to Asp and immunotherapy, identify novel treatment targets, and define subpopulations who may benefit more from specific treatments.
Collapse
Affiliation(s)
- Zheng Yan
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Shuna Yao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zhizhong Wang
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Wenping Zhou
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zhihua Yao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yanyan Liu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Liao P, Chang N, Xu B, Qiu Y, Wang S, Zhou L, He Y, Xie X, Li Y. Amino acid metabolism: challenges and opportunities for the therapeutic treatment of leukemia and lymphoma. Immunol Cell Biol 2022; 100:507-528. [PMID: 35578380 DOI: 10.1111/imcb.12557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/23/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022]
Abstract
Leukemia and lymphoma-the most common hematological malignant diseases-are often accompanied by complications such as drug resistance, refractory diseases and relapse. Amino acids (AAs) are important energy sources for malignant cells. Tumor-mediated AA metabolism is associated with the immunosuppressive properties of the tumor microenvironment, thereby assisting malignant cells to evade immune surveillance. Targeting abnormal AA metabolism in the tumor microenvironment may be an effective therapeutic approach to address the therapeutic challenges of leukemia and lymphoma. Here, we review the effects of glutamine, arginine and tryptophan metabolism on tumorigenesis and immunomodulation, and define the differences between tumor cells and immune effector cells. We also comment on treatments targeting these AA metabolism pathways in lymphoma and leukemia and discuss how these treatments have profound adverse effects on tumor cells, but leave the immune cells unaffected or mildly affected.
Collapse
Affiliation(s)
- Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ning Chang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Binyan Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sheng Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lijuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoling Xie
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
11
|
Grima-Reyes M, Vandenberghe A, Nemazanyy I, Meola P, Paul R, Reverso-Meinietti J, Martinez-Turtos A, Nottet N, Chan WK, Lorenzi PL, Marchetti S, Ricci JE, Chiche J. Tumoral microenvironment prevents de novo asparagine biosynthesis in B cell lymphoma, regardless of ASNS expression. SCIENCE ADVANCES 2022; 8:eabn6491. [PMID: 35857457 PMCID: PMC9258813 DOI: 10.1126/sciadv.abn6491] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Depletion of circulating asparagine with l-asparaginase (ASNase) is a mainstay of leukemia treatment and is under investigation in many cancers. Expression levels of asparagine synthetase (ASNS), which catalyzes asparagine synthesis, were considered predictive of cancer cell sensitivity to ASNase treatment, a notion recently challenged. Using [U-13C5]-l-glutamine in vitro and in vivo in a mouse model of B cell lymphomas (BCLs), we demonstrated that supraphysiological or physiological concentrations of asparagine prevent de novo asparagine biosynthesis, regardless of ASNS expression levels. Overexpressing ASNS in ASNase-sensitive BCL was insufficient to confer resistance to ASNase treatment in vivo. Moreover, we showed that ASNase's glutaminase activity enables its maximal anticancer effect. Together, our results indicate that baseline ASNS expression (low or high) cannot dictate BCL dependence on de novo asparagine biosynthesis and predict BCL sensitivity to dual ASNase activity. Thus, except for ASNS-deficient cancer cells, ASNase's glutaminase activity should be considered in the clinic.
Collapse
Affiliation(s)
- Manuel Grima-Reyes
- Université Côte d’Azur, Inserm, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Ashaina Vandenberghe
- Université Côte d’Azur, Inserm, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Ivan Nemazanyy
- Plateforme d’étude du métabolisme SFR-Necker, Inserm US 24–CNRS UAR, 3633 Paris, France
| | - Pauline Meola
- Université Côte d’Azur, Inserm, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rachel Paul
- Université Côte d’Azur, Inserm, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Julie Reverso-Meinietti
- Université Côte d’Azur, Inserm, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Adriana Martinez-Turtos
- Université Côte d’Azur, Inserm, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | | | - Wai-Kin Chan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip L. Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sandrine Marchetti
- Université Côte d’Azur, Inserm, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Jean-Ehrland Ricci
- Université Côte d’Azur, Inserm, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Johanna Chiche
- Université Côte d’Azur, Inserm, C3M, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| |
Collapse
|
12
|
Resistance Mechanisms in Pediatric B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 23:ijms23063067. [PMID: 35328487 PMCID: PMC8950780 DOI: 10.3390/ijms23063067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the rapid development of medicine, even nowadays, acute lymphoblastic leukemia (ALL) is still a problem for pediatric clinicians. Modern medicine has reached a limit of curability even though the recovery rate exceeds 90%. Relapse occurs in around 20% of treated patients and, regrettably, 10% of diagnosed ALL patients are still incurable. In this article, we would like to focus on the treatment resistance and disease relapse of patients with B-cell leukemia in the context of prognostic factors of ALL. We demonstrate the mechanisms of the resistance to steroid therapy and Tyrosine Kinase Inhibitors and assess the impact of genetic factors on the treatment resistance, especially TCF3::HLF translocation. We compare therapeutic protocols and decipher how cancer cells become resistant to innovative treatments—including CAR-T-cell therapies and monoclonal antibodies. The comparisons made in our article help to bring closer the main factors of resistance in hematologic malignancies in the context of ALL.
