1
|
Peng C, Wei W, Zhang H, Wang Y, Chang B, Zhao W, Jia L, Li L, Lu F, Liu F. Heterologous expression and fibrillary characterization of the microtubule-binding domain of tau associated with tauopathies. Mol Biol Rep 2024; 51:184. [PMID: 38261107 DOI: 10.1007/s11033-024-09231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Neurofibrillary tangles (NFTs) are one of the most common pathological characteristics of Alzheimer's disease. The NFTs are mainly composed of hyperphosphorylated microtubule-associated tau. Thus, recombinant tau is urgently required for the study of its fibrillogenesis and its associated cytotoxicity. METHODS AND RESULTS Heterologous expression, purification, and fibrillation of the microtubule-binding domain (MBD) of tau (tauMBD) were performed. The tauMBD was heterologously expressed in E. coli. Ni-chelating affinity chromatography was then performed to purify the target protein. Thereafter, tauMBD was systematically identified using the SDS-PAGE, western blot and MALDI-TOF MS methods. The aggregation propensity of the tauMBD was explored by both the thioflavin T fluorescence and atomic force microscopy experiments. CONCLUSIONS The final yield of the recombinant tauMBD was ~ 20 mg L-1. It is shown that TauMBD, in the absence of an inducer, self-assembled into the typical fibrils at a faster rate than wild-type tau. Finally, the in vitro cytotoxicity of tauMBD aggregates was validated using PC12 cells. The heterologously expressed tau in this study can be further used in the investigation of the biophysical and cellular cytotoxic properties of tau.
Collapse
Affiliation(s)
- Chong Peng
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Wei Wei
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Huitu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Ying Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Baogen Chang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Wenping Zhao
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Longgang Jia
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Li Li
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China.
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China.
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China.
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China.
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| |
Collapse
|
2
|
Meskova K, Martonova K, Hrasnova P, Sinska K, Skrabanova M, Fialova L, Njemoga S, Cehlar O, Parmar O, Kolenko P, Pevala V, Skrabana R. Cost-Effective Protein Production in CHO Cells Following Polyethylenimine-Mediated Gene Delivery Showcased by the Production and Crystallization of Antibody Fabs. Antibodies (Basel) 2023; 12:51. [PMID: 37606435 PMCID: PMC10443350 DOI: 10.3390/antib12030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023] Open
Abstract
Laboratory production of recombinant mammalian proteins, particularly antibodies, requires an expression pipeline assuring sufficient yield and correct folding with appropriate posttranslational modifications. Transient gene expression (TGE) in the suspension-adapted Chinese Hamster Ovary (CHO) cell lines has become the method of choice for this task. The antibodies can be secreted into the media, which facilitates subsequent purification, and can be glycosylated. However, in general, protein production in CHO cells is expensive and may provide variable outcomes, namely in laboratories without previous experience. While achievable yields may be influenced by the nucleotide sequence, there are other aspects of the process which offer space for optimization, like gene delivery method, cultivation process or expression plasmid design. Polyethylenimine (PEI)-mediated gene delivery is frequently employed as a low-cost alternative to liposome-based methods. In this work, we are proposing a TGE platform for universal medium-scale production of antibodies and other proteins in CHO cells, with a novel expression vector allowing fast and flexible cloning of new genes and secretion of translated proteins. The production cost has been further reduced using recyclable labware. Nine days after transfection, we routinely obtain milligrams of antibody Fabs or human lactoferrin in a 25 mL culture volume. Potential of the platform is established based on the production and crystallization of antibody Fabs and their complexes.
Collapse
Affiliation(s)
- Klaudia Meskova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
- Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Katarina Martonova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
- Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Patricia Hrasnova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Kristina Sinska
- AXON Neuroscience R&D Services SE, 811 02 Bratislava, Slovakia
| | - Michaela Skrabanova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Lubica Fialova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, 811 02 Bratislava, Slovakia
| | - Stefana Njemoga
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
- Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Ondrej Cehlar
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Olga Parmar
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Petr Kolenko
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 115 19 Prague, Czech Republic
| | - Vladimir Pevala
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Rostislav Skrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| |
Collapse
|
3
|
Brezovakova V, Sykova E, Jadhav S. Astrocytes Derived from Familial and Sporadic Alzheimer's Disease iPSCs Show Altered Calcium Signaling and Respond Differently to Misfolded Protein Tau. Cells 2022; 11:cells11091429. [PMID: 35563735 PMCID: PMC9101114 DOI: 10.3390/cells11091429] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
Abstract
Astrocytes regulate important functions in the brain, and their dysregulation has been linked to the etiology of neurodegenerative diseases, such as Alzheimer’s disease (AD). The role of astroglia in human AD remains enigmatic, owing to the limitations of animal models, which, while recreating some pathological aspects of the disease, do not fully mirror its course. In addition, the recognition of major structural and functional differences between human and mouse astrocytes has also prompted research into human glial cells. In the current study, astrocytes were generated using human iPSCs from patients with sporadic Alzheimer’s disease (sAD), familial Alzheimer’s disease (fAD) and non-demented controls (NDC). All clones gained astrocyte-specific morphological and proteomic characteristics upon in vitro differentiation, without considerable inter-clonal variances. In comparison to NDC, AD astrocytes displayed aberrant calcium dynamics in response to glutamate. When exposed to monomeric and aggregated tau, AD astrocytes demonstrated hypertrophy and elevated GFAP expression, differential expression of select signaling and receptor proteins, and the enhanced production of metalloproteinases (MMPs). Moreover, astrocytic secretomes were able to degrade tau in both monomeric and pathologically aggregated forms, which was mediated by MMP-2 and -9. The capacity to neutralize tau varied considerably between clones, with fAD astrocytes having the lowest degradability relative to sAD and healthy astrocytes. Importantly, when compared to aggregated tau alone, astrocytic secretome pretreatment of tau differentially reduced its detrimental effects on neurons. Our results show crucial differences in sporadic and familial AD astrocytes and suggests that these cells may play distinctive roles in the pathogenesis of early and late onset Alzheimer’s disease.
Collapse
|
4
|
Liu L, Cai Y, Lauro BM, Meunier AL, Chhatwal J, Selkoe DJ. Generation and application of semi-synthetic p-Tau181 calibrator for immunoassay calibration. Biochem Biophys Res Commun 2022; 611:85-90. [PMID: 35483223 DOI: 10.1016/j.bbrc.2022.04.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 12/28/2022]
Abstract
Evidence suggests that plasma levels of tau protein phosphorylated at specific residues such as p-T181, p-T217, and p-T231 can be used as biomarkers for Alzheimer's disease (AD) diagnosis and prognosis. Accurate tools to calibrate immunoassays (calibrators) to precisely detect phosphorylated residues on tau protein will provide important gains in reliability and specificity. This study sought to establish a method to generate those accurate calibrators. We generated a semi-synthetic (chimeric) p-Tau181 calibrator by coupling a recombinant tau fragment (residues 1-174) with a synthetic peptide containing a single phosphorylated residue (p-T181) via thioester bond formation. The generation of a semi-synthetic protein containing both the N-terminal region of tau and the pT181 epitope was demonstrated by mobility shift assays using CBB staining and immunoblotting with N-terminal and pT181-specific antibodies. p-Tau 181 assays performed with the novel calibrator on multiple platforms revealed LLoQs as low as 0.14 pg/ml. Our facile and inexpensive method generates a semi-synthetic tau pT181 calibrator suitable for different immunoassay platforms. The same method can easily be adapted to other AD-relevant phospho-epitopes such as pT217 and pT231.
Collapse
Affiliation(s)
- Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Yuqi Cai
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bianca M Lauro
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Angela L Meunier
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jasmeer Chhatwal
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
5
|
Hornakova L, Sinsky J, Janubova M, Mederlyova A, Paulenka Ivanovova N, Piestansky J, Kovac A, Galba J, Skrabana R, Cehlar O. Interaction kinetics reveal distinct properties of conformational ensembles of three-repeat and four-repeat tau proteins. FEBS Lett 2022; 596:1178-1189. [PMID: 35322890 DOI: 10.1002/1873-3468.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 11/06/2022]
Abstract
Tau protein is an intrinsically disordered protein. Its physiological state is best described as a conformational ensemble (CE) of metastable structures interconverting on the local and molecular scale. The monoclonal antibody DC39C recognizes a linear C-terminal tau epitope, and as the tau interaction partner, its binding parameters report about tau CE. Association kinetics of DC39C binding, together with crosslinking mass spectrometry, show differences in the accessibility of the C-terminus in CEs of tau isoforms. Furthermore, removal of the C-terminus accelerated the aggregation kinetics of three-repeat tau proteins. Our results suggest a novel mechanism of splicing-driven regulation of the tau C-terminal domain with consequences on the specific roles of tau isoforms in microtubule assembly and pathological aggregation.
