1
|
Muñoz-Escudero D, Breazeale SD, Lee M, Guan Z, Raetz CRH, Sousa MC. Structure and Function of ArnD. A Deformylase Essential for Lipid A Modification with 4-Amino-4-deoxy-l-arabinose and Polymyxin Resistance. Biochemistry 2023; 62:2970-2981. [PMID: 37782650 PMCID: PMC10914315 DOI: 10.1021/acs.biochem.3c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Covalent modification of lipid A with 4-deoxy-4-amino-l-arabinose (Ara4N) mediates resistance to cationic antimicrobial peptides and polymyxin antibiotics in Gram-negative bacteria. The proteins required for Ara4N biosynthesis are encoded in the pmrE and arnBCADTEF loci, with ArnT ultimately transferring the amino sugar from undecaprenyl-phospho-4-deoxy-4-amino-l-arabinose (C55P-Ara4N) to lipid A. However, Ara4N is N-formylated prior to its transfer to undecaprenyl-phosphate by ArnC, requiring a deformylase activity downstream in the pathway to generate the final C55P-Ara4N donor. Here, we show that deletion of the arnD gene in an Escherichia coli mutant that constitutively expresses the arnBCADTEF operon leads to accumulation of the formylated ArnC product undecaprenyl-phospho-4-deoxy-4-formamido-l-arabinose (C55P-Ara4FN), suggesting that ArnD is the downstream deformylase. Purification of Salmonella typhimurium ArnD (stArnD) shows that it is membrane-associated. We present the crystal structure of stArnD revealing a NodB homology domain structure characteristic of the metal-dependent carbohydrate esterase family 4 (CE4). However, ArnD displays several distinct features: a 44 amino acid insertion, a C-terminal extension in the NodB fold, and sequence divergence in the five motifs that define the CE4 family, suggesting that ArnD represents a new family of carbohydrate esterases. The insertion is responsible for membrane association as its deletion results in a soluble ArnD variant. The active site retains a metal coordination H-H-D triad, and in the presence of Co2+ or Mn2+, purified stArnD efficiently deformylates C55P-Ara4FN confirming its role in Ara4N biosynthesis. Mutations D9N and H233Y completely inactivate stArnD implicating these two residues in a metal-assisted acid-base catalytic mechanism.
Collapse
Affiliation(s)
- Daniel Muñoz-Escudero
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Steven D. Breazeale
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Myeongseon Lee
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | | | - Marcelo C. Sousa
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
| |
Collapse
|
2
|
Fivenson EM, Rohs PD, Vettiger A, Sardis MF, Torres G, Forchoh A, Bernhardt TG. A role for the Gram-negative outer membrane in bacterial shape determination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527047. [PMID: 36778245 PMCID: PMC9915748 DOI: 10.1101/2023.02.03.527047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cell envelope of Gram-negative bacteria consists of three distinct layers: the cytoplasmic membrane, a cell wall made of peptidoglycan (PG), and an asymmetric outer membrane (OM) composed of phospholipid in the inner leaflet and lipopolysaccharide (LPS) glycolipid in the outer leaflet. The PG layer has long been thought to be the major structural component of the envelope protecting cells from osmotic lysis and providing them with their characteristic shape. In recent years, the OM has also been shown to be a load-bearing layer of the cell surface that fortifies cells against internal turgor pressure. However, whether the OM also plays a role in morphogenesis has remained unclear. Here, we report that changes in LPS synthesis or modification predicted to strengthen the OM can suppress the growth and shape defects of Escherichia coli mutants with reduced activity in a conserved PG synthesis machine called the Rod system (elongasome) that is responsible for cell elongation and shape determination. Evidence is presented that OM fortification in the shape mutants restores the ability of MreB cytoskeletal filaments to properly orient the synthesis of new cell wall material by the Rod system. Our results are therefore consistent with a role for the OM in the propagation of rod shape during growth in addition to its well-known function as a diffusion barrier promoting the intrinsic antibiotic resistance of Gram-negative bacteria. SIGNIFICANCE The cell wall has traditionally been thought to be the main structural determinant of the bacterial cell envelope that resists internal turgor and determines cell shape. However, the outer membrane (OM) has recently been shown to contribute to the mechanical strength of Gram-negative bacterial envelopes. Here, we demonstrate that changes to OM composition predicted to increase its load bearing capacity rescue the growth and shape defects of Escherichia coli mutants defective in the major cell wall synthesis machinery that determines rod shape. Our results therefore reveal a previously unappreciated role for the OM in bacterial shape determination in addition to its well-known function as a diffusion barrier that protects Gram-negative bacteria from external insults like antibiotics.