Collapse
|
13
|
Hlozkova K, Hermanova I, Safrhansova L, Alquezar-Artieda N, Kuzilkova D, Vavrova A, Sperkova K, Zaliova M, Stary J, Trka J, Starkova J. PTEN/PI3K/Akt pathway alters sensitivity of T-cell acute lymphoblastic leukemia to L-asparaginase. Sci Rep 2022; 12:4043. [PMID: 35260738 PMCID: PMC8904819 DOI: 10.1038/s41598-022-08049-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Childhood T-cell acute lymphoblastic leukemia (T-ALL) still remains a therapeutic challenge due to relapses which are resistant to further treatment. l-asparaginase (ASNase) is a key therapy component in pediatric T-ALL and lower sensitivity of leukemia cells to this drug negatively influences overall treatment efficacy and outcome. PTEN protein deletion and/or activation of the PI3K/Akt signaling pathway leading to altered cell growth and metabolism are emerging as a common feature in T-ALL. We herein investigated the relationship amongst PTEN deletion, ASNase sensitivity and glucose metabolism in T-ALL cells. First, we found significant differences in the sensitivity to ASNase amongst T-ALL cell lines. While cell lines more sensitive to ASNase were PTEN wild type (WT) and had no detectable level of phosphorylated Akt (P-Akt), cell lines less sensitive to ASNase were PTEN-null with high P-Akt levels. Pharmacological inhibition of Akt in the PTEN-null cells rendered them more sensitive to ASNase and lowered their glycolytic function which then resembled PTEN WT cells. In primary T-ALL cells, although P-Akt level was not dependent exclusively on PTEN expression, their sensitivity to ASNase could also be increased by pharmacological inhibition of Akt. In summary, we highlight a promising therapeutic option for T-ALL patients with aberrant PTEN/PI3K/Akt signaling.
Collapse
Affiliation(s)
- Katerina Hlozkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Hermanova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucie Safrhansova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Natividad Alquezar-Artieda
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Daniela Kuzilkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adela Vavrova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristyna Sperkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Zaliova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,University Hospital Motol, Prague, Czech Republic
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,University Hospital Motol, Prague, Czech Republic
| | - Jan Trka
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,University Hospital Motol, Prague, Czech Republic
| | - Julia Starkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic. .,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic. .,University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
14
|
Wang N, Ji W, Wang L, Wu W, Zhang W, Wu Q, Du W, Bai H, Peng B, Ma B, Li L. Overview of the structure, side effects, and activity assays of l-asparaginase as a therapy drug of acute lymphoblastic leukemia. RSC Med Chem 2022; 13:117-128. [PMID: 35308022 PMCID: PMC8864486 DOI: 10.1039/d1md00344e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/09/2022] [Indexed: 01/14/2023] Open
Abstract
l-Asparaginase (l-ASNase is the abbreviation, l-asparagine aminohydrolase, E.C.3.5.1.1) is an enzyme that is clinically employed as an antitumor agent for the treatment of acute lymphoblastic leukemia (ALL). Although l-ASNase is known to deplete l-asparagine (l-Asn), causing cytotoxicity in leukemia cells, the specific molecular signaling pathways are not well defined. Because of the deficiencies in the production and administration of current formulations, the l-ASNase agent in clinical use is still associated with serious side effects, so controlling its dose and activity monitoring during therapy is crucial for improving the treatment success rate. Accordingly, it is urgent to summarize and develop effective analytical methods to detect l-ASNase activity in treatment. However, current reports on these detection methods are fragmented and also have not been systematically summarized and classified, thereby not only delaying the investigations of specific molecular mechanisms, but also hindering the development of novel detection methods. Herein, in this review, we provided a detailed summary of the l-ASNase structures, antitumor mechanism and side effects, and current detection approaches, such as fluorescence assays, colorimetric assays, spectroscopic assays and some other assays. All of them possess unique advantages and disadvantages, so it has been difficult to establish clear criteria for clinical application. We hope that this review will be of some value in promoting the development of l-ASNase activity detection methods.
Collapse
Affiliation(s)
- Nanxiang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Lan Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Wanxia Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Wei Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Wei Du
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211800 China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University Nanjing 211800 China
| |
Collapse
|
15
|
Sharma S, Agnihotri N, Kumar S. Targeting fuel pocket of cancer cell metabolism: A focus on glutaminolysis. Biochem Pharmacol 2022; 198:114943. [DOI: 10.1016/j.bcp.2022.114943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
|
16
|
Chiu M, Taurino G, Dander E, Bardelli D, Fallati A, Andreoli R, Bianchi MG, Carubbi C, Pozzi G, Galuppo L, Mirandola P, Rizzari C, Tardito S, Biondi A, D’Amico G, Bussolati O. ALL blasts drive primary mesenchymal stromal cells to increase asparagine availability during asparaginase treatment. Blood Adv 2021; 5:5164-5178. [PMID: 34614505 PMCID: PMC9153005 DOI: 10.1182/bloodadvances.2020004041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/01/2021] [Indexed: 11/26/2022] Open
Abstract
Mechanisms underlying the resistance of acute lymphoblastic leukemia (ALL) blasts to l-asparaginase are still incompletely known. Here we demonstrate that human primary bone marrow mesenchymal stromal cells (MSCs) successfully adapt to l-asparaginase and markedly protect leukemic blasts from the enzyme-dependent cytotoxicity through an amino acid trade-off. ALL blasts synthesize and secrete glutamine, thus increasing extracellular glutamine availability for stromal cells. In turn, MSCs use glutamine, either synthesized through glutamine synthetase (GS) or imported, to produce asparagine, which is then extruded to sustain asparagine-auxotroph leukemic cells. GS inhibition prevents mesenchymal cells adaptation to l-asparaginase, lowers glutamine secretion by ALL blasts, and markedly hinders the protection exerted by MSCs on leukemic cells. The pro-survival amino acid exchange is hindered by the inhibition or silencing of the asparagine efflux transporter SNAT5, which is induced in mesenchymal cells by ALL blasts. Consistently, primary MSCs from ALL patients express higher levels of SNAT5 (P < .05), secrete more asparagine (P < .05), and protect leukemic blasts (P < .05) better than MSCs isolated from healthy donors. In conclusion, ALL blasts arrange a pro-leukemic amino acid trade-off with bone marrow mesenchymal cells, which depends on GS and SNAT5 and promotes leukemic cell survival during l-asparaginase treatment.