Collapse
Affiliation(s)
- Lenka Hornakova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510, Bratislava, Slovak Republic.,Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215, Bratislava, Slovak Republic.,Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Medical Faculty, Comenius University, Sasinkova 2, 811 08, Bratislava, Slovak Republic
| | - Jakub Sinsky
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510, Bratislava, Slovak Republic
| | - Maria Janubova
- Axon Neuroscience R&D Services SE, Dvorakovo Nabrezie 10, 81102, Bratislava, Slovak Republic.,Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Medical Faculty, Comenius University, Sasinkova 2, 811 08, Bratislava, Slovak Republic
| | - Anna Mederlyova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510, Bratislava, Slovak Republic
| | | | - Juraj Piestansky
- Axon Neuroscience R&D Services SE, Dvorakovo Nabrezie 10, 81102, Bratislava, Slovak Republic.,Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232, Bratislava, Slovak Republic.,Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32, Bratislava, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510, Bratislava, Slovak Republic.,Axon Neuroscience R&D Services SE, Dvorakovo Nabrezie 10, 81102, Bratislava, Slovak Republic
| | - Jaroslav Galba
- Axon Neuroscience R&D Services SE, Dvorakovo Nabrezie 10, 81102, Bratislava, Slovak Republic.,Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 84510, Bratislava, Slovakia
| | - Rostislav Skrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510, Bratislava, Slovak Republic.,Axon Neuroscience R&D Services SE, Dvorakovo Nabrezie 10, 81102, Bratislava, Slovak Republic
| | - Ondrej Cehlar
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510, Bratislava, Slovak Republic
| |
Collapse
|
6
|
Mohammadi F, Takalloo Z, Rahmani H, Nasiri Khalili MA, Khajeh K, Riazi G, H Sajedi R. Interplay of isoform 1N4R tau protein and amyloid-β peptide fragment 25-35 in reducing and non-reducing conditions. J Biochem 2021; 169:119-134. [PMID: 32857841 DOI: 10.1093/jb/mvaa101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/14/2020] [Indexed: 11/13/2022] Open
Abstract
Amyloid-β (Aβ) peptide and tau protein are two hallmark proteins in Alzheimer's disease (AD); however, the parameters, which mediate the abnormal aggregation of Aβ and tau, have not been fully discovered. Here, we have provided an optimum method to purify tau protein isoform 1N4R by using nickel-nitrilotriacetic acid agarose chromatography under denaturing condition. The biochemical and biophysical properties of the purified protein were further characterized using in vitro tau filament assembly, tubulin polymerization assay, circular dichroism (CD) spectroscopy and atomic force microscopy. Afterwards, we investigated the effect of tau protein on aggregation of Aβ (25-35) peptide using microscopic imaging and cell viability assay. Incubation of tau at physiologic and supra-physiologic concentrations with Aβ25-35 for 40 days under reducing and non-reducing conditions revealed formation of two types of aggregates with distinct morphologies and dimensions. In non-reducing condition, the co-incubated sample showed granular aggregates, while in reducing condition, they formed annular protofibrils. Results from cell viability assay revealed the increased cell viability for the co-incubated sample. Therefore, the disassembling action shown by tau protein on Aβ25-35 suggests the possibility that tau may have a protective role in preventing Aβ peptide from acquiring the cytotoxic, aggregated form against oxidative stress damages.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Jalal AleAhmad Highway, P.O.Box: 14115-111, Iran
| | - Zeinab Takalloo
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Jalal AleAhmad Highway, P.O.Box: 14115-111, Iran
| | - Hossein Rahmani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Jalal AleAhmad Highway, P.O.Box: 14115-111, Iran
| | - Mohammad Ali Nasiri Khalili
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, Tehran, Lavizan, Babaei Highway, P.O.Box: 15875-1774, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Jalal AleAhmad Highway, P.O.Box: 14115-111, Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Enghelab Square, Postal Code: 1417466191, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Jalal AleAhmad Highway, P.O.Box: 14115-111, Iran
| |
Collapse
|
7
|
The Anti-Inflammatory Protein TNIP1 Is Intrinsically Disordered with Structural Flexibility Contributed by Its AHD1-UBAN Domain. Biomolecules 2020; 10:biom10111531. [PMID: 33182596 PMCID: PMC7697625 DOI: 10.3390/biom10111531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 01/02/2023] Open
Abstract
TNFAIP3 interacting protein 1 (TNIP1) interacts with numerous non-related cellular, viral, and bacterial proteins. TNIP1 is also linked with multiple chronic inflammatory disorders on the gene and protein levels, through numerous single-nucleotide polymorphisms and reduced protein amounts. Despite the importance of TNIP1 function, there is limited investigation as to how its conformation may impact its apparent multiple roles. Hub proteins like TNIP1 are often intrinsically disordered proteins. Our initial in silico assessments suggested TNIP1 is natively unstructured, featuring numerous potentials intrinsically disordered regions, including the ABIN homology domain 1-ubiquitin binding domain in ABIN proteins and NEMO (AHD1-UBAN) domain associated with its anti-inflammatory function. Using multiple biophysical approaches, we demonstrate the structural flexibility of full-length TNIP1 and the AHD1-UBAN domain. We present evidence the AHD1-UBAN domain exists primarily as a pre-molten globule with limited secondary structure in solution. Data presented here suggest the previously described coiled-coil conformation of the crystallized UBAN-only region may represent just one of possibly multiple states for the AHD1-UBAN domain in solution. These data also characterize the AHD1-UBAN domain in solution as mostly monomeric with potential to undergo oligomerization under specific environmental conditions (e.g., binding partner availability, pH-dependence). This proposed intrinsic disorder across TNIP1 and within the AHD1-UBAN region is likely to impact TNIP1 function and interaction with its multiple partners.
Collapse
|
8
|
Karikari TK, Keeling S, Hill E, Lantero Rodrı́guez J, Nagel DA, Becker B, Höglund K, Zetterberg H, Blennow K, Hill EJ, Moffat KG. Extensive Plasmid Library to Prepare Tau Protein Variants and Study Their Functional Biochemistry. ACS Chem Neurosci 2020; 11:3117-3129. [PMID: 32833429 DOI: 10.1021/acschemneuro.0c00469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tau neurofibrillary tangles are key pathological features of Alzheimer's disease and other tauopathies. Recombinant protein technology is vital for studying the structure and function of tau in physiology and aggregation in pathophysiology. However, open-source and well-characterized plasmids for efficiently expressing and purifying different tau variants are lacking. We generated 44 sequence-verified plasmids including those encoding full length (FL) tau-441, its four-repeat microtubule-binding (K18) fragment, and their respective selected familial pathological variants (N279K, V337M, P301L, C291R, and S356T). Moreover, plasmids for expressing single (C291A), double (C291A/C322A), and triple (C291A/C322A/I260C) cysteine-modified variants were generated to study alterations in cysteine content and locations. Furthermore, protocols for producing representative tau forms were developed. We produced and characterized the aggregation behavior of the triple cysteine-modified tau-K18, often used in real-time cell internalization and aggregation studies because it can be fluorescently labeled on a cysteine outside the microtubule-binding core. Similar to the wild type (WT), triple cysteine-modified tau-K18 aggregated by progressive β-sheet enrichment, albeit at a slower rate. On prolonged incubation, cysteine-modified K18 formed paired helical filaments similar to those in Alzheimer's disease, sharing morphological phenotypes with WT tau-K18 filaments. Nonetheless, cysteine-modified tau-K18 filaments were significantly shorter (p = 0.002) and mostly wider than WT filaments, explainable by their different principal filament elongation pathways: vertical (end-to-end) and lateral growth for WT and cysteine-modified, respectively. Cysteine rearrangement may therefore induce filament polymorphism. Together, the plasmid library, the protein production methods, and the new insights into cysteine-dependent aggregation should facilitate further studies and the design of antiaggregation agents.