Collapse
Affiliation(s)
- Elayne M. Fivenson
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Patricia D.A. Rohs
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Andrea Vettiger
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Marios F. Sardis
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Grasiela Torres
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Alison Forchoh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, United States
| |
Collapse
|
3
|
Shprung T, Wani NA, Wilmes M, Mangoni ML, Bitler A, Shimoni E, Sahl HG, Shai Y. Opposing Effects of PhoPQ and PmrAB on the Properties of Salmonella enterica serovar Typhimurium: Implications on Resistance to Antimicrobial Peptides. Biochemistry 2021; 60:2943-2955. [PMID: 34547893 PMCID: PMC8638962 DOI: 10.1021/acs.biochem.1c00287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The increasing number of resistant
bacteria is a major threat worldwide,
leading to the search for new antibiotic agents. One of the leading
strategies is the use of antimicrobial peptides (AMPs), cationic and
hydrophobic innate immune defense peptides. A major target of AMPs
is the bacterial membrane. Notably, accumulating data suggest that
AMPs can activate the two-component systems (TCSs) of Gram-negative
bacteria. These include PhoP-PhoQ (PhoPQ) and PmrA-PmrB (PmrAB), responsible
for remodeling of the bacterial cell surface. To better understand
this mechanism, we utilized bacteria deficient either in one system
alone or in both and biophysical tools including fluorescence spectroscopy,
single-cell atomic force microscopy, electron microscopy, and mass
spectrometry (MoskowitzS. M.;2012, 56, 1019−103022106224; ChengH. Y.;2010, 17, 6020653976). Our data suggested that the two systems have opposing
effects on the properties of Salmonella enterica. The knockout of PhoPQ made the bacteria more susceptible to AMPs
by making the surface less rigid, more polarized, and permeable with
a slightly more negatively charged cell wall. In addition, the periplasmic
space is thinner. In contrast, the knockout of PmrAB did not affect
its susceptibility, while it made the bacterial outer layer very rigid,
less polarized, and less permeable than the other two mutants, with
a negatively charged cell wall similar to the WT. Overall, the data
suggest that the coexistence of systems with opposing effects on the
biophysical properties of the bacteria contribute to their membrane
flexibility, which, on the one hand, is important to accommodate changing
environments and, on the other hand, may inhibit the development of
meaningful resistance to AMPs.
Collapse
Affiliation(s)
- Tal Shprung
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naiem Ahmad Wani
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miriam Wilmes
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences A. Rossi Fanelli, Faculty of Pharmacy and Medicine, Sapienza University of Rome, CU27, 00185 Roma, Italy
| | - Arkadi Bitler
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hans-Georg Sahl
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Yechiel Shai
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Scarbrough BA, Eade CR, Reid AJ, Williams TC, Troutman JM. Lipopolysaccharide Is a 4-Aminoarabinose Donor to Exogenous Polyisoprenyl Phosphates through the Reverse Reaction of the Enzyme ArnT. ACS OMEGA 2021; 6:25729-25741. [PMID: 34632229 PMCID: PMC8495848 DOI: 10.1021/acsomega.1c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 05/11/2023]
Abstract
Modification of the lipid A portion of LPS with cationic monosaccharides provides resistance to polymyxins, which are often employed as a last resort to treat multidrug-resistant bacterial infections. Here, we describe the use of fluorescent polyisoprenoids, liquid chromatography-mass spectrometry, and bacterial genetics to probe the activity of membrane-localized proteins that utilize the 55-carbon lipid carrier bactoprenyl phosphate (BP). We have discovered that a substantial background reaction occurs when B-strain E. coli cell membrane fractions are supplemented with exogenous BP. This reaction involves proteins associated with the arn operon, which is necessary for the covalent modification of lipid A with the cationic 4-aminoarabinose (Ara4N). Using a series of arn operon gene deletion mutants, we identified that the modification was dependent on ArnC, which is responsible for forming BP-linked Ara4N, or ArnT, which transfers Ara4N to lipid A. Surprisingly, we found that the majority of the Ara4N-modified isoprenoid was due to the reverse reaction catalyzed by ArnT and demonstrate this using heat-inactivated membrane fractions, isolated lipopolysaccharide fractions, and analyses of a purified ArnT. This work provides methods that will facilitate thorough and rapid investigation of bacterial outer membrane remodeling and the evaluation of polyisoprenoid precursors required for covalent glycan modifications.