Collapse
Affiliation(s)
- Martina Chiu
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Erica Dander
- Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Donatella Bardelli
- Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Alessandra Fallati
- Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Roberta Andreoli
- Laboratory of Industrial Toxicology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Cecilia Carubbi
- Laboratory of Anatomy and Histology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giulia Pozzi
- Laboratory of Anatomy and Histology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Laura Galuppo
- Laboratory of Anatomy and Histology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Prisco Mirandola
- Laboratory of Anatomy and Histology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carmelo Rizzari
- Pediatric Hematology-Oncology Unit, University of Milano-Bicocca, MBBM Foundation, ASST Monza, Monza, Italy
| | - Saverio Tardito
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom; and
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrea Biondi
- Pediatric Hematology-Oncology Unit, University of Milano-Bicocca, MBBM Foundation, ASST Monza, Monza, Italy
| | - Giovanna D’Amico
- Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
17
|
Kumar GVN, Hoshitsuki K, Rathod S, Ramsey MJ, Kokai L, Kershaw EE, Xie W, Fernandez CA. Mechanistic studies of PEG-asparaginase-induced liver injury and hepatic steatosis in mice. Acta Pharm Sin B 2021; 11:3779-3790. [PMID: 35024306 PMCID: PMC8727916 DOI: 10.1016/j.apsb.2021.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/19/2023] Open
Abstract
PEGylated-l-asparaginase (PEG-ASNase) is a chemotherapeutic agent used to treat pediatric acute lymphoblastic leukemia (ALL). Its use is avoided in adults due to its high risk of liver injury including hepatic steatosis, with obesity and older age considered risk factors of the injury. Our study aims to elucidate the mechanism of PEG-ASNase-induced liver injury. Mice received 1500 U/kg of PEG-ASNase and were sacrificed 1, 3, 5, and 7 days after drug administration. Liver triglycerides were quantified, and plasma bilirubin, ALT, AST, and non-esterified fatty acids (NEFA) were measured. The mRNA and protein levels of genes involved in hepatic fatty acid synthesis, β-oxidation, very low-density lipoprotein (VLDL) secretion, and white adipose tissue (WAT) lipolysis were determined. Mice developed hepatic steatosis after PEG-ASNase, which associated with increases in bilirubin, ALT, and AST. The hepatic genes Ppara, Lcad/Mcad, Hadhb, Apob100, and Mttp were upregulated, and Srebp-1c and Fas were downregulated after PEG-ASNase. Increased plasma NEFA, WAT loss, and adipose tissue lipolysis were also observed after PEG-ASNase. Furthermore, we found that PEG-ASNase-induced liver injury was exacerbated in obese and aged mice, consistent with clinical studies of ASNase-induced liver injury. Our data suggest that PEG-ASNase-induced liver injury is due to drug-induced lipolysis and lipid redistribution to the liver.
Collapse
Affiliation(s)
- Gundala Venkata Naveen Kumar
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Keito Hoshitsuki
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
- Division of General Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sanjay Rathod
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Manda J. Ramsey
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Lauren Kokai
- Department of Plastic Surgery, University of Pittsburgh and the McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15261, USA
| | - Erin E. Kershaw
- University of Pittsburgh, Division of Endocrinology, Department of Medicine, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Christian A. Fernandez
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| |
Collapse
|
18
|
Dumina M, Zhgun A, Pokrovskaya M, Aleksandrova S, Zhdanov D, Sokolov N, El’darov M. A Novel L-Asparaginase from Hyperthermophilic Archaeon Thermococcus sibiricus: Heterologous Expression and Characterization for Biotechnology Application. Int J Mol Sci 2021; 22:9894. [PMID: 34576056 PMCID: PMC8470970 DOI: 10.3390/ijms22189894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023] Open
Abstract
L-asparaginase (L-ASNase) is a vital enzyme with a broad range of applications in medicine and food industry. Drawbacks of current commercial L-ASNases stimulate the search for better-producing sources of the enzyme, and extremophiles are especially attractive in this view. In this study, a novel L-asparaginase originating from the hyperthermophilic archaeon Thermococcus sibiricus (TsA) was expressed in Escherichia coli, purified and characterized. The enzyme is optimally active at 90 °C and pH 9.0 with a specific activity of 2164 U/mg towards L-asparagine. Kinetic parameters KM and Vmax for the enzyme are 2.8 mM and 1200 µM/min, respectively. TsA is stable in urea solutions 0-6 M and displays no significant changes of the activity in the presence of metal ions Ni2+, Cu2+, Mg2+, Zn2+ and Ca2+ and EDTA added in concentrations 1 and 10 mmol/L except for Fe3+. The enzyme retains 86% of its initial activity after 20 min incubation at 90 °C, which should be enough to reduce acrylamide formation in foods processed at elevated temperatures. TsA displays strong cytotoxic activity toward cancer cell lines K562, A549 and Sk-Br-3, while normal human fibroblasts WI-38 are almost unsensitive to it. The enzyme seems to be a promising candidate for further investigation and biotechnology application.
Collapse
Affiliation(s)
- Maria Dumina
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Alexander Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Marina Pokrovskaya
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Svetlana Aleksandrova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Dmitry Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Nikolay Sokolov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (M.P.); (S.A.); (D.Z.); (N.S.)
| | - Michael El’darov
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| |
Collapse
|
19
|
Fatty acid-peptide-bioconjugated micellar nanocarrier as a new delivery system for l-asparaginase: multi-criteria optimization, characterization, and pharmacokinetic study. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Development and Validation of a Hydrophilic Interaction Liquid Chromatography Tandem Mass Spectrometry Method for the Determination of Asparagine in Human Serum. Int J Anal Chem 2020; 2020:6980392. [PMID: 32180807 PMCID: PMC7064832 DOI: 10.1155/2020/6980392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/03/2022] Open
Abstract
L-Asparagine (ASN) is the catalyze substrate of L-asparaginase (ASNase), which is an important drug for acute lymphoblastic leukemia (ALL) patients. The ASN level is found to be closely associated with the effectiveness of ASNase treatment. In this study, a hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC-MS/MS) method was developed for the determination of ASN in the human serum using a stable isotope-labeled internal standard (ASN-D3). Serum samples were prepared by a one-step precipitation procedure using methanol and separated by an Agilent HILIC Plus column with the mobile phase of methanol-water (95 : 5, v/v, containing 5 mM ammonium formate and 0.1% formic acid), at a constant flow rate of 0.3 mL/min. Mass spectrometric analysis was conducted using multiple-reaction monitoring in the positive electrospray ionization mode. Serum ASN concentrations were determined over a linear calibration curve range of 2–200 μM, with acceptable accuracies and precisions. The validated HILIC-MS/MS method was successfully applied to the quantification of ASN levels in the serum from patients with ALL. Collectively, the research may shed new light on an alternative rapid, simple, and convenient quantitative method for determination of serum ASN in ALL patients treated with ASNase.