Collapse
Affiliation(s)
- Thomas K. Karikari
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- Midlands Integrative Biosciences Training Partnership, University of Warwick, Coventry CV4 7AL, U.K
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg SE 43180, Sweden
| | - Sophie Keeling
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Emily Hill
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Juan Lantero Rodrı́guez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg SE 43180, Sweden
| | - David A. Nagel
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, U.K
| | - Bruno Becker
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg SE 43180, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
| | - Kina Höglund
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg SE 43180, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg SE 43180, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1E 6BT, U.K
- UK Dementia Research Institute at UCL, London WC1E 6BT, U.K
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg SE 43180, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
| | - Eric J. Hill
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, U.K
| | - Kevin G. Moffat
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
9
|
Cente M, Zorad S, Smolek T, Fialova L, Paulenka Ivanovova N, Krskova K, Balazova L, Skrabana R, Filipcik P. Plasma Leptin Reflects Progression of Neurofibrillary Pathology in Animal Model of Tauopathy. Cell Mol Neurobiol 2020; 42:125-136. [PMID: 32997211 DOI: 10.1007/s10571-020-00972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
The close relationship between Alzheimer's disease (AD) and obesity was recognized many years ago. However, complete understanding of the pathological mechanisms underlying the interactions between degeneration of CNS and fat metabolism is still missing. The leptin a key adipokine of white adipose tissue has been suggested as one of the major mediators linking the obesity and AD. Here we investigated the association between peripheral levels of leptin, general metabolic status and stage of the pathogenesis in rat transgenic model of AD. We demonstrate significantly decreased levels of plasma leptin in animals with experimentally induced progressive neurofibrillary pathology, which represents only 62.3% (P = 0.0015) of those observed in normal wild type control animals. More detailed analysis showed a strong and statistically significant inverse correlation between the load of neurofibrillary pathology and peripheral levels of leptin (r = - 0.7248, P = 0.0177). We also observed a loss of body weight during development of neurodegeneration (about 14% less than control animals, P = 0.0004) and decrease in several metabolic parameters such as glucose, insulin, triglycerides and VLDL in plasma of the transgenic animals. Our data suggest that plasma leptin could serve as a convenient peripheral biomarker for tauopathies and Alzheimer's disease. Decrease in gene expression of leptin in fat tissue and its plasma level was found as one of the consequences of experimentally induced neurodegeneration. Our data may help to design rational diagnostic and therapeutic strategies for patients suffering from Alzheimer's disease or other forms of tauopathy.
Collapse
Affiliation(s)
- Martin Cente
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia.,Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia.,Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Lubica Fialova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia.,Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | | | - Katarina Krskova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Balazova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Rostislav Skrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia.,Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Peter Filipcik
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10, Bratislava, Slovakia. .,Axon Neuroscience R&D Services SE, Bratislava, Slovakia.
| |
Collapse
|
10
|
Zilkova M, Nolle A, Kovacech B, Kontsekova E, Weisova P, Filipcik P, Skrabana R, Prcina M, Hromadka T, Cehlar O, Rolkova GP, Maderova D, Novak M, Zilka N, Hoozemans JJM. Humanized tau antibodies promote tau uptake by human microglia without any increase of inflammation. Acta Neuropathol Commun 2020; 8:74. [PMID: 32471486 PMCID: PMC7257136 DOI: 10.1186/s40478-020-00948-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/13/2020] [Indexed: 01/10/2023] Open
Abstract
Immunotherapies targeting pathological tau have recently emerged as a promising approach for treatment of neurodegenerative disorders. We have previously showed that the mouse antibody DC8E8 discriminates between healthy and pathological tau, reduces tau pathology in murine tauopathy models and inhibits neuronal internalization of AD tau species in vitro. Here we show, that DC8E8 and antibodies elicited against the first-in-man tau vaccine, AADvac1, which is based on the DC8E8 epitope peptide, both promote uptake of pathological tau by mouse primary microglia. IgG1 and IgG4 isotypes of AX004, the humanized versions of DC8E8, accelerate tau uptake by human primary microglia isolated from post-mortem aged and diseased brains. This promoting activity requires the presence of the Fc-domain of the antibodies. The IgG1 isotype of AX004 showed greater ability to promote tau uptake compared to the IgG4 isotype, while none of the antibody-tau complexes provoked increased pro-inflammatory activity of microglia. Our data suggest that IgG1 has better suitability for therapeutic development.
Collapse
|
11
|
Jia L, Zhao W, Wei W, Guo X, Wang W, Wang Y, Sang J, Lu F, Liu F. Expression and purification of amyloid β-protein, tau, and α-synuclein in Escherichia coli: a review. Crit Rev Biotechnol 2020; 40:475-489. [PMID: 32202164 DOI: 10.1080/07388551.2020.1742646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Misfolding and accumulation of amyloidogenic proteins into various forms of aggregated intermediates and insoluble amyloid fibrils is associated with more than 50 human diseases. Large amounts of high-quality amyloid proteins are required for better probing of their aggregation and neurotoxicity. Due to their intrinsic hydrophobicity, it is a challenge to obtain amyloid proteins with high yield and purity, and they have attracted the attention of researchers from all over the world. The rapid development of bioengineering technology provides technical support for obtaining large amounts of recombinant amyloidogenic proteins. This review discusses the available expression and purification methods for three amyloid proteins including amyloid β-protein, tau, and α-synuclein in microbial expression systems, especially Escherichia coli, and discusses the advantages and disadvantages of these methods. Importantly, these protocols can also be referred to for the expression and purification of other hydrophobic proteins.
Collapse
Affiliation(s)
- Longgang Jia
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenping Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wei Wei
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Xiao Guo
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wenjuan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Ying Wang
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Jingcheng Sang
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
12
|
Weisová P, Cehlár O, Škrabana R, Žilková M, Filipčík P, Kováčech B, Prčina M, Wojčiaková Ľ, Fialová Ľ, Smolek T, Kontseková E, Žilka N, Novák M. Therapeutic antibody targeting microtubule-binding domain prevents neuronal internalization of extracellular tau via masking neuron surface proteoglycans. Acta Neuropathol Commun 2019; 7:129. [PMID: 31391090 PMCID: PMC6685285 DOI: 10.1186/s40478-019-0770-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 02/04/2023] Open
Abstract
Pathologically altered tau protein is a common denominator of neurodegenerative disorders including Alzheimer's disease (AD) and other tauopathies. Therefore, promising immunotherapeutic approaches target and eliminate extracellular pathogenic tau species, which are thought to be responsible for seeding and propagation of tau pathology. Tau isoforms in misfolded states can propagate disease pathology in a template-dependent manner, proposed to be mediated by the release and internalization of extracellular tau. Monoclonal antibody DC8E8, binding four highly homologous and independent epitopes in microtubule-binding domain (MTBD) of diseased tau, inhibits tau-tau interaction, discriminates between healthy and pathologically truncated tau and reduces tau pathology in animal model in vivo. Here, we show that DC8E8 antibody acts via extracellular mechanism and does not influence viability and physiological functions of neurons. Importantly, in vitro functional assays showed that DC8E8 recognises pathogenic tau proteins of different size and origin, and potently blocks their entry into neurons. Next, we examined the mechanisms by which mouse antibody DC8E8 and its humanized version AX004 effectively block the neuronal internalization of extracellular AD tau species. We determined a novel mode of action of a therapeutic candidate antibody, which potently inhibits neuronal internalization of AD tau species by masking of epitopes present in MTBD important for interaction with neuron surface Heparan Sulfate Proteoglycans (HSPGs). We show that interference of tau-heparane sulfate interaction with DC8E8 antibody via steric hindrance represents an efficient and important therapeutic approach halting tau propagation.