Collapse
Affiliation(s)
- Beth A. Scarbrough
- Nanoscale
Science Program, The University of North
Carolina at Charlotte, Charlotte, North Carolina 28223-0001, United States
| | - Colleen R. Eade
- Department
of Chemistry, The University of North Carolina
at Charlotte, Charlotte, North Carolina 28223-0001, United States
| | - Amanda J. Reid
- Nanoscale
Science Program, The University of North
Carolina at Charlotte, Charlotte, North Carolina 28223-0001, United States
| | - Tiffany C. Williams
- Department
of Chemistry, The University of North Carolina
at Charlotte, Charlotte, North Carolina 28223-0001, United States
| | - Jerry M. Troutman
- Department
of Chemistry, The University of North Carolina
at Charlotte, Charlotte, North Carolina 28223-0001, United States
- Nanoscale
Science Program, The University of North
Carolina at Charlotte, Charlotte, North Carolina 28223-0001, United States
- . Phone: 704-687-5180
| |
Collapse
|
5
|
The MCR-3 inside linker appears as a facilitator of colistin resistance. Cell Rep 2021; 35:109135. [PMID: 34010644 DOI: 10.1016/j.celrep.2021.109135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/23/2020] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
An evolving family of mobile colistin resistance (MCR) enzymes is threatening public health. However, the molecular mechanism by which the MCR enzyme as a rare member of lipid A-phosphoethanolamine (PEA) transferases gains the ability to confer phenotypic colistin resistance remains enigmatic. Here, we report an unusual example that genetic duplication and amplification produce a functional variant (Ah762) of MCR-3 in certain Aeromonas species. The lipid A-binding cavity of Ah762 is functionally defined. Intriguingly, we locate a hinge linker of Ah762 (termed Linker 59) that determines the MCR. Genetic and biochemical characterization reveals that Linker 59 behaves as a facilitator to render inactive MCR variants to regain the ability of colistin resistance. Along with molecular dynamics (MD) simulation, isothermal titration calorimetry (ITC) suggests that this facilitator guarantees the formation of substrate phosphatidylethanolamine (PE)-accessible pocket within MCR-3-like enzymes. Therefore, our finding defines an MCR-3 inside facilitator for colistin resistance.
Collapse
|
6
|
Zhang H, Srinivas S, Xu Y, Wei W, Feng Y. Genetic and Biochemical Mechanisms for Bacterial Lipid A Modifiers Associated with Polymyxin Resistance. Trends Biochem Sci 2019; 44:973-988. [PMID: 31279652 DOI: 10.1016/j.tibs.2019.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 01/29/2023]
Abstract
Polymyxins are a group of detergent-like antimicrobial peptides that are the ultimate line of defense against carbapenem-resistant pathogens in clinical settings. Polymyxin resistance primarily originates from structural remodeling of lipid A anchored on bacterial surfaces. We integrate genetic, structural, and biochemical aspects of three major types of lipid A modifiers that have been shown to confer intrinsic colistin resistance. Namely, we highlight ArnT, a glycosyltransferase, EptA, a phosphoethanolamine transferase, and the AlmEFG tripartite system, which is restricted to EI Tor biotype of Vibrio cholerae O1. We also discuss the growing family of mobile colistin resistance (MCR) enzymes, each of which is analogous to EptA, and which pose great challenges to global public health.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Swaminath Srinivas
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yongchang Xu
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wenhui Wei
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Youjun Feng
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; College of Animal Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
7
|
Endostatin gene therapy delivered by attenuated Salmonella typhimurium in murine tumor models. Cancer Gene Ther 2018; 25:167-183. [DOI: 10.1038/s41417-018-0021-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023]
|
8
|
Mann E, Whitfield C. A widespread three-component mechanism for the periplasmic modification of bacterial glycoconjugates. CAN J CHEM 2016. [DOI: 10.1139/cjc-2015-0594] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The diverse structures of bacterial glycoconjugates are generally established during the early stages of synthesis by the activities of nucleotide sugar-dependent glycosyltransferases active in the cytoplasm. However, in some cases, further modifications of varying complexity occur after the glycoconjugate is exported to the periplasm. These processes are distinguished by the involvement of polyprenyl monosphosphoryl donors and require glycosyltransferases possessing GT-C folds. Established prototypes are found in modifications of some bacterial lipopolysaccharides, where 4-amino-4-deoxy-l-arabinose is added to lipid A and glucose side branches are used to modify O-antigens. Here we review the current understanding of these systems and describe similarities to other periplasmic glycan modifications in bacteria and the N-glycosylation pathway for assembly of eukaryotic glycoproteins.