Collapse
|
21
|
Garcia-Bermudez J, Williams RT, Guarecuco R, Birsoy K. Targeting extracellular nutrient dependencies of cancer cells. Mol Metab 2020; 33:67-82. [PMID: 31926876 PMCID: PMC7056928 DOI: 10.1016/j.molmet.2019.11.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cancer cells rewire their metabolism to meet the energetic and biosynthetic demands of their high proliferation rates and environment. Metabolic reprogramming of cancer cells may result in strong dependencies on nutrients that could be exploited for therapy. While these dependencies may be in part due to the nutrient environment of tumors, mutations or expression changes in metabolic genes also reprogram metabolic pathways and create addictions to extracellular nutrients. SCOPE OF REVIEW This review summarizes the major nutrient dependencies of cancer cells focusing on their discovery and potential mechanisms by which metabolites become limiting for tumor growth. We further detail available therapeutic interventions based on these metabolic features and highlight opportunities for restricting nutrient availability as an anti-cancer strategy. MAJOR CONCLUSIONS Strategies to limit nutrients required for tumor growth using dietary interventions or nutrient degrading enzymes have previously been suggested for cancer therapy. The best clinical example of exploiting cancer nutrient dependencies is the treatment of leukemia with l-asparaginase, a first-line chemotherapeutic that depletes serum asparagine. Despite the success of nutrient starvation in blood cancers, it remains unclear whether this approach could be extended to other solid tumors. Systematic studies to identify nutrient dependencies unique to individual tumor types have the potential to discover targets for therapy.
Collapse
Affiliation(s)
- Javier Garcia-Bermudez
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Robert T Williams
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Rohiverth Guarecuco
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
22
|
Hernández-Marqués C, Andión M, Perez-Somarriba M, Madero L, Lassaletta A. Can monitoring asparaginase activity help us to manage toxicity in pediatric acute lymphoblastic leukemia? Leuk Lymphoma 2019; 61:990-992. [PMID: 31749392 DOI: 10.1080/10428194.2019.1691191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Carmen Hernández-Marqués
- Department of Pediatric Hematology-Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Maitane Andión
- Department of Pediatric Hematology-Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Marta Perez-Somarriba
- Department of Pediatric Hematology-Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Luis Madero
- Department of Pediatric Hematology-Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Alvaro Lassaletta
- Department of Pediatric Hematology-Oncology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| |
Collapse
|
23
|
Zeng L, Wang Q, Gu C, Yuan L, Xie X, He L, Chen K, Tan P, Xue L, Huang S, Shi K. Asparagine Synthetase and Filamin A Have Different Roles in Ovarian Cancer. Front Oncol 2019; 9:1072. [PMID: 31681605 PMCID: PMC6813569 DOI: 10.3389/fonc.2019.01072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Early-stage ovarian serous carcinoma is usually difficult to detect in clinical practice. The profiling of protein expression in high-grade serous carcinoma (HGSC) and low-grade serous carcinoma (LGSC) would provide important information for diagnoses and chemotherapy. Here, we performed proteomic profiling of specimens from 13 HGSC and 7 LGSC patients by iTRAQ. A total of 323 proteins that were differentially expressed were identified. After immunohistochemical confirmation of expressed proteins in 166 clinical tissues, asparagine synthetase (ASNS) and filamin A (FLNA) were selected for further functional study. Cisplatin-sensitive (CS; ASNShigh and FLNAlow) and cisplatin-resistant (CR; ASNSlow and FLNAhigh) SKOV3 and OVCAR3 ovarian cancer cell lines were used for subsequent in vitro and in vivo experiments. Notably, ASNS overexpression (ASNS+) or FLNA knockdown (shFLNA) enabled cisplatin-induced apoptosis and autophagy in CR cells. However, ASNS+ and shFLNA promoted and attenuated tumor growth, respectively. In CS cells, ASNS knockdown (shASNS) attenuated clonogenicity, cell proliferation, and the epithelial–mesenchymal transition, whereas FLNA overexpression (FLNA+) protected cells from cisplatin. In vivo, cisplatin resistance was attenuated in mice xenografted with ASNS+, shFLNA, or ASNS+-shFLNA CR cells, whereas xenografts of shASNS or FLNA+ CS cells exhibited resistance to cisplatin. Clinically, all HGSC patients (83/83) responded to cisplatin, while 6 in 41 LGSC patients exhibited cisplatin resistance. These findings identify ASNS and FLNA as distinct biomarkers for HGSC and LGSC, which may have potential value in the prognosis and clinical treatment of serous carcinoma.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiong Wang
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Division of Uterine Vascular Biology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Congmin Gu
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Xie
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lijuan He
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kai Chen
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Pingping Tan
- Department of Pathology, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lei Xue
- Department of Pathology, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Sanqian Huang
- Department of Pathology, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Kun Shi
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
24
|
Kloos RQH, Pieters R, van den Bos C, van Eijkelenburg NKA, de Jonge R, van der Sluis IM. The effect of asparaginase therapy on methotrexate toxicity and efficacy in children with acute lymphoblastic leukemia. Leuk Lymphoma 2019; 60:3002-3010. [PMID: 31120351 DOI: 10.1080/10428194.2019.1613537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Asparaginase and methotrexate (MTX), both essential for pediatric acute lymphoblastic leukemia therapy, are often used concomitantly. Depending on the sequence, in vitro, asparaginase inhibits MTX-polyglutamate (MTXPG) formation, and side effects overlap. MTX toxicity and efficacy, reflected by intracellular erythrocyte MTXPG's, were compared between children treated with and without asparaginase during high dose MTX (HD-MTX) courses of the DCOG ALL-11 protocol (NL50250.078.14). Seventy-three patients, of whom 23 received asparaginase during the HD-MTX courses, were included. Grade 3-4 leukopenia and neutropenia occurred more often (59% and 86% vs. 30% and 62%). The number of infections, grade 3-4 hepatotoxicity, nephrotoxicity, and neurotoxicity did not differ. Patients with asparaginase had lower MTXPG levels, although to a lesser extent than in vitro studies. Although patients with asparaginase during HD-MTX courses showed more myelosuppression, this had no (serious) clinical consequences. Regarding the MTX efficacy, the schedule-related antagonism seen in in vitro seems less important in vivo.