Collapse
Affiliation(s)
- Petronela Weisová
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic.
| | - Ondrej Cehlár
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Rostislav Škrabana
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Monika Žilková
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Peter Filipčík
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Branislav Kováčech
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Michal Prčina
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Ľubica Wojčiaková
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Ľubica Fialová
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Tomáš Smolek
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Eva Kontseková
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Norbert Žilka
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Michal Novák
- Axon Neuroscience SE, Arch. Makariou & Kalogreon 4, Larnaca, Cyprus
| |
Collapse
|
13
|
Alqaeisoom N, Qian C, Arachchige D, Colvin RA, Holub JM. Inhibiting Phosphorylation of Tau (τ) Proteins at Ser262 Using Peptide-Based R1 Domain Mimetics. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9689-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Ji M, Xie XX, Liu DQ, Yu XL, Zhang Y, Zhang LX, Wang SW, Huang YR, Liu RT. Hepatitis B core VLP-based mis-disordered tau vaccine elicits strong immune response and alleviates cognitive deficits and neuropathology progression in Tau.P301S mouse model of Alzheimer's disease and frontotemporal dementia. ALZHEIMERS RESEARCH & THERAPY 2018; 10:55. [PMID: 29914543 PMCID: PMC6006857 DOI: 10.1186/s13195-018-0378-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/30/2018] [Indexed: 11/10/2022]
Abstract
Background Truncated mis-disordered tau protein plays an important role in the pathogenesis of Alzheimer’s disease (AD) and frontotemporal dementia (FTD). Tau294–305, an epitope in the truncated tau, is essential for pathological tau-tau interaction and aggregation. A tau294–305-targeted approach may have beneficial effects in the treatment of AD and FTD. Methods In this study, we genetically fused tau294–305 epitope to the hepatitis B virus core protein (HBc) major immunodominant region (MIR) (with the resultant protein termed T294-HBc), and we subcutaneously immunized a Tau.P301S transgenic mouse model of FTD and AD with T294-HBc four times. The levels and characteristics of antibodies induced by T294-HBc were determined by enzyme-linked immunosorbent assay. The effect of T294-HBc on the cognitive deficits of Tau.P301S mice was tested using the Morris water maze test, novel object recognition, and a Y-maze test. Western blot analysis and IHC were applied to measure the effect of T294-HBc on tau pathologies and neuroinflammation in the mouse brains. Results The results showed that T294-HBc self-assembled into HBc chimeric virus-like particles (VLPs) with tau294–305 displayed on the surface and that it induced high antibody titers specifically against the mis-disordered truncated tau. Further investigation showed that these antibodies simultaneously bound to microtubule-binding regions 1–4 (MTBR1–4) [tau263–274, tau294–305, tau325–336, tau357–368 and tau294–305(P301S)]. Moreover, T294-HBc VLP vaccination significantly ameliorated memory and cognitive decline; reduced the levels of AT8-positive tau, truncated tau monomer, and oligomer; attenuated microgliosis and astrogliosis; and rescued synaptic deficits in Tau.P301S transgenic mice. Conclusions T294-HBc VLP vaccine elicited strong immune response and alleviated cognitive deficits and neuropathology progression in Tau.P301S mice, indicating that the T294-HBc VLP vaccine has promising therapeutic potential for the treatment of AD and FTD.
Collapse
Affiliation(s)
- Mei Ji
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Xiu Xie
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Dong-Qun Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Lin Yu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Yue Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, China
| | - Ling-Xiao Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shao-Wei Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Ya-Ru Huang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui-Tian Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.
| |
Collapse
|
15
|
Banks WA, Kovac A, Majerova P, Bullock KM, Shi M, Zhang J. Tau Proteins Cross the Blood-Brain Barrier. J Alzheimers Dis 2018; 55:411-419. [PMID: 27662303 DOI: 10.3233/jad-160542] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tauopathies are a hallmark of many neurodegenerative diseases, including Alzheimer's disease and traumatic brain injuries. It has been demonstrated that amyloid-beta peptides, alpha-synuclein, and prion proteins cross the blood-brain barrier (BBB), contributing to their abilities to induce disease. Very little is known about whether tau proteins can cross the BBB. Here we systematically characterized several key forms of tau proteins to cross the BBB, including Tau-441 (2N4R), Tau-410 (2N3R), truncated tau 151-391 (0N4R), and truncated tau 121-227. All of these tau proteins crossed the BBB readily and bidirectonally; however, only Tau-410 had a saturable component to its influx. The tau proteins also entered the blood after their injection into the brain, with Tau 121-227 having the slowest exit from brain. The tau proteins varied in regards to their enzymatic stability in brain and blood and in their peripheral pharmacokinetics. These results show that blood-borne tau proteins could contribute to brain tauopathies. The result also suggest that the CNS can contribute to blood levels of tau, raising the possibility that, as suggested for other misfolded proteins, blood levels of tau proteins could be used as a biomarker of CNS disease.
Collapse
Affiliation(s)
- William A Banks
- Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Department of Pharmacology and Toxicology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic.,AXON Neuroscience SE, Bratislava, Slovak Republic
| | - Kristin M Bullock
- Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Min Shi
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA.,Department of Pathology, Peking University Health Science Center and Peking University Third Hospital, Beijing, China
| |
Collapse
|
16
|
KrishnaKumar VG, Gupta S. Simplified method to obtain enhanced expression of tau protein from E. coli and one-step purification by direct boiling. Prep Biochem Biotechnol 2017; 47:530-538. [DOI: 10.1080/10826068.2016.1275012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- V. Guru KrishnaKumar
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India
| | - Sharad Gupta
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India
| |
Collapse
|
17
|
Karikari TK, Turner A, Stass R, Lee LCY, Wilson B, Nagel DA, Hill EJ, Moffat KG. Expression and purification of tau protein and its frontotemporal dementia variants using a cleavable histidine tag. Protein Expr Purif 2016; 130:44-54. [PMID: 27663563 PMCID: PMC5147519 DOI: 10.1016/j.pep.2016.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022]
Abstract
Recombinant tau protein is widely used to study the biochemical, cellular and pathological aspects of tauopathies, including Alzheimer's disease and frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTPD-17). Pure tau in high yield is a requirement for in vitro evaluation of the protein's physiological and toxic functions. However, the preparation of recombinant tau is complicated by the protein's propensity to aggregate and form truncation products, necessitating the use of multiple, time-consuming purification methods. In this study, we investigated parameters that influence the expression of wild type and FTPD-17 pathogenic tau, in an attempt to identify ways to maximise expression yield. Here, we report on the influence of the choice of host strain, induction temperature, duration of induction, and media supplementation with glucose on tau expression in Escherichia coli. We also describe a straightforward process to purify the expressed tau proteins using immobilised metal affinity chromatography, with favourable yields over previous reports. An advantage of the described method is that it enables high yield production of functional oligomeric and monomeric tau, both of which can be used to study the biochemical, physiological and toxic properties of the protein. Factors influencing the expression of wild type and FTPD-17 pathogenic tau were investigated in an attempt to maximise yield. Soluble monomeric tau expression level was highest at 37 °C compared to 20 °C and 25 °C. Media supplementation with 0.2% glucose did not significantly influence monomeric tau expression levels. Circular dichroism confirmed that the purified tau proteins were mostly unfolded, with negative peaks around 200 nm. The circular dichroism peaks shifted towards 220 nm following the preparation of Alzheimer-like filaments, suggesting secondary structure re-orientation towards β-sheets. The tau proteins adopted classical fibrillisation similar to filaments isolated from the brains of Alzheimer's disease patients.
Collapse
Affiliation(s)
- Thomas K Karikari
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; Midlands Integrative Biosciences Training Partnership, University of Warwick, Coventry CV4 7AL, UK.
| | - Alexandra Turner
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Robert Stass
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Leonie C Y Lee
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Bethany Wilson
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - David A Nagel
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Eric J Hill
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Kevin G Moffat
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
18
|
Fá M, Puzzo D, Piacentini R, Staniszewski A, Zhang H, Baltrons MA, Li Puma DD, Chatterjee I, Li J, Saeed F, Berman HL, Ripoli C, Gulisano W, Gonzalez J, Tian H, Costa JA, Lopez P, Davidowitz E, Yu WH, Haroutunian V, Brown LM, Palmeri A, Sigurdsson EM, Duff KE, Teich AF, Honig LS, Sierks M, Moe JG, D'Adamio L, Grassi C, Kanaan NM, Fraser PE, Arancio O. Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory. Sci Rep 2016; 6:19393. [PMID: 26786552 PMCID: PMC4726138 DOI: 10.1038/srep19393] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
Abstract
Non-fibrillar soluble oligomeric forms of amyloid-β peptide (oAβ) and tau proteins are likely to play a major role in Alzheimer's disease (AD). The prevailing hypothesis on the disease etiopathogenesis is that oAβ initiates tau pathology that slowly spreads throughout the medial temporal cortex and neocortices independently of Aβ, eventually leading to memory loss. Here we show that a brief exposure to extracellular recombinant human tau oligomers (oTau), but not monomers, produces an impairment of long-term potentiation (LTP) and memory, independent of the presence of high oAβ levels. The impairment is immediate as it raises as soon as 20 min after exposure to the oligomers. These effects are reproduced either by oTau extracted from AD human specimens, or naturally produced in mice overexpressing human tau. Finally, we found that oTau could also act in combination with oAβ to produce these effects, as sub-toxic doses of the two peptides combined lead to LTP and memory impairment. These findings provide a novel view of the effects of tau and Aβ on memory loss, offering new therapeutic opportunities in the therapy of AD and other neurodegenerative diseases associated with Aβ and tau pathology.
