1
|
Kashyap A, Gupta R. N-truncation in lipase Lip11 from Yarrowia lipolytica alleviates substrate inhibition with improved stability and efficiency ensuing distinct structural modifications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Heterologous expression, kinetic characterization and molecular modeling of a new sn-1,3-regioselective triacylglycerol lipase from Serratia sp. W3. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Deng Q, Tran NN, Razi Asrami M, Schober L, Gröger H, Hessel V. Ionic Liquid/Water Continuous-Flow System with Compartmentalized Spaces for Automatic Product Purification of Biotransformation with Enzyme Recycling. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Qiulin Deng
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
| | - Nam Nghiep Tran
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- School of Chemical Engineering, Can Tho University, Can Tho 910000, Vietnam
| | - Mahdieh Razi Asrami
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
| | - Lukas Schober
- Faculty of Chemistry, Bielefeld University, Bielefeld 33615, Germany
| | - Harald Gröger
- Faculty of Chemistry, Bielefeld University, Bielefeld 33615, Germany
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
4
|
Nehal F, Sahnoun M, Dab A, Sebaihia M, Bejar S, Jaouadi B. Production optimization, characterization, and covalent immobilization of a thermophilic Serratia rubidaea lipase isolated from an Algerian oil waste. Mol Biol Rep 2019; 46:3167-3181. [PMID: 30980268 DOI: 10.1007/s11033-019-04774-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/19/2019] [Indexed: 11/29/2022]
Abstract
A new thermophilic non-induced lipase producer named Serratia rubidaea strain Nehal-mou was isolated from oil waste in Tissemsilat, Algeria. The most influential lipase production parameters were screened by the Plackett-Burman design for enhancing enzyme yield. An optimum condition of a 1.5% of glucose, a 0.01% of potassium, and a 0.025% of manganese contents resulted in a 41.13 U/mL. This yield was 6.29 times higher than the one achieved before the application of the Box-Behnken Design. Lipase activity showed a high organic solvent tolerance following its exposure to hexane, ethanol, methanol, and acetone. Lipase was also perfectly stable in the presence of 10 mM Fe2+, K+, and Na+ ions with more than 75% of the retaining activity. The enzyme half-life times were 22 h, 90 min, and 25 min at 50, 60, and 70 °C respectively. Polyvinyl alcohol (PVA)/boric acid/Starch/CaCO3 were utilized as a carrier for lipase covalent immobilization in order to be used efficiently. The Scanning Electron Microscopy (SEM) Technique and the Fourier Transform Infrared Spectroscopy (FTIR) Method confirmed the covalent bonding success and the excellent carrier characteristics. Thus, the immobilization yield reached 73.5% and the optimum temperature was shifted from 40 to 65 °C. The immobilized lipase kept 80% of its total activity after 10 cycles and had 3 and 3.2-fold half-lives at 70, and 80 °C respectively compared to the free enzyme.
Collapse
Affiliation(s)
- Fatima Nehal
- Faculty of Nature and Life Science, Department of Agricultural Sciences and Biotechnologies, Hassiba Benbouali University, Chlef, Algeria
| | - Mouna Sahnoun
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, Sfax, 3018, Tunisia.