Collapse
Affiliation(s)
- Robin Q H Kloos
- Department of Pediatric Oncology and Hematology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Cor van den Bos
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Academic Medical Center, Amsterdam, The Netherlands
| | | | - Robert de Jonge
- Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
| | - Inge M van der Sluis
- Department of Pediatric Oncology and Hematology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
25
|
HAP1 loss confers l-asparaginase resistance in ALL by downregulating the calpain-1-Bid-caspase-3/12 pathway. Blood 2019; 133:2222-2232. [PMID: 30819925 DOI: 10.1182/blood-2018-12-890236] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
l-Asparaginase (l-ASNase) is a strategic component of treatment protocols for acute lymphoblastic leukemia (ALL). It causes asparagine deficit, resulting in protein synthesis inhibition and subsequent leukemic cell death and ALL remission. However, patients often relapse because of the development of resistance, but the underlying mechanism of ALL cell resistance to l-asparaginase remains unknown. Through unbiased genome-wide RNA interference screening, we identified huntingtin associated protein 1 (HAP1) as an ALL biomarker for l-asparaginase resistance. Knocking down HAP1 induces l-asparaginase resistance. HAP1 interacts with huntingtin and the intracellular Ca2+ channel, inositol 1,4,5-triphosphate receptor to form a ternary complex that mediates endoplasmic reticulum (ER) Ca2+ release upon stimulation with inositol 1,4,5-triphosphate3 Loss of HAP1 prevents the formation of the ternary complex and thus l-asparaginase-mediated ER Ca2+ release. HAP1 loss also inhibits external Ca2+ entry, blocking an excessive rise in [Ca2+]i, and reduces activation of the Ca2+-dependent calpain-1, Bid, and caspase-3 and caspase-12, leading to reduced number of apoptotic cells. These findings indicate that HAP1 loss prevents l-asparaginase-induced apoptosis through downregulation of the Ca2+-mediated calpain-1-Bid-caspase-3/12 apoptotic pathway. Treatment with BAPTA-AM [1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester)] reverses the l-asparaginase apoptotic effect in control cells, supporting a link between l-asparaginase-induced [Ca2+]i increase and apoptotic cell death. Consistent with these findings, ALL patient leukemic cells with lower HAP1 levels showed resistance to l-asparaginase, indicating the clinical relevance of HAP1 loss in the development of l-asparaginase resistance, and pointing to HAP1 as a functional l-asparaginase resistance biomarker that may be used for the design of effective treatment of l-asparaginase-resistant ALL.
Collapse
|
26
|
Safary A, Moniri R, Hamzeh-Mivehroud M, Dastmalchi S. Highly efficient novel recombinant L-asparaginase with no glutaminase activity from a new halo-thermotolerant Bacillus strain. BIOIMPACTS : BI 2019. [PMID: 30788256 DOI: 10.15171/2fbi.2019.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Introduction: The bacterial enzyme has gained more attention in therapeutic application because of the higher substrate specificity and longer half-life. L-asparaginase is an important enzyme with known antineoplastic effect against acute lymphoblastic leukemia (ALL). Methods: Novel L-asparaginase genes were identified from a locally isolated halo-thermotolerant Bacillus strain and the recombinant enzymes were overexpressed in modified E. coli strains, OrigamiTM B and BL21. In addition, the biochemical properties of the purified enzymes were characterized, and the enzyme activity was evaluated at different temperatures, pH, and substrate concentrations. Results: The concentration of pure soluble enzyme obtained from Origami strain was ~30 mg/L of bacterial culture, which indicates the significant improvement compared to L-asparaginase produced by E. coli BL21 strain. The catalytic activity assay on the identified L-asparaginases (ansA1 and ansA3 genes) from Bacillus sp. SL-1 demonstrated that only ansA1 gene codes an active and stable homologue (ASPase A1) with high substrate affinity toward L-asparagine. The Kcat and Km values for the purified ASPase A1 enzyme were 23.96s-1 and 10.66 µM, respectively. In addition, the recombinant ASPase A1 enzyme from Bacillus sp. SL-1 possessed higher specificity to L-asparagine than L-glutamine. The ASPase A1 enzyme was highly thermostable and resistant to the wide range of pH 4.5-10. Conclusion: The biochemical properties of the novel ASPase A1 derived from Bacillus sp. SL-l indicated a great potential for the identified enzyme in pharmaceutical and industrial applications.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rezvan Moniri
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Pharmacy, Near East University, POBOX:99138, Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
27
|
Tinoco A, Sárria MP, Loureiro A, Parpot P, Espiña B, Gomes AC, Cavaco-Paulo A, Ribeiro A. BSA/ASN/Pol407 nanoparticles for acute lymphoblastic leukemia treatment. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Safary A, Moniri R, Hamzeh-Mivehroud M, Dastmalchi S. Highly efficient novel recombinant L-asparaginase with no glutaminase activity from a new halo-thermotolerant Bacillus strain. ACTA ACUST UNITED AC 2018; 9:15-23. [PMID: 30788256 PMCID: PMC6378094 DOI: 10.15171/bi.2019.03] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/29/2022]
Abstract
![]()
Introduction: The bacterial enzyme has gained more attention in therapeutic application because of the higher substrate specificity and longer half-life. L-asparaginase is an important enzyme with known antineoplastic effect against acute lymphoblastic leukemia (ALL).
Methods: Novel L-asparaginase genes were identified from a locally isolated halo-thermotolerant Bacillus strain and the recombinant enzymes were overexpressed in modified E. coli strains, OrigamiTM B and BL21. In addition, the biochemical properties of the purified enzymes were characterized, and the enzyme activity was evaluated at different temperatures, pH, and substrate concentrations.