Collapse
Affiliation(s)
- M Fá
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 W 168th St. New York, NY 10032 USA
| | - D Puzzo
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 W 168th St. New York, NY 10032 USA.,Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, 95125 Italy
| | - R Piacentini
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, 00168 Italy
| | - A Staniszewski
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 W 168th St. New York, NY 10032 USA
| | - H Zhang
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 W 168th St. New York, NY 10032 USA
| | - M A Baltrons
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 W 168th St. New York, NY 10032 USA.,Department of Biochemistry and Molecular Biology, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - D D Li Puma
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, 00168 Italy
| | - I Chatterjee
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 W 168th St. New York, NY 10032 USA.,Oligomerix, Inc., Oligomerix, Inc., 7 Legion Drive, Suite 101, Valhalla, NY 10595, USA
| | - J Li
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 W 168th St. New York, NY 10032 USA.,Department of Neurology, Third Military Medical University, Chongqing, 400042, China
| | - F Saeed
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 W 168th St. New York, NY 10032 USA
| | - H L Berman
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 W 168th St. New York, NY 10032 USA
| | - C Ripoli
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, 00168 Italy
| | - W Gulisano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, 95125 Italy
| | - J Gonzalez
- Translational Technology Core Laboratory, Rockefeller University, New York, NY 10065, USA
| | - H Tian
- Department of Chemical Engineering, ASU, Tempe, AZ 85281, USA
| | - J A Costa
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 W 168th St. New York, NY 10032 USA
| | - P Lopez
- Oligomerix, Inc., Oligomerix, Inc., 7 Legion Drive, Suite 101, Valhalla, NY 10595, USA
| | - E Davidowitz
- Oligomerix, Inc., Oligomerix, Inc., 7 Legion Drive, Suite 101, Valhalla, NY 10595, USA
| | - W H Yu
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 W 168th St. New York, NY 10032 USA
| | - V Haroutunian
- Department of Psychiatry, The Mount Sinai School of Medicine, JJ-Peters VA Medical Center, Bronx, NY 10468, USA
| | - L M Brown
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - A Palmeri
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, 95125 Italy
| | - E M Sigurdsson
- Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - K E Duff
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 W 168th St. New York, NY 10032 USA
| | - A F Teich
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 W 168th St. New York, NY 10032 USA
| | - L S Honig
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 W 168th St. New York, NY 10032 USA
| | - M Sierks
- Translational Technology Core Laboratory, Rockefeller University, New York, NY 10065, USA
| | - J G Moe
- Oligomerix, Inc., Oligomerix, Inc., 7 Legion Drive, Suite 101, Valhalla, NY 10595, USA
| | - L D'Adamio
- Department of Microbiology and Immunology, Einstein College of Medicine, Bronx, NY 10461, USA
| | - C Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, 00168 Italy.,San Raffaele Pisana Scientific Institute for Research, Hospitalization and Health Care, Rome, 00163, Italy
| | - N M Kanaan
- Department of Translational Science and Molecular Medicine, College of Human Medicine, MSU, Grand Rapids, MI, 49503, USA
| | - P E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, 60 Leonard Avenue, Toronto, Ontario M5T 2S8 Toronto, Canada
| | - O Arancio
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 W 168th St. New York, NY 10032 USA
| |
Collapse
|
19
|
Goda N, Shimizu K, Kuwahara Y, Tenno T, Noguchi T, Ikegami T, Ota M, Hiroaki H. A Method for Systematic Assessment of Intrinsically Disordered Protein Regions by NMR. Int J Mol Sci 2015; 16:15743-60. [PMID: 26184172 PMCID: PMC4519922 DOI: 10.3390/ijms160715743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/17/2015] [Accepted: 07/01/2015] [Indexed: 11/16/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) that lack stable conformations and are highly flexible have attracted the attention of biologists. Therefore, the development of a systematic method to identify polypeptide regions that are unstructured in solution is important. We have designed an "indirect/reflected" detection system for evaluating the physicochemical properties of IDPs using nuclear magnetic resonance (NMR). This approach employs a "chimeric membrane protein"-based method using the thermostable membrane protein PH0471. This protein contains two domains, a transmembrane helical region and a C-terminal OB (oligonucleotide/oligosaccharide binding)-fold domain (named NfeDC domain), connected by a flexible linker. NMR signals of the OB-fold domain of detergent-solubilized PH0471 are observed because of the flexibility of the linker region. In this study, the linker region was substituted with target IDPs. Fifty-three candidates were selected using the prediction tool POODLE and 35 expression vectors were constructed. Subsequently, we obtained 15N-labeled chimeric PH0471 proteins with 25 IDPs as linkers. The NMR spectra allowed us to classify IDPs into three categories: flexible, moderately flexible, and inflexible. The inflexible IDPs contain membrane-associating or aggregation-prone sequences. This is the first attempt to use an indirect/reflected NMR method to evaluate IDPs and can verify the predictions derived from our computational tools.
Collapse
Affiliation(s)
- Natsuko Goda
- Division of Structural Biology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| | - Kana Shimizu
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo Waterfront Bio-IT Research Building 2-4-7 Aomi, Koto-ku, Tokyo 135-0046, Japan.
| | - Yohta Kuwahara
- Division of Structural Biology, Graduate School of Medicine, Kobe University, Kusunoki-cho, 7-5-1, Chuo-ku, Kobe 650-0017, Japan.
| | - Takeshi Tenno
- The Structural Biology Research Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| | - Tamotsu Noguchi
- Pharmaceutical Education Research Center, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Takahisa Ikegami
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Motonori Ota
- Graduate School of Information Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Hidekazu Hiroaki
- Division of Structural Biology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
- Division of Structural Biology, Graduate School of Medicine, Kobe University, Kusunoki-cho, 7-5-1, Chuo-ku, Kobe 650-0017, Japan.
- The Structural Biology Research Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
20
|
Filipcik P, Cente M, Zilka N, Smolek T, Hanes J, Kucerak J, Opattova A, Kovacech B, Novak M. Intraneuronal accumulation of misfolded tau protein induces overexpression of Hsp27 in activated astrocytes. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1219-29. [PMID: 25772164 DOI: 10.1016/j.bbadis.2015.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/13/2015] [Accepted: 03/06/2015] [Indexed: 01/20/2023]
Abstract
Accumulation of misfolded forms of microtubule associated, neuronal protein tau causes neurofibrillary degeneration typical of Alzheimer's disease and other tauopathies. This process is accompanied by elevated cellular stress and concomitant deregulation of heat-shock proteins. We used a transgenic rat model of tauopathy to study involvement of heat shock protein 27 (Hsp27) in the process of neurofibrillary degeneration, its cell type specific expression and correlation with the amount of insoluble tau protein aggregates. The expression of Hsp27-mRNA is more than doubled and levels of Hsp27 protein tripled in aged transgenic animals with tau pathology. The data revealed a strong positive and highly significant correlation between Hsp27-mRNA and amount of sarkosyl insoluble tau. Interestingly, intracellular accumulation of insoluble misfolded tau protein in neurons was associated with overexpression of Hsp27 almost exclusively in reactive astrocytes, not in neurons. The topological dissociation of neuronally expressed pathological tau and the induction of astrocytic Hsp27, GFAP, and Vimentin along with up-regulation of microglia specific markers such as CD18, CD68 and C3 point to cooperation of astrocytes, microglia and neurons in response to intra-neuronal accumulation of insoluble tau. Our data suggest that over expression of Hsp27 represents a part of microglia-mediated astrocytic response mechanism in the process of neurofibrillary degeneration, which is not necessarily associated with neuroprotection and which in contrary may accelerate neurodegeneration in late stage of the disease. This phenomenon should be considered during development of disease modifying strategies for treatment of tauopathies and AD via regulation of activity of Hsp27.