| | - Ahlem Dab
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, Sfax, 3018, Tunisia
| | - Mohammed Sebaihia
- Laboratory of Molecular Biology, Genomics and Bioinformatics, Faculty of Nature and Life Science, Hassiba Benbouali University, Chlef, Hay Essalam, 02000, Algeria
| | - Samir Bejar
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, Sfax, 3018, Tunisia
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, Sfax, 3018, Tunisia
| |
Collapse
|
5
|
Abstract
Up to 40% of intracellular water is confined due to the dense packing of macromolecules, ions, and osmolytes. Despite the large body of work concerning the effect of additives on the biomolecular structure and stability, the role of crowding and heterogeneity in these interactions is not well understood. Here, infrared spectroscopy and molecular dynamics simulations are used to describe the mechanisms by which crowding modulates hydrogen bonding interactions between water and dimethyl sulfoxide (DMSO). Specifically, we use formamide and dimethylformamide (DMF) as molecular crowders and show that the S═O hydrogen bond populations in aqueous mixtures are increased by both amides. These additives increase the amount of water within the DMSO first solvation shell through two mechanisms: (a) directly stabilizing water-DMSO hydrogen bonds; (b) increasing water exposure by destabilizing DMSO-DMSO self-interactions. Further, we quantified the hydrogen bond enthalpies between the different components: DMSO-water (61 kJ/mol) > DMSO-formamide (32 kJ/mol) > water-water (23 kJ/mol) ≫ formamide-water (4.7 kJ/mol). Spectra of carbonyl stretching vibrations show that DMSO induces the dehydration of amides as a result of strong DMSO-water interactions, which has been suggested as the main mechanism of protein destabilization.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry , University of Texas at Austin , 105 E 24th St. Stop A5300 , Austin , TX 78712 , United States
| | - Carlos R Baiz
- Department of Chemistry , University of Texas at Austin , 105 E 24th St. Stop A5300 , Austin , TX 78712 , United States
| |
Collapse
|
6
|
Joseph D, Chakraborty K. Production and Biotechnological Application of Extracellular Alkalophilic Lipase from Marine Macroalga-Associated Shewanella algae to Produce Enriched C 20-22 n-3 Polyunsaturated Fatty Acid Concentrate. Appl Biochem Biotechnol 2018; 185:55-71. [PMID: 29082477 DOI: 10.1007/s12010-017-2636-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/16/2017] [Indexed: 11/27/2022]
Abstract
An extracellular alkalophilic lipase was partially purified from heterotrophic Shewanella algae (KX 272637) associated with marine macroalgae Padina gymnospora. The enzyme possessed a molecular mass of 20 kD, and was purified 60-fold with a specific activity of 36.33 U/mg. The enzyme exhibited Vmax and Km of 1000 mM/mg/min and 157 mM, respectively, with an optimum activity at 55 °C and pH 10.0. The catalytic activity of the enzyme was improved by Ca2+ and Mg2+ ions, and the enzyme showed a good tolerance towards organic solvents, such as methanol, isopropanol, and ethanol. The purified lipase hydrolyzed the refined liver oil from leafscale gulper shark Centrophorus squamosus, yielding a total C20-22 n-3 PUFA concentration of 34.99% with EPA + DHA accounting the major share (34% TFA), after 3 h of hydrolysis. This study recognized the industrial applicability of the thermostable and alkalophilic lipase from marine macroalga-associated bacterium Shewanella algae to produce enriched C20-22 n-3 polyunsaturated fatty acid concentrate.
Collapse
Affiliation(s)
- Dexy Joseph
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
- Department of Biosciences, Mangalore University, Mangalagangothri, Karnataka State, 574199, India
| | - Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.
| |
Collapse
|
7
|
Kotogán A, Zambrano C, Kecskeméti A, Varga M, Szekeres A, Papp T, Vágvölgyi C, Takó M. An Organic Solvent-Tolerant Lipase with Both Hydrolytic and Synthetic Activities from the Oleaginous Fungus Mortierella echinosphaera. Int J Mol Sci 2018; 19:E1129. [PMID: 29642574 PMCID: PMC5979600 DOI: 10.3390/ijms19041129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022] Open
Abstract
Lipase enzymes of the oleaginous fungal group Mortierella are rarely studied. However, considering that most commercial lipases are derived from filamentous fungal sources, their investigation can contribute to the cost-effective development of new biotechnological processes. Here, an extracellular lipase with a molecular mass of 30 kDa was isolated from Mortierella echinosphaera CBS 575.75 and characterized. The purified lipase exhibited an optimal p-nitrophenyl palmitate (pNPP)-hydrolyzing activity at 25 °C and pH 6.6-7.0 and proved to be highly stable at temperatures up to 40 °C and under broad pH conditions. The enzyme was active under low temperatures, retaining 32.5% of its activity at 10 °C, and was significantly stable in polar and non-polar organic solvents. The Km, Vmax, and kcat for pNPP were 0.336 mM, 30.4 μM/min, and 45.7 1/min for pNPP and 0.333 mM, 36.9 μM/min, and 55.6 1/min for pNP-decanoate, respectively. The pNPP hydrolysis was inhibited by Hg2+, N-bromosuccinimide, and sodium dodecyl sulfate, while ethylenediaminetetraacetic acid and metal ions, such as Ca2+, Mg2+, Na⁺, and K⁺ enhanced the activity. The purified lipase had non-regioselective activity and wide substrate specificity, showing a clear preference for medium-chained p-nitrophenyl esters. Besides its good transesterification activity, the enzyme appeared as a suitable biocatalyst to operate selective esterification reactions to long-chained alkyl esters. Adsorption to Accurel MP1000 improved the storage stability of the enzyme at 5 °C. The immobilized lipase displayed tolerance to a non-aqueous environment and was reusable for up to five cycles without significant loss in its synthetic and hydrolytic activities. These findings confirm the applicability of both the free and the immobilized enzyme preparations in future research.