Results: The concentration of pure soluble enzyme obtained from Origami strain was ~30 mg/L of bacterial culture, which indicates the significant improvement compared to L-asparaginase produced by E. coli BL21 strain. The catalytic activity assay on the identified L-asparaginases (ansA1 and ansA3 genes) from Bacillus sp. SL-1 demonstrated that only ansA1 gene codes an active and stable homologue (ASPase A1) with high substrate affinity toward L-asparagine. The Kcat and Km values for the purified ASPase A1 enzyme were 23.96s-1 and 10.66 µM, respectively. In addition, the recombinant ASPase A1 enzyme from Bacillus sp. SL-1 possessed higher specificity to L-asparagine than L-glutamine. The ASPase A1 enzyme was highly thermostable and resistant to the wide range of pH 4.5–10.
Conclusion: The biochemical properties of the novel ASPase A1 derived from Bacillus sp. SL-l indicated a great potential for the identified enzyme in pharmaceutical and industrial applications.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rezvan Moniri
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Pharmacy, Near East University, POBOX:99138, Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
29
|
Inhibition of GCN2 sensitizes ASNS-low cancer cells to asparaginase by disrupting the amino acid response. Proc Natl Acad Sci U S A 2018; 115:E7776-E7785. [PMID: 30061420 DOI: 10.1073/pnas.1805523115] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
General control nonderepressible 2 (GCN2) plays a major role in the cellular response to amino acid limitation. Although maintenance of amino acid homeostasis is critical for tumor growth, the contribution of GCN2 to cancer cell survival and proliferation is poorly understood. In this study, we generated GCN2 inhibitors and demonstrated that inhibition of GCN2 sensitizes cancer cells with low basal-level expression of asparagine synthetase (ASNS) to the antileukemic agent l-asparaginase (ASNase) in vitro and in vivo. We first tested acute lymphoblastic leukemia (ALL) cells and showed that treatment with GCN2 inhibitors rendered ALL cells sensitive to ASNase by preventing the induction of ASNS, resulting in reduced levels of de novo protein synthesis. Comprehensive gene-expression profiling revealed that combined treatment with ASNase and GCN2 inhibitors induced the stress-activated MAPK pathway, thereby triggering apoptosis. By using cell-panel analyses, we also showed that acute myelogenous leukemia and pancreatic cancer cells were highly sensitive to the combined treatment. Notably, basal ASNS expression at protein levels was significantly correlated with sensitivity to combined treatment. These results provide mechanistic insights into the role of GCN2 in the amino acid response and a rationale for further investigation of GCN2 inhibitors for the treatment of cancer.
Collapse
|
30
|
Chen Z, Zheng Y, Shi Y, Cui Z. Overcoming tumor cell chemoresistance using nanoparticles: lysosomes are beneficial for (stearoyl) gemcitabine-incorporated solid lipid nanoparticles. Int J Nanomedicine 2018; 13:319-336. [PMID: 29391792 PMCID: PMC5768424 DOI: 10.2147/ijn.s149196] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite recent advances in targeted therapies and immunotherapies, chemotherapy using cytotoxic agents remains an indispensable modality in cancer treatment. Recently, there has been a growing emphasis in using nanomedicine in cancer chemotherapy, and several nanomedicines have already been used clinically to treat cancers. There is evidence that formulating small molecular cancer chemotherapeutic agents into nanomedicines significantly modifies their pharmacokinetics and often improves their efficacy. Importantly, cancer cells often develop resistance to chemotherapy, and formulating anticancer drugs into nanomedicines also helps overcome chemoresistance. In this review, we briefly describe the different classes of cancer chemotherapeutic agents, their mechanisms of action and resistance, and evidence of overcoming the resistance using nanomedicines. We then emphasize on gemcitabine and our experience in discovering the unique (stearoyl) gemcitabine solid lipid nanoparticles that are effective against tumor cells resistant to gemcitabine and elucidate the underlying mechanisms. It seems that lysosomes, which are an obstacle in the delivery of many drugs, are actually beneficial for our (stearoyl) gemcitabine solid lipid nanoparticles to overcome tumor cell resistance to gemcitabine.
Collapse
Affiliation(s)
- Zhe Chen
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yanchun Shi
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Zhengrong Cui
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
31
|
Sourani Z, Shirzad H, Shirzad M, Pourgheysari B. Interaction between Gallic acid and Asparaginase to potentiate anti-proliferative effect on lymphoblastic leukemia cell line. Biomed Pharmacother 2017; 96:1045-1054. [PMID: 29217160 DOI: 10.1016/j.biopha.2017.11.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/31/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Treatment of acute lymphoblastic leukemia (ALL) fails in some cases and the side effects cause mortality in certain patients. Gallic acid (GA), a polyhydroxyphenolic compound has biological functions including anti-proliferative properties. The aim of the present study was to investigate the growth inhibition effects of GA in combination with asparaginase (ASP), as a component of combination chemotherapy, in a lymphoblastic leukemia cell line. METHODS Jurkat cells were incubated with different concentrations of GA with or without ASP. Proliferation inhibition was investigated using MTS test. The level of apoptosis alterations were evaluated using flow cytometry. The expression of Fas gene level and surface expression were investigated by quantitative real time PCR and flow cytometry respectively. RESULTS GA at 50μM concentration and ASP at 0.5 IU/ml inhibited 50% cell proliferation in 48 hours. GA also increased the inhibitory effect of ASP and some combinations had synergistic results. The increase of cell apoptosis and Fas expression were observed in GA-treated cells compared to control. GA increased the effect of ASP on proliferation inhibition, induction of apoptosis and Fas expression. CONCLUSION GA is an effective component in proliferation inhibition, apoptosis induction and enhancement of Fas expression level in Jurkat cell line. GA in some combination with ASP increases the effect of the latter on the cells. The study of the mechanism of these effects could be a further step towards target therapy. This study is a preliminary phase to the use of GA and should be carried out by more comprehensive study and animal models.