Collapse
Affiliation(s)
- Peter Filipcik
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510 Bratislava, Slovakia; Axon Neuroscience SE, Bratislava, Slovakia
| | - Martin Cente
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510 Bratislava, Slovakia; Axon Neuroscience SE, Bratislava, Slovakia
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510 Bratislava, Slovakia; Axon Neuroscience SE, Bratislava, Slovakia
| | - Tomas Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510 Bratislava, Slovakia; Axon Neuroscience SE, Bratislava, Slovakia
| | | | - Juraj Kucerak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510 Bratislava, Slovakia; Axon Neuroscience SE, Bratislava, Slovakia
| | - Alena Opattova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510 Bratislava, Slovakia
| | - Branislav Kovacech
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510 Bratislava, Slovakia; Axon Neuroscience SE, Bratislava, Slovakia
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510 Bratislava, Slovakia; Axon Neuroscience SE, Bratislava, Slovakia.
| |
Collapse
|
21
|
Majerova P, Zilkova M, Kazmerova Z, Kovac A, Paholikova K, Kovacech B, Zilka N, Novak M. Microglia display modest phagocytic capacity for extracellular tau oligomers. J Neuroinflammation 2014; 11:161. [PMID: 25217135 PMCID: PMC4172893 DOI: 10.1186/s12974-014-0161-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/25/2014] [Indexed: 11/10/2022] Open
Abstract
Background Abnormal misfolded tau protein is a driving force of neurofibrillary degeneration in Alzheimer’s disease. It has been shown that tau oligomers play a crucial role in the formation of intracellular neurofibrillary tangles. They are intermediates between soluble tau monomers and insoluble tau filaments and are suspected contributors to disease pathogenesis. Oligomeric tau can be released into the extracellular space and spread throughout the brain. This finding opens the question of whether brain macrophages or blood monocytes have the potential to phagocytose extracellular oligomeric tau. Methods We have used stable rat primary microglial cells, rat peripheral monocytes-derived macrophages, BV2 microglial and TIB67 macrophage immortalized cell lines that were challenged by tau oligomers prepared by an in vitro aggregation reaction. The efficiency of cells to phagocytose oligomeric protein was evaluated with confocal microscopy. The ability to degrade tau protein was analyzed by immunoblotting. Results Confocal microscopy analyses showed that macrophages were significantly more efficient in phagocytosing oligomerized tau proteins than microglial cells. In contrast to macrophages, microglia are able to degrade the internalized oligomeric tau only after stimulation with lipopolysaccharide (LPS). Conclusions Our data suggests that microglia may not be the principal phagocytic cells able to target extracellular oligomeric tau. We found that peripheral macrophages display a high potency for elimination of oligomeric tau and therefore could play an important role in the modulation of neurofibrillary pathology in Alzheimer’s disease. Electronic supplementary material The online version of this article (doi:10.1186/s12974-014-0161-z) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Broncel M, Krause E, Schwarzer D, Hackenberger CPR. The Alzheimer’s Disease Related Tau Protein as a New Target for Chemical Protein Engineering. Chemistry 2012; 18:2488-92. [DOI: 10.1002/chem.201103032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Indexed: 12/12/2022]
|
23
|
Ramachandran G, Udgaonkar JB. Understanding the kinetic roles of the inducer heparin and of rod-like protofibrils during amyloid fibril formation by Tau protein. J Biol Chem 2011; 286:38948-59. [PMID: 21931162 DOI: 10.1074/jbc.m111.271874] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aggregation of the natively disordered protein, Tau, to form lesions called neurofibrillary tangles is a characteristic feature of several neurodegenerative tauopathies. The polyanion, heparin, is commonly used as an inducer in studies of Tau aggregation in vitro, but there is surprisingly no comprehensive model describing, quantitatively, all aspects of the heparin-induced aggregation reaction. In this study, rate constants and extents of fibril formation by the four repeat domain of Tau (Tau4RD) have been reproducibly determined over a full range of heparin and protein concentrations. The kinetic role of heparin in the nucleation-dependent fibril formation reaction is shown to be limited to participation in the initial rate-limiting steps; a single heparin molecule binds two Tau4RD molecules, forming an aggregation-competent protein dimer, which then serves as a building block for further fibril growth. Importantly, the minimal kinetic model that is proposed can quantitatively account for the characteristic bell-shaped dependence of the aggregation kinetics on the stoichiometry of protein to heparin. Very importantly, this study also identifies for the first time short and thin, rod-like protofibrils that are populated transiently, early during the time course of fibril formation. The identification of these protofibrils as bona fide off-pathway species has implications for the development of therapies for tauopathies based on driving fibril formation as a means of protecting the cell from smaller, putatively toxic aggregates.
Collapse
Affiliation(s)
- Gayathri Ramachandran
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | | |
Collapse
|
24
|
Kovac A, Zilka N, Kazmerova Z, Cente M, Zilkova M, Novak M. Misfolded truncated protein τ induces innate immune response via MAPK pathway. THE JOURNAL OF IMMUNOLOGY 2011; 187:2732-9. [PMID: 21813771 DOI: 10.4049/jimmunol.1100216] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuroinflammation plays a key role in the pathogenesis of Alzheimer's disease and related tauopathies. We have previously shown that expression of nonmutated human truncated τ (151-391, 4R), derived from sporadic Alzheimer's disease, induced neurofibrillary degeneration accompanied by microglial and astroglial activation in the brain of transgenic rats. The aim of the current study was to determine the molecular mechanism underlying innate immune response induced by misfolded truncated τ. We found that purified recombinant truncated τ induced morphological transformation of microglia from resting into the reactive phenotype. Simultaneously, truncated τ caused the release of NO, proinflammatory cytokines (IL-1β, IL-6, TNF-α), and tissue inhibitor of metalloproteinase-1 from the mixed glial cultures. Notably, when the pure microglial culture was activated with truncated τ, it displayed significantly higher levels of the proinflammatory cytokines, suggesting a key role of microglia in the τ-mediated inflammatory response. Molecular analysis showed that truncated τ increased the mRNA levels of three MAPKs (JNK, ERK1, p38β) and transcription factors AP-1 and NF-κB that ultimately resulted in enhanced mRNA expression of IL-1β, IL-6, TNF-α, and NO. Our results showed for the first time, to our knowledge, that misfolded truncated protein τ is able to induce innate immune response via a MAPK pathway. Consequently, we suggest that misfolded truncated protein τ represents a viable target for immunotherapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Center of Excellence for Alzheimer's Disease and Related Disorders, 845 10 Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
25
|
First transgenic rat model developing progressive cortical neurofibrillary tangles. Neurobiol Aging 2010; 33:1448-56. [PMID: 21196063 DOI: 10.1016/j.neurobiolaging.2010.10.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/19/2010] [Accepted: 10/23/2010] [Indexed: 11/23/2022]
Abstract
Neurofibrillary degeneration induced by misfolded protein tau is considered to be one of the key pathological hallmarks of Alzheimer's disease (AD). In the present study, we have introduced a novel transgenic rat model expressing a human truncated tau that encompasses 3 microtubule binding domains (3R) and a proline-rich region (3R tau151-391). The transgenic rats developed progressive age-dependent neurofibrillary degeneration in the cortical brain areas. Neurofibrillary tangles (NFTs) satisfied several key histological criteria used to identify neurofibrillary degeneration in human Alzheimer's disease including argyrophilia, Congo red birefringence, and Thioflavin S reactivity. Neurofibrillary tangles were also identified with antibodies used to detect pathologic tau in the human brain, including DC11, recognizing an abnormal tau conformation and antibodies that are specific for hyperphosphorylated forms of tau protein. Moreover, neurofibrillary degeneration was characterized by extensive formation of sarkosyl insoluble tau protein complexes consisting of rat endogenous and truncated tau species. Interestingly, the transgenic rats did not show neuronal loss either in the cortex or in the hippocampus. We suggest that novel transgenic rat model for human tauopathy represents a valuable tool in preclinical drug discovery targeting neurofibrillary degeneration of Alzheimer's type.