Collapse
Affiliation(s)
- Alexandra Kotogán
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Carolina Zambrano
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Anita Kecskeméti
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Mónika Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Tamás Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
- MTA-SZTE "Lendület" Fungal Pathogenicity Mechanisms Research Group, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Miklós Takó
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| |
Collapse
|
8
|
Hernández-García S, García-García MI, García-Carmona F. An improved method to measure lipase activity in aqueous media. Anal Biochem 2017; 530:104-106. [DOI: 10.1016/j.ab.2017.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
|
9
|
Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis. Enzyme Microb Technol 2016; 93-94:18-28. [DOI: 10.1016/j.enzmictec.2016.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/20/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022]
|
10
|
Cold-adapted organic solvent tolerant alkalophilic family I.3 lipase from an Antarctic Pseudomonas. Int J Biol Macromol 2016; 92:1266-1276. [PMID: 27506122 DOI: 10.1016/j.ijbiomac.2016.06.095] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 11/23/2022]
Abstract
Lipolytic enzymes with cold adaptation are gaining increasing interest due to their biotechnological prospective. Previously, a cold adapted family I.3 lipase (AMS8 lipase) was isolated from an Antarctic Pseudomonas. AMS8 lipase was largely expressed in insoluble form. The refolded His-tagged recombinant AMS8 lipase was purified with 23.0% total recovery and purification factor of 9.7. The purified AMS8 lipase migrated as a single band with a molecular weight approximately 65kDa via electrophoresis. AMS8 lipase was highly active at 30°C at pH 10. The half-life of AMS8 lipase was reported at 4 and 2h under the incubation of 30 and 40°C, respectively. The lipase was stable over a broad range of pH. It showed enhancement effect in its relative activity under the presence of Li+, Na+, K+, Rb+ and Cs+ after 30min treatment. Heavy metal ions such as Cu2+, Fe3+ and Zn2+ inhibited AMS8 activity. This cold adapted alkalophilic AMS lipase was also active in various organic solvent of different polarity. These unique properties of this biological macromolecule will provide considerable potential for many biotechnological applications and organic synthesis at low temperature.
Collapse
|
11
|
Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases. PLoS One 2016; 11:e0149851. [PMID: 26934700 PMCID: PMC4774917 DOI: 10.1371/journal.pone.0149851] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 02/06/2016] [Indexed: 12/01/2022] Open
Abstract
Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65°C and retained ≥ 97% activity after incubation at 50°C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents.