Collapse
Affiliation(s)
- Evan Mann
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
9
|
Petrou VI, Herrera CM, Schultz KM, Clarke OB, Vendome J, Tomasek D, Banerjee S, Rajashankar KR, Belcher Dufrisne M, Kloss B, Kloppmann E, Rost B, Klug CS, Trent MS, Shapiro L, Mancia F. Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation. Science 2016; 351:608-12. [PMID: 26912703 DOI: 10.1126/science.aad1172] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymyxins are antibiotics used in the last line of defense to combat multidrug-resistant infections by Gram-negative bacteria. Polymyxin resistance arises through charge modification of the bacterial outer membrane with the attachment of the cationic sugar 4-amino-4-deoxy-l-arabinose to lipid A, a reaction catalyzed by the integral membrane lipid-to-lipid glycosyltransferase 4-amino-4-deoxy-L-arabinose transferase (ArnT). Here, we report crystal structures of ArnT from Cupriavidus metallidurans, alone and in complex with the lipid carrier undecaprenyl phosphate, at 2.8 and 3.2 angstrom resolution, respectively. The structures show cavities for both lipidic substrates, which converge at the active site. A structural rearrangement occurs on undecaprenyl phosphate binding, which stabilizes the active site and likely allows lipid A binding. Functional mutagenesis experiments based on these structures suggest a mechanistic model for ArnT family enzymes.
Collapse
Affiliation(s)
- Vasileios I Petrou
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Carmen M Herrera
- Department of Infectious Diseases, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Kathryn M Schultz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Oliver B Clarke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jérémie Vendome
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - David Tomasek
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University, Northeastern Collaborative Access Team, Advanced Photon Source, Argonne, IL 60439, USA
| | - Kanagalaghatta R Rajashankar
- Department of Chemistry and Chemical Biology, Cornell University, Northeastern Collaborative Access Team, Advanced Photon Source, Argonne, IL 60439, USA
| | - Meagan Belcher Dufrisne
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Edda Kloppmann
- Department of Informatics, Bioinformatics and Computational Biology, Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology, Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany. Institute for Advanced Study (TUM-IAS), Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
10
|
Tavares-Carreón F, Fathy Mohamed Y, Andrade A, Valvano MA. ArnT proteins that catalyze the glycosylation of lipopolysaccharide share common features with bacterial N-oligosaccharyltransferases. Glycobiology 2015; 26:286-300. [PMID: 26515403 DOI: 10.1093/glycob/cwv095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
Abstract
ArnT is a glycosyltransferase that catalyzes the addition of 4-amino-4-deoxy-l-arabinose (l-Ara4N) to the lipid A moiety of the lipopolysaccharide. This is a critical modification enabling bacteria to resist killing by antimicrobial peptides. ArnT is an integral inner membrane protein consisting of 13 predicted transmembrane helices and a large periplasmic C-terminal domain. We report here the identification of a functional motif with a canonical consensus sequence DEXRYAX(5)MX(3)GXWX(9)YFEKPX(4)W spanning the first periplasmic loop, which is highly conserved in all ArnT proteins examined. Site-directed mutagenesis demonstrated the contribution of this motif in ArnT function, suggesting that these proteins have a common mechanism. We also demonstrate that the Burkholderia cenocepacia and Salmonella enterica serovar Typhimurium ArnT C-terminal domain is required for polymyxin B resistance in vivo. Deletion of the C-terminal domain in B. cenocepacia ArnT resulted in a protein with significantly reduced in vitro binding to a lipid A fluorescent substrate and unable to catalyze lipid A modification with l-Ara4N. An in silico predicted structural model of ArnT strongly resembled the tertiary structure of Campylobacter lari PglB, a bacterial oligosaccharyltransferase involved in protein N-glycosylation. Therefore, distantly related oligosaccharyltransferases from ArnT and PglB families operating on lipid and polypeptide substrates, respectively, share unexpected structural similarity that could not be predicted from direct amino acid sequence comparisons. We propose that lipid A and protein glycosylation enzymes share a conserved catalytic mechanism despite their evolutionary divergence.