Collapse
|
26
|
Livernois AM, Hnatchuk DJ, Findlater EE, Graether SP. Obtaining highly purified intrinsically disordered protein by boiling lysis and single step ion exchange. Anal Biochem 2009; 392:70-6. [DOI: 10.1016/j.ab.2009.05.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 05/09/2009] [Accepted: 05/13/2009] [Indexed: 11/27/2022]
|
27
|
Filipcik P, Cente M, Krajciova G, Vanicky I, Novak M. Cortical and hippocampal neurons from truncated tau transgenic rat express multiple markers of neurodegeneration. Cell Mol Neurobiol 2009; 29:895-900. [PMID: 19263214 DOI: 10.1007/s10571-009-9372-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Accepted: 02/17/2009] [Indexed: 10/21/2022]
Abstract
Transition of protein tau from physiologically unfolded to misfolded state represent enigmatic step in the pathogenesis of tauopathies including Alzheimer's disease (AD). Major molecular events playing role in this process involve truncation and hyperphosphorylation of tau protein, which are accompanied by redox imbalance followed by functional deterioration of neuronal network. Recently we have developed transgenic rat model showing that expression of truncated tau causes neurofibrillary degeneration similar to that observed in brain of AD sufferers. Consequently we tested cortical and hippocampal neuronal cultures extracted from this model as a convenient tool for development of molecules able to target the mechanisms leading to and/or enhancing the process of neurodegeneration. Here we document three major pathological features typical for tauopathies and AD in cortical and hippocampal neurons from transgenic rat in vitro. First, an increased accumulation of human truncated tau in neurons; second, the hyperphosphorylation of truncated tau on the epitopes characteristic of AD (Ser202/Thr205 and Thr231); and third, increased vulnerability of the neurons to nitrative and oxidative stress. Our results show that primary neurons expressing human truncated tau could represent a cellular model for targeting tau related pathological events, namely, aberrant tau protein accumulation, tau hyperphosphorylation, and oxidative/nitrative damage. These characteristics make the model particularly suitable for detailed study of molecular mechanisms of tau induced neurodegeneration and easily applicable for drug screening.
Collapse
Affiliation(s)
- Peter Filipcik
- Institute of Neuroimmunology, Center of Excellence, SAV, 845 10 Bratislava, Slovak Republic.
| | | | | | | | | |
Collapse
|
28
|
Krajciova G, Skrabana R, Filipcik P, Novak M. Preserving free thiols of intrinsically disordered tau protein without the use of a reducing agent. Anal Biochem 2008; 383:343-5. [PMID: 18834853 DOI: 10.1016/j.ab.2008.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/12/2008] [Accepted: 09/12/2008] [Indexed: 11/19/2022]
Abstract
Intrinsically disordered proteins (IDPs) represent key mediators in many physiological as well as pathological processes. Solution-exposed cysteines of IDPs are highly reactive and therefore reducing agents are frequently included during their preparation to prevent formation of nonnative disulfides. However, reductants can potentially interfere with subsequent assays performed on the purified IDPs. Herein we report a method for purification of IDP tau in an atmosphere of inert argon, which eliminates the need for reducing agents. We have used this method for preparing several IDP tau isoforms and found it useful in the investigation of monomeric tau toxicity in rat cerebral neurons.
Collapse
Affiliation(s)
- Gabriela Krajciova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| | | | | | | |
Collapse
|
29
|
Sevcik J, Skrabana R, Dvorsky R, Csokova N, Iqbal K, Novak M. X-ray structure of the PHF core C-terminus: insight into the folding of the intrinsically disordered protein tau in Alzheimer's disease. FEBS Lett 2007; 581:5872-8. [PMID: 18061582 DOI: 10.1016/j.febslet.2007.11.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 11/15/2007] [Accepted: 11/19/2007] [Indexed: 11/26/2022]
Abstract
The major constituent of Alzheimer's disease paired helical filaments (PHF) core is intrinsically disordered protein (IDP) tau. In spite of a considerable effort, insoluble character of PHF together with inherent physical properties of IDP tau have precluded so far reconstruction of PHF 3D structure by X-ray crystallography or NMR spectroscopy. Here we present first crystallographic study of PHF core C-terminus. Using monoclonal antibody MN423 specific to the tertiary structure of the PHF core, the in vivo PHF structure was imprinted into recombinant core PHF tau. Crystallization of the complex led to determination of the structure of the core PHF tau protein fragment 386TDHGAE391 at 1.65A resolution. Structural analysis suggests important role of the core PHF C-terminus for PHF assembly. It is reasonable to expect that this approach will help to reveal the structural principles underlying the tau protein assembly into PHF and possibly will facilitate rationale drug design for inhibition of Alzheimer neurofibrillary changes.
Collapse
Affiliation(s)
- Jozef Sevcik
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
30
|
Cente M, Filipcik P, Pevalova M, Novak M. Expression of a truncated tau protein induces oxidative stress in a rodent model of tauopathy. Eur J Neurosci 2007; 24:1085-90. [PMID: 16930434 DOI: 10.1111/j.1460-9568.2006.04986.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Truncation of tau protein and oxidative stress have been implicated as important pathogenetic events in tauopathies including Alzheimer's disease (AD). We have generated a transgenic rat model that expresses a human truncated tau protein analogous to a variant form derived from sporadic AD. We employed this model to investigate the relationship between tau protein truncation and oxidative stress. We have found that rat cortical neurons (derived from transgenic animals) that had been cultured in vitro for 16 days showed an increased accumulation of reactive oxygen species (up to 1.4-fold increase; P < 0.01) when compared to neurons derived from nontransgenic control animals. Transgene-expressing neurons treated with inducers of oxidative stress, such as glucose oxidase (GO) and buthionine sulfoximine (BSO), displayed dramatically reduced survival (31.4 +/- 3.3 and 24.9 +/- 3.6%, respectively; both P < 0.001) compared to neurons from control animals (79.9 +/- 7.1%, survival following treatment with GO and to 98.2 +/- 3.8%, survival following treatment with BSO). The number of mitochondria in processes of neurons from transgenic animals was decreased by about one-third from that present in neurons from control animals. The results reveal that expression of a human truncated variant form of tau protein leads to the accumulation of reactive oxygen species and sensitizes rat cortical neurons to cell death induced by oxidative stress. This indicates that truncation of tau may precede oxidative stress in the pathogenesis of neurodegenerative diseases such as AD and other tauopathies. These findings may have implications for therapeutic strategies aiming at prevention of neurofibrillary degeneration and cognitive decline, and identify potential new targets for drug development.
Collapse
Affiliation(s)
- Martin Cente
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence, Dubravska cesta 9, 84510 Bratislava, Slovakia
| | | | | | | |
Collapse
|
31
|
Kovacech B, Kontsekova E, Zilka N, Novak P, Skrabana R, Filipcik P, Iqbal K, Novak M. A novel monoclonal antibody DC63 reveals that inhibitor 1 of protein phosphatase 2A is preferentially nuclearly localised in human brain. FEBS Lett 2007; 581:617-22. [PMID: 17266954 DOI: 10.1016/j.febslet.2007.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 01/09/2007] [Indexed: 11/19/2022]
Abstract
Abnormal phosphorylation of tau protein represents one of the major candidate pathological mechanisms leading to Alzheimer's disease (AD) and related tauopathies. Altered phosphorylation status of neuronal tau protein may result from upregulation of tau-specific kinases or from inhibition of tau-specific phosphatases. Increased expression of the protein inhibitor 1 of protein phosphatase 2A (I1PP2A) could therefore indirectly regulate the phosphorylation status of tau. As an important step towards elucidation of the role of I1PP2A in the physiology and pathology of tau phosphorylation, we developed a novel monoclonal antibody, DC63, which recognizes I1PP2A. Specificity of the antibody was examined by mass spectrometry and Western blot. This analysis supports the conclusion that the antibody does not recognize any of the other proteins of the 9-member leucine-rich acidic nuclear phosphoprotein family to which I1PP2A belongs. Immunoblot detection revealed that the inhibitor I1PP2A is expressed throughout the brain, including the hippocampus, temporal cortex, parietal cortex, subcortical nuclei and brain stem. The cerebellum displayed significantly higher levels of expression of I1PP2A than was seen elsewhere in the brain. Imunohistochemical analysis of normal human brain showed that I1PP2A is expressed in both neurons and glial cells and that the protein is preferentially localized to the nucleus. We conclude that the novel monoclonal antibody DC63 could be successfully employed as a mass spectrometry-validated molecular probe that may be used for in vitro and in vivo qualitative and quantitative studies of physiological and pathological pathways involving I1PP2A.