Collapse
|
12
|
Cloning, expression, purification, and characterization of lipase 3646 from thermophilic indigenous Cohnella sp. A01. Protein Expr Purif 2015; 109:120-6. [DOI: 10.1016/j.pep.2014.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/27/2014] [Accepted: 10/01/2014] [Indexed: 11/22/2022]
|
13
|
EL-Hefnawy ME, Sakran M. Characteristics of lipase in dormant seeds catalysed hydrolysis of olive oil in SDS-olive oil reversed microemulsions. CAN J CHEM ENG 2014. [DOI: 10.1002/cjce.21990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohamed E. EL-Hefnawy
- Department of Chemistry; College of Sciences and Arts; Rabigh Campus, King Abdulaziz University; Rabigh 344-21911 Saudi Arabia Kingdom
- Department of Chemistry; Faculty of Science; Tanta University; Tanta 31527 Egypt
| | - Mohamed Sakran
- Department of Chemistry; Faculty of Science; Tanta University; Tanta 31527 Egypt
- Department of Biochemistry; Faculty of Science; Tabuk University; Tabuk Saudi Arabia Kingdom
| |
Collapse
|
14
|
Li XL, Zhang WH, Wang YD, Dai YJ, Zhang HT, Wang Y, Wang HK, Lu FP. A high-detergent-performance, cold-adapted lipase from Pseudomonas stutzeri PS59 suitable for detergent formulation. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Anbu P. CHARACTERIZATION OF AN EXTRACELLULAR LIPASE BYPseudomonas koreensisBK-L07 ISOLATED FROM SOIL. Prep Biochem Biotechnol 2013; 44:266-80. [DOI: 10.1080/10826068.2013.812564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Mahadevan GD, Neelagund SE. Thermostable lipase from Geobacillus sp. Iso5: bioseparation, characterization and native structural studies. J Basic Microbiol 2013; 54:386-96. [PMID: 23775834 DOI: 10.1002/jobm.201200656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/13/2012] [Indexed: 11/09/2022]
Abstract
The extracellular thermoalkaline lipase from Geobacillus sp. Iso5 was purified to homogeneity by ultrafiltration, 6% cross-linked agarose and Phenyl spehrose HIC column chromatography. The final purified lipase resulted in 8.7-fold with 6.2% yield. The relative molecular weight of the enzyme was determined to be a monomer of 47 kDa by SDS-PAGE and MALDI-TOF MS/MS spectroscopy. The purified enzyme exhibit optimum activity at 70 °C and pH 8.0. The enzyme retained above 90% activity at temperatures of 70 °C and about 35% activity at 85 °C for 2 h. However, the stability of the enzyme decreased at the temperature over 90 °C. The enzyme activity was promoted in the presence of Ca(2+) and Mg(2+) and strongly inhibited by HgCl2 , PMSF, DTT, K(+) , Co(2+) , and Zn (2+) . EDTA did not affect the enzyme activity. The secondary structure of purified lipase contains 36% α-helix and 64% β-sheet which was determined by Circular dichromism, FTIR, and Raman Spectroscopy.
Collapse
Affiliation(s)
- Gurumurthy D Mahadevan
- Department of PG Studies and Research in Biochemistry, Jnana Sahyadri, Kuvempu University, Shankaraghatta, Karnataka, India
| | | |
Collapse
|
17
|
Chen D, Peng C, Zhang H, Yan Y. Assessment of Activities and Conformation of Lipases Treated with Sub- and Supercritical Carbon Dioxide. Appl Biochem Biotechnol 2013; 169:2189-201. [DOI: 10.1007/s12010-013-0132-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/05/2013] [Indexed: 11/24/2022]
|
18
|
Mander P, Cho SS, Simkhada JR, Choi YH, Park DJ, Yoo JC. An organic solvent–tolerant lipase from Streptomyces sp. CS133 for enzymatic transesterification of vegetable oils in organic media. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Jiang CJ, Chen G, Huang J, Huang Q, Jin K, Shen PH, Li JF, Wu B. A novel β-glucosidase with lipolytic activity from a soil metagenome. Folia Microbiol (Praha) 2011; 56:563-70. [PMID: 22116645 DOI: 10.1007/s12223-011-0083-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/25/2011] [Indexed: 11/25/2022]
Abstract
Moonlighting proteins have two different functions within a single polypeptide chain. Exploring moonlighting enzymes from the environment using the metagenomic approach is interesting. In the present study, a novel β-glucosidase gene, designated as bgl1D, with lipolytic activity (renamed Lip1C) was cloned through function-based screening of a metagenomic library from uncultured soil microorganisms. The deduced amino acid sequence comparison and phylogenetic analysis also indicated that Lip1C and other putative lipases are closely related. Biochemical characterization demonstrated that the maximum activity of the recombinant Lip1C protein occurs at pH 8.0 and 30°C using 4-nitrophenyl butyrate as substrate. The putative lipase had an apparent K(m) value of 0.88 mmol/L, a k(cat) value of 212/min, and a k(cat)/K(m) value of 241 L/mmol/min. Lip1C exhibited habitat-specific characteristics with 5 mmol/L AlCl(3), CuCl(2), and LiCl. The characterization of the biochemical properties of Lip1C enhances our understanding of this novel moonlighting enzyme isolated from a soil metagenome.