Collapse
Affiliation(s)
- Faviola Tavares-Carreón
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada N6A 5C1 Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León. Nuevo León, Mexico
| | - Yasmine Fathy Mohamed
- Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 5GZ, UK Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Angel Andrade
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada N6A 5C1 Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Miguel A Valvano
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada N6A 5C1 Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 5GZ, UK
| |
Collapse
|
11
|
Tavares-Carreón F, Patel KB, Valvano MA. Burkholderia cenocepacia and Salmonella enterica ArnT proteins that transfer 4-amino-4-deoxy-l-arabinose to lipopolysaccharide share membrane topology and functional amino acids. Sci Rep 2015; 5:10773. [PMID: 26030265 PMCID: PMC5377068 DOI: 10.1038/srep10773] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/01/2015] [Indexed: 12/27/2022] Open
Abstract
We recently demonstrated that incorporation of 4-amino-4-deoxy-l-arabinose (l-Ara4N) to the lipid A moiety of lipopolysaccharide (LPS) is required for transport of LPS to the outer membrane and viability of the Gram-negative bacterium Burkholderia cenocepacia. ArnT is a membrane protein catalyzing the transfer of l-Ara4N to the LPS molecule at the periplasmic face of the inner membrane, but its topology and mechanism of action are not well characterized. Here, we elucidate the topology of ArnT and identify key amino acids that likely contribute to its enzymatic function. PEGylation assays using a cysteineless version of ArnT support a model of 13 transmembrane helices and a large C-terminal region exposed to the periplasm. The same topological configuration is proposed for the Salmonella enterica serovar Typhimurium ArnT. Four highly conserved periplasmic residues in B. cenocepacia ArnT, tyrosine-43, lysine-69, arginine-254 and glutamic acid-493, were required for activity. Tyrosine-43 and lysine-69 span two highly conserved motifs, 42RYA44 and 66YFEKP70, that are found in ArnT homologues from other species. The same residues in S. enterica ArnT are also needed for function. We propose these aromatic and charged amino acids participate in either undecaprenyl phosphate-l-Ara4N substrate recognition or transfer of l-Ara4N to the LPS.
Collapse
Affiliation(s)
- Faviola Tavares-Carreón
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Kinnari B Patel
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, BT9 7AE, United Kingdom
| | - Miguel A Valvano
- 1] Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, N6A 5C1, Canada [2] Centre for Infection and Immunity, Queen's University Belfast, Belfast, BT9 7AE, United Kingdom
| |
Collapse
|
12
|
Robichon C, Luo J, Causey TB, Benner JS, Samuelson JC. Engineering Escherichia coli BL21(DE3) derivative strains to minimize E. coli protein contamination after purification by immobilized metal affinity chromatography. Appl Environ Microbiol 2011; 77:4634-46. [PMID: 21602383 PMCID: PMC3127686 DOI: 10.1128/aem.00119-11] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/04/2011] [Indexed: 11/20/2022] Open
Abstract
Recombinant His-tagged proteins expressed in Escherichia coli and purified by immobilized metal affinity chromatography (IMAC) are commonly coeluted with native E. coli proteins, especially if the recombinant protein is expressed at a low level. The E. coli contaminants display high affinity to divalent nickel or cobalt ions, mainly due to the presence of clustered histidine residues or biologically relevant metal binding sites. To improve the final purity of expressed His-tagged protein, we engineered E. coli BL21(DE3) expression strains in which the most recurring contaminants are either expressed with an alternative tag or mutated to decrease their affinity to divalent cations. The current study presents the design, engineering, and characterization of two E. coli BL21(DE3) derivatives, NiCo21(DE3) and NiCo22(DE3), which express the endogenous proteins SlyD, Can, ArnA, and (optionally) AceE fused at their C terminus to a chitin binding domain (CBD) and the protein GlmS, with six surface histidines replaced by alanines. We show that each E. coli CBD-tagged protein remains active and can be efficiently eliminated from an IMAC elution fraction using a chitin column flowthrough step, while the modification of GlmS results in loss of affinity for nickel-containing resin. The "NiCo" strains uniquely complement existing methods for improving the purity of recombinant His-tagged protein.