Collapse
Affiliation(s)
- Zahra Sourani
- Immunology Department, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Moein Shirzad
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Batoul Pourgheysari
- Pathology and Hematology Department, Shahrekord University of Medical Sciences, Shahrekord, Iran; Medical Plant Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
32
|
Acute lymphoblastic leukemia cells are sensitive to disturbances in protein homeostasis induced by proteasome deubiquitinase inhibition. Oncotarget 2017; 8:21115-21127. [PMID: 28423502 PMCID: PMC5400570 DOI: 10.18632/oncotarget.15501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
The non-genotoxic nature of proteasome inhibition makes it an attractive therapeutic option for the treatment of pediatric malignancies. We recently described the small molecule VLX1570 as an inhibitor of proteasome deubiquitinase (DUB) activity that induces proteotoxic stress and apoptosis in cancer cells. Here we show that acute lymphoblastic leukemia (ALL) cells are highly sensitive to treatment with VLX1570, resulting in the accumulation of polyubiquitinated proteasome substrates and loss of cell viability. VLX1570 treatment increased the levels of a number of proteins, including the chaperone HSP70B', the oxidative stress marker heme oxygenase-1 (HO-1) and the cell cycle regulator p21Cip1. Unexpectedly, polybiquitin accumulation was found to be uncoupled from ER stress in ALL cells. Thus, increased phosphorylation of eIF2α occurred only at supra-pharmacological VLX1570 concentrations and did not correlate with polybiquitin accumulation. Total cellular protein synthesis was found to decrease in the absence of eIF2α phosphorylation. Furthermore, ISRIB (Integrated Stress Response inhibitor) did not overcome the inhibition of protein synthesis. We finally show that VLX1570 can be combined with L-asparaginase for additive or synergistic antiproliferative effects on ALL cells. We conclude that ALL cells are highly sensitive to the proteasome DUB inhibitor VLX1570 suggesting a novel therapeutic option for this disease.
Collapse
|
33
|
Kang SM, Rosales JL, Meier-Stephenson V, Kim S, Lee KY, Narendran A. Genome-wide loss-of-function genetic screening identifies opioid receptor μ1 as a key regulator of L-asparaginase resistance in pediatric acute lymphoblastic leukemia. Oncogene 2017. [PMID: 28650467 PMCID: PMC5658664 DOI: 10.1038/onc.2017.211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
L-asparaginase is a critical chemotherapeutic agent for acute lymphoblastic leukemia (ALL). It hydrolyzes plasma asparagine into aspartate and NH3, causing asparagine deficit and inhibition of protein synthesis and eventually, leukemic cell death. However, patient relapse often occurs due to development of resistance. The molecular mechanism by which ALL cells acquire resistance to L-asparaginase is unknown. Therefore, we sought to identify genes that are involved in L-asparaginase resistance in primary leukemic cells. By unbiased genome-wide RNAi screening, we found that among 10 resistant ALL clones, six hits were for opioid receptor mu 1 (oprm1), two hits were for carbonic anhydrase 1 (ca1) and another two hits were for ubiquitin-conjugating enzyme E2C (ube2c). We also found that OPRM1 is expressed in all leukemic cells tested. Specific knockdown of OPRM1 confers L-asparaginase resistance, validating our genome-wide retroviral shRNA library screening data. Methadone, an agonist of OPRM1, enhances the sensitivity of parental leukemic cells, but not OPRM1-depleted cells, to L-asparaginase treatment, indicating that OPRM1 is required for the synergistic action of L-asparaginase and methadone, and that OPRM1 loss promotes leukemic cell survival likely through downregulation of the OPRM1-mediated apoptotic pathway. Consistent with this premise, patient leukemic cells with relatively high levels of OPRM1 are more sensitive to L-asparaginase treatment compared to OPRM1-depleted leukemic cells, further indicating that OPRM1 loss has a crucial role in L-asparaginase resistance in leukemic patients. Thus, our study demonstrates for the first time, a novel OPRM1-mediated mechanism for L-asparaginase resistance in ALL, and identifies OPRM1 as a functional biomarker for defining high-risk subpopulations and for the detection of evolving resistant clones. Oprm1 may also be utilized for effective treatment of L-asparaginase-resistant ALL.
Collapse
Affiliation(s)
- S M Kang
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada.,Division of Pediatric Oncology, Alberta Children's Hospital and POETIC Laboratory for Preclinical and Drug Discovery Studies, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - J L Rosales
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - V Meier-Stephenson
- Division of Pediatric Oncology, Alberta Children's Hospital and POETIC Laboratory for Preclinical and Drug Discovery Studies, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - S Kim
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - K Y Lee
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - A Narendran
- Division of Pediatric Oncology, Alberta Children's Hospital and POETIC Laboratory for Preclinical and Drug Discovery Studies, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
34
|
The differential ability of asparagine and glutamine in promoting the closed/active enzyme conformation rationalizes the Wolinella succinogenes L-asparaginase substrate specificity. Sci Rep 2017; 7:41643. [PMID: 28139703 PMCID: PMC5282591 DOI: 10.1038/srep41643] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/22/2016] [Indexed: 01/17/2023] Open
Abstract
Many side effects of current FDA-approved L-asparaginases have been related to their secondary L-glutaminase activity. The Wolinella succinogenes L-asparaginase (WoA) has been reported to be L-glutaminase free, suggesting it would have fewer side effects. Unexpectedly, the WoA variant with a proline at position 121 (WoA-P121) was found to have L-glutaminase activity in contrast to Uniprot entry P50286 (WoA-S121) that has a serine residue at this position. Towards understanding how this residue impacts the L-glutaminase property, kinetic analysis was coupled with crystal structure determination of these WoA variants. WoA-S121 was confirmed to have much lower L-glutaminase activity than WoA-P121, yet both showed comparable L-asparaginase activity. Structures of the WoA variants in complex with L-aspartic acid versus L-glutamic acid provide insights into their differential substrate selectivity. Structural analysis suggests a mechanism by which residue 121 impacts the conformation of the conserved tyrosine 27, a component of the catalytically-important flexible N-terminal loop. Surprisingly, we could fully model this loop in either its open or closed conformations, revealing the roles of specific residues of an evolutionary conserved motif among this L-asparaginase family. Together, this work showcases critical residues that influence the ability of the flexible N-terminal loop for adopting its active conformation, thereby effecting substrate specificity.