Collapse
Affiliation(s)
- Cheng-Jian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi 530004, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ay F, Karaoglu H, Inan K, Canakci S, Belduz AO. Cloning, purification and characterization of a thermostable carboxylesterase from Anoxybacillus sp. PDF1. Protein Expr Purif 2011; 80:74-9. [DOI: 10.1016/j.pep.2011.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 11/27/2022]
|
21
|
Papaleo E, Invernizzi G. Conformational plasticity of the calcium-binding pocket in the Burkholderia glumae lipase: Remodeling induced by mutation of calcium coordinating residues. Biopolymers 2010; 95:117-26. [DOI: 10.1002/bip.21541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/28/2010] [Accepted: 08/12/2010] [Indexed: 01/05/2023]
|
22
|
Significantly Improved Expression and Biochemical Properties of Recombinant Serratia marcescens Lipase as Robust Biocatalyst for Kinetic Resolution of Chiral Ester. Appl Biochem Biotechnol 2010; 162:2387-99. [DOI: 10.1007/s12010-010-9011-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
|
23
|
Chakraborty K, Vijayagopal P, Chakraborty RD, Vijayan K. Preparation of eicosapentaenoic acid concentrates from sardine oil by Bacillus circulans lipase. Food Chem 2010. [DOI: 10.1016/j.foodchem.2009.10.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Lv YQ, Fu DY, Tan TW, Wang MY. One-step purification of YLLIP2 isoforms from Candida sp. 99–125 by polyethyleneimine modified poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) monolith. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2009.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Secretory expression and characterization of a highly Ca2+-activated thermostable L2 lipase. Protein Expr Purif 2009; 68:161-6. [PMID: 19679187 DOI: 10.1016/j.pep.2009.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 08/05/2009] [Accepted: 08/05/2009] [Indexed: 11/22/2022]
Abstract
Thermostable lipases are important biocatalysts, showing many interesting properties with industrial applications. Previously, a thermophilic Bacillus sp. strain L2 that produces a thermostable lipase was isolated. In this study, the gene encoding for mature thermostable L2 lipase was cloned into a Pichia pastoris expression vector. Under the control of the methanol-inducible alcohol oxidase (AOX) promoter, the recombinant L2 lipase was secreted into the culture medium driven by the Saccharomyces cerevisiae alpha-factor signal sequence. After optimization the maximum recombinant lipase activity achieved in shake flasks was 125 U/ml. The recombinant 44.5 kDa L2 lipase was purified 1.8-fold using affinity chromatography with 63.2% yield and a specific activity of 458.1 U/mg. Its activity was maximal at 70 degrees C and pH 8.0. Lipase activity increased 5-fold in the presence of Ca2+. L2 lipase showed a preference for medium to long chain triacylglycerols (C(10)-C(16)), corn oil, olive oil, soybean oil, and palm oil. Stabilization at high temperature and alkaline pH as well as its broad substrate specificity offer great potential for application in various industries that require high temperature operations.