Collapse
Affiliation(s)
- Carine Robichon
- New England BioLabs, Inc., Gene Expression Division, 240 County Road, Ipswich, Massachusetts 01938
| | - Jianying Luo
- New England BioLabs, Inc., Gene Expression Division, 240 County Road, Ipswich, Massachusetts 01938
| | - Thomas B. Causey
- New England BioLabs, Inc., Gene Expression Division, 240 County Road, Ipswich, Massachusetts 01938
| | - Jack S. Benner
- New England BioLabs, Inc., Gene Expression Division, 240 County Road, Ipswich, Massachusetts 01938
| | - James C. Samuelson
- New England BioLabs, Inc., Gene Expression Division, 240 County Road, Ipswich, Massachusetts 01938
| |
Collapse
|
13
|
Impellitteri NA, Merten JA, Bretscher LE, Klug CS. Identification of a functionally important loop in Salmonella typhimurium ArnT. Biochemistry 2010; 49:29-35. [PMID: 19947657 DOI: 10.1021/bi901572f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ArnT confers resistance to the antibiotic polymyxin in Salmonella typhimurium and Escherichia coli through the modification of lipid A, a major component of the outer surface of gram-negative bacteria. ArnT transfers a neutral aminoarabinose moiety onto the negative phosphate groups of lipid A, reducing the surface charge of the bacteria and preventing cationic peptides such as polymyxin from electrostatically recognizing and killing the bacteria. We previously reported the first expression, purification, and functional analysis of ArnT from S. typhimurium [Bretscher, L. E., Morrell, M. T., Funk, A. L., and Klug, C. S. (2006) Protein Expression Purif. 46, 33-39]. Our studies showed that ArnT is highly alpha-helical and described a new in vivo functional growth assay. Here, we use the cysteine-specific mPEG-mal to demonstrate that all eight of the native cysteines in S. typhimurium ArnT are in the reduced form and not involved in disulfide bonds and show that the cysteine-free protein is structurally and functionally intact as characterized by circular dichroism and the in vivo growth assay. Following this initial characterization, in vivo expression and function profiles were surveyed for 31 consecutive mutations within a putative ArnT loop. These studies identify for the first time 14 residues that are essential for function of the ArnT transferase and 3 additional residues that completely disrupt protein folding or insertion into the bacterial inner membrane.
Collapse
Affiliation(s)
- Nicholas A Impellitteri
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
14
|
Gronow S, Xia G, Brade H. Glycosyltransferases involved in the biosynthesis of the inner core region of different lipopolysaccharides. Eur J Cell Biol 2009; 89:3-10. [PMID: 19900730 DOI: 10.1016/j.ejcb.2009.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The inner core of lipopolysaccharide (LPS) structures in Gram-negative bacteria is considered a highly conserved region. The sugar connecting the membrane-associated lipid A moiety with the hydrophilic saccharide moiety, 3-deoxy-alpha-d-manno-oct-2-ulosonic acid (Kdo) is present in every LPS molecule investigated but it may be partially replaced by d-glycero-alpha-d-talo-oct-2-ulosonic acid (Ko). l-Glycero-alpha-d-manno-heptose (Hep) and phosphate residues are part of most but not all LPS structures and additionally, modifications with 4-amino-4-deoxy-beta-l-arabinose (Ara4N) residues occur in some. A number of different glycosyltransferases is involved in the biosynthesis of the inner core region of different lipopolysaccharides. Here, we report the characterization of Kdo transferases, heptosyltransferases and Ara4N transferases from a variety of bacteria.
Collapse
Affiliation(s)
- Sabine Gronow
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany.
| | | | | |
Collapse
|