Collapse
Affiliation(s)
- Branislav Kovacech
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska 9, 845 10 Bratislava, Slovak Republic
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Skrabana R, Skrabanova-Khuebachova M, Kontsek P, Novak M. Alzheimer’s-disease-associated conformation of intrinsically disordered tau protein studied by intrinsically disordered protein liquid-phase competitive enzyme-linked immunosorbent assay. Anal Biochem 2006; 359:230-7. [PMID: 17081491 DOI: 10.1016/j.ab.2006.09.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 09/27/2006] [Accepted: 09/28/2006] [Indexed: 10/24/2022]
Abstract
Tau protein, the major constituent of paired helical filaments in Alzheimer's disease, belongs to the intrinsically disordered proteins (IDPs). IDPs are an emerging group in the protein kingdom characterized by the absence of a rigid three-dimensional structure. Disordered proteins usually acquire a "functional fold" upon binding to their interaction partner(s). This property of IDPs implies the need for innovative approaches to measure their binding affinity. We have mapped and measured the Alzheimer's-disease-associated epitope on intrinsically disordered tau protein with a novel two-step sandwich competitive enzyme-linked immunosorbent assay (ELISA). This approach allowed us to determine the binding affinity of disordered tau protein in liquid phase without any disturbance to the competitive equilibrium and without any need for covalent or noncovalent modification of tau protein. Furthermore, the global fitting method, used for the reconstruction of tau binding curves, significantly improved the assay readout. The proposed novel competitive ELISA allowed us to determine the changes in the standard Gibbs energy of binding, thus enabling measurement of tau protein conformation in the core of paired helical filaments. IDP competitive ELISA results showed, for the first time, that the tau protein C terminus of the Alzheimer's-disease-derived paired helical filaments core subunit adopts beta-turn type I' fold and is accessible from solution.
Collapse
Affiliation(s)
- Rostislav Skrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| | | | | | | |
Collapse
|
33
|
Zilka N, Filipcik P, Koson P, Fialova L, Skrabana R, Zilkova M, Rolkova G, Kontsekova E, Novak M. Truncated tau from sporadic Alzheimer's disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett 2006; 580:3582-8. [PMID: 16753151 DOI: 10.1016/j.febslet.2006.05.029] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 05/05/2006] [Accepted: 05/08/2006] [Indexed: 01/06/2023]
Abstract
Truncated tau protein is the characteristic feature of human sporadic Alzheimer's disease. We have identified truncated tau proteins conformationally different from normal healthy tau. Subpopulations of these structurally different tau species promoted abnormal microtubule assembly in vitro suggesting toxic gain of function. To validate pathological activity in vivo we expressed active form of human truncated tau protein as transgene, in the rat brain. Its neuronal expression led to the development of the neurofibrillary degeneration of Alzheimer's type. Furthermore, biochemical analysis of neurofibrillary changes revealed that massive sarcosyl insoluble tau complexes consisted of human Alzheimer's tau and endogenous rat tau in ratio 1:1 including characteristic Alzheimer's disease (AD)-specific proteins (A68). This work represents first insight into the possible causative role of truncated tau in AD neurofibrillary degeneration in vivo.
Collapse
Affiliation(s)
- Norbert Zilka
- Axon Neuroscience GmbH, Rennweg 95b, 1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Soltys K, Rolkova G, Vechterova L, Filipcik P, Zilka N, Kontsekova E, Novak M. First insert of tau protein is present in all stages of tau pathology in Alzheimer's disease. Neuroreport 2005; 16:1677-81. [PMID: 16189476 DOI: 10.1097/01.wnr.0000181582.95764.79] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A novel monoclonal antibody DC39N1 specific for tau protein N-terminal insert N1 (residues 45-73) was developed. Species analysis revealed that monoclonal antibody DC39N1 did not recognize tau proteins derived from rat, mouse, bovine, swine and rabbit brain tissues and is human tau protein specific. The antibody recognized all and only those human tau isoforms that contain a tau N1 insert. DC39N1 epitope on paired helical filaments from the brain of patients with Alzheimer's disease is phosphorylation independent. Immunohistochemical analysis of Braak stages with novel antibody revealed the presence of tau aminoterminal N1 insert during evolution of neurofibrillary degeneration from early to late stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Katarina Soltys
- Institute of Neuroimmunology, Slovak Academy of Sciences, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
35
|
Puig B, Rey MJ, Ferrer I. Individual and regional variations of phospho-tau species in progressive supranuclear palsy. Acta Neuropathol 2005; 110:261-8. [PMID: 15973541 DOI: 10.1007/s00401-005-1046-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2005] [Revised: 04/24/2005] [Accepted: 05/18/2005] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to learn about possible variations in phospho-tau profiles in terms of case-to-case differences, regional modifications and diversification of tau phosphorylation sites in five PSP cases with moderate to severe frontosubcortical dysfunction. Gel electrophoresis of sarkosyl-insoluble fractions and Western blotting with five anti-tau phospho-specific antibodies directed to phosphorylation sites Thr181, Ser202, Ser214, Ser396 and Ser422 were used to study four brain regions including frontal cortex, area 8, subcortical white matter of the frontal lobe, caudate/putamen: striatum, and basis pontis: pons. Although two bands of 66 and 62 kDa were observed in almost every region in each case, the intensity of the bands depends on the anti-tau phospho-specific antibody. More importantly, bands of 72, 50/55 and 37 kDa were commonly found in PSP brains, whereas other bands of about 60, 42, 33 and 29 kDa were irregularly observed. The pattern of bands differed slightly from one case to another and from one region to another. Moreover, the phospho-tau profile differed depending on the anti-tau phospho-specific antibody used. These data suggest that several species of tau are variably phosphorylated at a given time in a given region (and probably in a given cell), and that tau aggregates are composed of several phosphorylated truncated or cleaved tau molecules, in addition to phosphorylated complete tau isoforms.
Collapse
Affiliation(s)
- Berta Puig
- Institut de Neuropatologia, Servei Anatomia Patològica, Hospital Universitari de Bellvitge, carrer Feixa Llarga sn, 08907 Hospitalet de Llobregat, Spain
| | | | | |
Collapse
|
36
|
Skrabana R, Kontsek P, Mederlyova A, Iqbal K, Novak M. Folding of Alzheimer's core PHF subunit revealed by monoclonal antibody 423. FEBS Lett 2004; 568:178-82. [PMID: 15196943 DOI: 10.1016/j.febslet.2004.04.098] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 04/28/2004] [Accepted: 04/29/2004] [Indexed: 10/26/2022]
Abstract
At present, the conformation-dependent monoclonal antibodies (mAb) provide the only information on folding of tau in the core PHF. Monoclonal antibody MN423 recognizes all and only those Alzheimer's disease (AD) core paired helical filaments (PHFs) subunits, which terminate at Glu391. Using recombinant analogs of the core PHF subunit corresponding to tau residues tau297-391, we found that the C-terminal pentapeptide (387)DHGAE(391) represented only one component of the structure recognized by mAb 423. Therefore, deletion mutants of the core subunit were generated to identify assembled parts of this conformational structure. We localized two spatially close components in the region 306-325 ((306)VQIVYK(311) and (321)KCGSL(325)) contributing to formation of the structure identified by mAb 423. Thus, the spatial proximity of three subunit segments (306)VQIVYK(311), (321)KCGSL(325) and (387)DHGAE(391) represents constraints for intramolecular folding of the core PHF subunit. Since PHF represents a compelling drug target in AD, structural knowledge presented could contribute to structure-based drug design.
Collapse
|