Collapse
|
26
|
Chakraborty K, Paulraj R. Purification and biochemical characterization of an extracellular lipase from Pseudomonas fluorescens MTCC 2421. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3859-3866. [PMID: 19323471 DOI: 10.1021/jf803797m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An extracellular lipase produced by Pseudomonas fluorescens MTCC 2421 was purified 184.37-fold with a specific activity of 424.04 LU/mg after anion exchange and gel exclusion chromatography. The enzyme is a homomeric protein with an apparent molecular mass of 65.3 kDa. The lipase exhibited hydrolytic resistance toward triglycerides with longer fatty acyl chain length containing unsaturation as evident from the lower V(max) (0.23 mM/mg/min) of the lipase toward glycerol trioleate (C(18:1n9)) compared with the fatty acid triglycerides having short to medium carbon chain lengths (C(18:0-12:0), V(max) 0.32-0.51 mM/mg/min). This indicates a preferential specificity of the lipase toward cleaving shorter carbon chain length fatty acid triglycerides. The lipase exhibited optimum activity at 40 degrees C and pH 8.0, respectively. A combination of Ca(2+) and sorbitol induced a synergistic effect on the thermostability of lipase with a significantly high residual activity (100%) after 30 min at 40 degrees C, as compared to 90.6% after incubation with Ca(2+) alone. The lipase activity was inhibited by Cu(2+) and Fe(2+) (42 and 48%, respectively) at 10 mM. The enzyme lost 31% of its initial activity by 0.001 mM EDTA and 42% by 0.1 mM EDTA. Significant reduction in lipase activity was apparent by 2-mercaptoethanol and phenylmethanesulfonyl fluoride at diluted concentration (0.001 mM), thereby indicating an important role of sulfhydryl groups in the catalytic mechanism.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin 682018, Kerala, India.
| | | |
Collapse
|
27
|
Rahman RNZRA, Masomian M, Salleh AB, Basri M. A new thermostable lipase byAneurinibacillus thermoaerophilus strain HZ: nutritional studies. ANN MICROBIOL 2009. [DOI: 10.1007/bf03175610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
28
|
Zhang A, Gao R, Diao N, Xie G, Gao G, Cao S. Cloning, expression and characterization of an organic solvent tolerant lipase from Pseudomonas fluorescens JCM5963. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Wang SL, Lin YT, Liang TW, Chio SH, Ming LJ, Wu PC. Purification and characterization of extracellular lipases from Pseudomonas monteilii TKU009 by the use of soybeans as the substrate. J Ind Microbiol Biotechnol 2009; 36:65-73. [PMID: 18810517 DOI: 10.1007/s10295-008-0473-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
Abstract
A lipase-producing bacterium was isolated and identified as Pseudomonas monteilii TKU009. A lipase (F2) and lipase-like materials (F1) were purified from the culture supernatant of P. monteilii TKU009 with soybean powder as the sole carbon/nitrogen source. The molecular mass of F1 and F2 was estimated to be 44 kDa by SDS-PAGE and gel filtration. The optimum pH, optimum temperature, and pH and thermal stabilities of F2 were 7, 40 degrees C, 8-11, and 50 degrees C; and of F1 were 6, 40 degrees C, 6-7, and 50 degrees C, respectively. F2 was completely inhibited by EDTA and slightly by Mg(2+), Fe(2+), Mn(2+), and SDS. F1 was completely inhibited by EDTA and Fe(2+) and strongly by Zn(2+), Mn(2+), Ca(2+), Mg(2+), and SDS. The activities of both the enzymes were enhanced by the addition of non-ionic surfactants Triton X-100 and Tween 40, especially for F1. F2 preferably acted on substrates with a long chain (C10-C18) of fatty acids, while F1 showed a broad spectrum on those with chain length of C4-C18. The marked activity of F2 in organic solvents makes it an ideal choice for application in a water-restricted medium including organic synthesis.
Collapse
Affiliation(s)
- San-Lang Wang
- Graduate Institute of Life Sciences, Tamkang University, Tamsui, 251, Taiwan.