Collapse
|
35
|
Ren W, Yin J, Chen S, Duan J, Liu G, Li T, Li N, Peng Y, Tan B, Yin Y. Proteome analysis for the global proteins in the jejunum tissues of enterotoxigenic Escherichia coli -infected piglets. Sci Rep 2016; 6:25640. [PMID: 27157636 PMCID: PMC4860632 DOI: 10.1038/srep25640] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/20/2016] [Indexed: 02/06/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a common cause of diarrhea in humans and livestock. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) combined with multidimensional liquid chromatography (LC) and MS analysis was used for screening the differentially expressed proteins in piglet jejunum after ETEC infection. Totally 1,897 proteins were identified with quantitative information in piglet jejunum. We identified 92 differentially expressed proteins in ETEC-induced diarrhea, of which 30 were up regulated and 62 down regulated. Most of the differentially expressed proteins were involved in intestinal function of binding, metabolic process, catalytic activity and immune responses. The inhibition of intestinal immune responses in the jejunum in ETEC-induced diarrhea was also validated by immunobloting and RT-PCR. Our study is the first attempt to analyze the protein profile of ETEC-infected piglets by quantitative proteomics, and our findings could provide valuable information with respect to better understanding the host response to ETEC infection.
Collapse
Affiliation(s)
- Wenkai Ren
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of the Chinese Academy of Sciences, Beijing 10008, China
| | - Jie Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Shuai Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Jielin Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Gang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Nengzhang Li
- Chongqing Key Laboratory of Forage &Herbivorce, College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage &Herbivorce, College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients; Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| |
Collapse
|
36
|
Zhang J, Liu X, Lin Y, Li Y, Pan J, Zong S, Li Y, Zhou Y. HnRNP K contributes to drug resistance in acute myeloid leukemia through the regulation of autophagy. Exp Hematol 2016; 44:850-856. [PMID: 27155326 DOI: 10.1016/j.exphem.2016.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 01/15/2023]
Abstract
The goal of this study was to explore the role of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in drug resistance through the regulation of autophagy in acute myeloid leukemia (AML). First, we used fluorescence quantitative polymerase chain reaction (PCR) to verify the connection between the expression level of hnRNP K and the level of drug resistance in AML. We then used Western blotting to determine the expression level of the autophagy-related proteins microtubule-associated protein light chain 3 I and II (LC3 I/II) after the modulation of hnRNP K by ribonucleic acid (RNA) interference. Finally, an analysis of adriamycin drug sensitivity was conducted before and after the modulation of hnRNP K expression. hnRNP K and LC3 I/II were significantly overexpressed in the bone marrow of nonremission patients and in drug-resistant cell lines; however, the expression of LC3 I/II was decreased when the expression of hnRNP K was reduced and drug sensitivity to adriamycin could be restored. hnRNP K may be involved in the development of adriamycin resistance in AML through the regulation of autophagy.
Collapse
MESH Headings
- Adolescent
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Autophagy/drug effects
- Autophagy/genetics
- Cell Line, Tumor
- Child
- Child, Preschool
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression
- Genotype
- Heterogeneous-Nuclear Ribonucleoprotein K/genetics
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Male
- Microtubule-Associated Proteins/genetics
- RNA Interference
- RNA, Small Interfering/genetics
Collapse
Affiliation(s)
- JinFang Zhang
- Department of Paediatric Hematology and Oncology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China.
| | - XiaoLi Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - YuDeng Lin
- Department of Paediatric Hematology and Oncology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - YuLing Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - JianWei Pan
- Department of Paediatric Hematology and Oncology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Sa Zong
- Department of Paediatric Hematology and Oncology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - YongKang Li
- Department of Paediatric Hematology and Oncology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Yang Zhou
- Department of Paediatric Hematology and Oncology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| |
Collapse
|
37
|
Wu SJ, Li YF, Wang YJ. [Expression of asparagine synthetase in relapsed or refractory extranodal NK/T cell lymphoma]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:465-469. [PMID: 28446397 PMCID: PMC6744099 DOI: 10.3969/j.issn.1673-4254.2017.04.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To detect the expression level of asparagine synthetase (ASNS) in patients with relapsed or refractory extranodal NK/T cell lymphoma and explore its clinical significance. METHODS Ten patients with relapsed or refractory extranodal NK/T cell lymphoma admitted in our department from January, 2013 to January, 2016 were analyzed. The diagnoses were confirmed by pathological and immunohistochemical examination following failed chemotherapies in all cases. Branched DNA-liquidchip technique (bDNA-LCT) was used for detecting ASNS mRNA expression in paraffin-embedded tissue sections in the 10 cases of relapsed or refractory extranodal NK/T cell lymphoma and in 5 cases of chronic rhinitis. The correlations were analyzed between ASNS expression and the clinicopathological features and outcomes of the patients with failed chemotherapy regimens containing asparaginasum. RESULTS Six out of the 10 patients with relapsed or refractory extranodal NK/T cell lymphoma died due to diseaseprogression. The expression level of ASNS was significantly higher in the lymphoma tissues than in tissue specimens of chronic rhinitis (P<0.05). The expression level of ASNS was associated with the International Prognostic Index (P=0.023) in patients with relapsed or refractory extranodal NK/T cell lymphoma, and Kaplan-Meier curve showed that a high ASNS expression was correlated with a reduced overall survival and progression-free survival of the patients. CONCLUSION Asparaginasum-based chemotherapy regimens are recommended for treatment of relapsed or refractory extranodal NK/T cell lymphoma with low ASNS expressions.
Collapse
Affiliation(s)
- Shao-Jie Wu
- Department of Hematology, Southern Medical University, Zhujiang Hospital, Guangzhou 510282, China. E-mail:
| | | | | |
Collapse
|