| | | | | | | | | | | |
Collapse
|
30
|
Zelena K, Krügener S, Lunkenbein S, Zorn H, Berger RG. Functional expression of the lipase gene Lip2 of Pleurotus sapidus in Escherichia coli. Biotechnol Lett 2008; 31:395-401. [DOI: 10.1007/s10529-008-9870-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Accepted: 10/14/2008] [Indexed: 11/30/2022]
|
31
|
Wei HN, Shi LL, Wu B. Production and Characteristics of an Enantioselective Lipase fromBurkholderia sp. GXU56. Chem Eng Technol 2008. [DOI: 10.1002/ceat.200700348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Elend C, Schmeisser C, Hoebenreich H, Steele HL, Streit WR. Isolation and characterization of a metagenome-derived and cold-active lipase with high stereospecificity for (R)-ibuprofen esters. J Biotechnol 2007; 130:370-7. [PMID: 17601620 DOI: 10.1016/j.jbiotec.2007.05.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 04/23/2007] [Accepted: 05/08/2007] [Indexed: 11/30/2022]
Abstract
We report on the isolation and biochemical characterization of a novel, cold-active and metagenome-derived lipase with a high stereo-selectivity for pharmaceutically important substrates. The respective gene was isolated from a cosmid library derived from oil contaminated soil and designated lipCE. The deduced aa sequence indicates that the protein belongs to the lipase family l.3, with high similarity to Pseudomonas fluorescens lipases containing a C-terminal secretion signal for ABC dependent transport together with possible motifs for Ca(2+)-binding sites. The overexpressed protein revealed a molecular weight of 53.2kDa and was purified by refolding from inclusion bodies after expression in Escherichia coli. The optimum temperature of LipCE was determined to be 30 degrees C. However, the enzyme still displayed 28% residual activity at 0 degrees C and 16% at -5 degrees C. Calcium ions strongly increased activity and thermal stability of the protein. Further detailed biochemical characterization of the recombinant enzyme showed an optimum pH of 7 and that it retained activity in the presence of a range of metal ions and solvents. A detailed analysis of the enzyme's substrate spectrum with more than 34 different substrates indicated that the enzyme was able to hydrolyze a wide variety of substrates including the conversion of long chain fatty acid substrates with maximum activity for pNP-caprate (C(10)). Furthermore LipCE was able to hydrolyze stereo-selectively ibuprofen-pNP ester with a high preference for the (R) enantiomer of >91% ee and it demonstrated selectivity for esters of primary alcohols, whereas esters of secondary or tertiary alcohols were nearly not converted.
Collapse
Affiliation(s)
- C Elend
- Biozentrum Klein Flottbeck, Abteilung Mikrobiologie, University Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | | | | | | | | |
Collapse
|
33
|
Song JK, Oh JY, Eom GT, Song BK. High-level secretion of Pseudomonas fluorescens type I secretion system-dependent lipase in Serratia marcescens. J Biotechnol 2007; 130:311-5. [PMID: 17555839 DOI: 10.1016/j.jbiotec.2007.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/20/2007] [Accepted: 04/11/2007] [Indexed: 10/23/2022]
Abstract
The type I secretion system-dependent lipase, TliA, of Pseudomonas fluorescens was successfully produced in quantity in Serratia marcescens by coexpressing its cognate ABC transporter, TliDEF. Compared with P. fluorescens and Escherichia coli, S. marcescens showed an outstanding capacity for the secretory production of TliA, which was done with the expression vectors available for use in E. coli, and no growth phase-dependency, which was unlike the typical feature of TOSS-mediated protein secretion. Among the S. marcescens tested, the highest amount of TliA (approximately 2600 units ml(-1)) was achieved by S. marcescens KCTC 2798 containing the expression plasmid pTliDEFA-223. Our results also suggest that strains of Serratia will provide a valuable opportunity for producing other extracellular TOSS-dependent proteins effectively as well as the TliDEF-dependent TliA in this study.
Collapse
Affiliation(s)
- Jae Kwang Song
- Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea.
| | | | | | | |
Collapse
|
34
|
Geng X, Wang C. Protein folding liquid chromatography and its recent developments. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849:69-80. [PMID: 17116432 PMCID: PMC7105250 DOI: 10.1016/j.jchromb.2006.10.068] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 09/30/2006] [Accepted: 10/27/2006] [Indexed: 12/04/2022]
Abstract
The ultimate goal of proteomics is to identify biologically active proteins and to produce them using biotechnology tools such as bacterial hosts. However, proteins produced by Escherichia coli must be refolded to their native state. Protein folding liquid chromatography (PFLC) is a new method developed in recent years, and it is widely used in molecular biology and biotechnology. In this paper, the new method, PFLC is introduced and its recent development is reviewed. In addition the paper includes definitions, advantages, principles, applications for both laboratory and large scales, apparatus, and effecting factors of PFLC. In addition, the role of this method in the future is examined.
Collapse
Affiliation(s)
- Xindu Geng
- Institute of Modern Separation Science, Key Laboratory of Separation Science in Shaanxi Province, Northwest University, Xi'an 710069, PR China.
| | | |
Collapse
|
35
|
Swietnicki W. Folding aggregated proteins into functionally active forms. Curr Opin Biotechnol 2006; 17:367-72. [PMID: 16740384 DOI: 10.1016/j.copbio.2006.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Revised: 05/01/2006] [Accepted: 05/19/2006] [Indexed: 11/20/2022]
Abstract
The successful expression and purification of proteins in an active form is essential for structural and biochemical studies. With rapid advances in genome sequencing and high-throughput structural biology, an increasing number of proteins are being identified as potential drug targets but are difficult to obtain in a form suitable for structural or biochemical studies. Although prokaryotic recombinant expression systems are often used, proteins obtained in this way are typically found to be insoluble. Several experimental approaches have therefore been developed to refold these aggregated proteins into a biologically active form, often suitable for structural studies. The major refolding strategies adopt one of two approaches - chromatographic methods or refolding in free solution - and both routes have been successfully used to refold a range of proteins. Future advances are likely to involve the development of automated approaches for protein refolding and purification.
Collapse
Affiliation(s)
- Wieslaw Swietnicki
- Integrated Toxicology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| |
Collapse
|
36
|
Mondal K, Bohidar HB, Roy RP, Gupta MN. Alginate-chaperoned facile refolding of Chromobacterium viscosum lipase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:877-86. [PMID: 16624637 DOI: 10.1016/j.bbapap.2006.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 01/02/2006] [Accepted: 02/13/2006] [Indexed: 10/24/2022]
Abstract
Urea denatured lipase from Chromobacterium viscosum lipase could be refolded by addition of alginate with high guluronic acid content. The refolded molecule could be recovered by affinity precipitation. This approach resulted in recovery of 80% (of original activity) as compared to classical dilution method which gave only 21% activity recovery. Dynamic light scattering showed that binding required about 45 min and activity data obtained from affinity precipitation experiments indicated that refolding was almost instantaneous after binding. Circular dichroism (CD) and fluorescence data showed that refolded molecule was identical to the native molecule. It also showed that refolding takes place at the binding stage and not at the precipitation stage. Preliminary studies showed that the refolding strategy worked equally well with lipases from wheat germ and porcine pancreas.
Collapse
Affiliation(s)
- Kalyani Mondal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | | | | | | |
Collapse
|
37
|
Ma J, Zhang Z, Wang B, Kong X, Wang Y, Cao S, Feng Y. Overexpression and characterization of a lipase from Bacillus subtilis. Protein Expr Purif 2006; 45:22-9. [PMID: 16039141 DOI: 10.1016/j.pep.2005.06.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 06/01/2005] [Accepted: 06/03/2005] [Indexed: 11/17/2022]
Abstract
A novel plasmid, pBSR2, was constructed by incorporating a strong lipase promoter and a terminator into the original pBD64. A mature lipase gene from Bacillus subtilis strain IFFI10210, an existing strain for lipase expression, was cloned into the plasmid pBSR2 and transformed into B. subtilis A.S.1.1655. Thus, an overexpression strain, BSL2, was obtained. The yield of lipase is about 8.6 mg protein/g of wet weight of cell mass and 100-fold higher than that in B. subtilis strain IFFI10210. The recombinant lipase was purified in a three-step procedure involving ammonium sulfate fractionation, ion exchange, and gel filtration chromatography. Characterizations of the purified enzyme revealed a molecular mass of 24 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, maximum activity at 43 degrees C and pH 8.5 for hydrolysis of p-nitrophenyl caprylate. The values of Km and Vm were found to be 0.37 mM and 303 micromol mg-1 min-1, respectively. The substrate specificity study showed that p-nitrophenyl caprylate is a preference of the enzyme. The metal ions Ca2+, K+, and Mg2+ can activate the lipase, whereas Fe2+, Cu2+, and Co2+ inhibited it. The activity of the lipase can be increased about 48% by sodium taurocholate at the concentration of 7 mM and inhibited at concentrations over 10 mM.
Collapse
Affiliation(s)
- Jisheng Ma
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130023, PR China
| | | | | | | | | | | | | |
Collapse
|