1
|
Shen S, Hang X, Zhuang J, Zhang L, Bi H, Zhang L. A back-door Phenylalanine coordinates the stepwise hexameric loading of acyl carrier protein by the fatty acid biosynthesis enzyme β-hydroxyacyl-acyl carrier protein dehydratase (FabZ). Int J Biol Macromol 2019; 128:5-11. [PMID: 30677439 DOI: 10.1016/j.ijbiomac.2019.01.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
Abstract
The fatty acid biosynthesis pathway (FAS) was a fundamental procedure to generate a diversity of lipid components for cellular metabolism in bacteria, while the mechanism of substrate recognition remains unclear. The β-hydroxyacyl-acyl carrier protein dehydratase hexamer (FabZ) is an essential module in the elongation cycle of type-II FAS, catalyzing the dehydration of β-hydroxyacyl-lipid substrate carried by the holo form acyl carrier protein (holo-ACP). We previously elucidated an alternating seesaw-like ACP loading manner within a FabZ dimer subunits, mediated by a front-door residue Tyrosine (Tyr100). Here, we demonstrated that a back-door residue Phenylalanine (Phe83) of FabZ regulates the stepwise hexameric loading of ACP. Our finding represents clues as to the dynamic ACP recognition and catalysis mechanism of dehydratase in fatty acid biosynthesis, and provides critical information for developing antimicrobials targeting the dehydratase module in fatty acid biosynthesis pathway.
Collapse
Affiliation(s)
- Siqi Shen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, PR China
| | - Xudong Hang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Jiangsu, PR China
| | | | - Lin Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, PR China.
| | - Hongkai Bi
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Jiangsu, PR China.
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, PR China.
| |
Collapse
|
2
|
Structural and dynamical rationale for fatty acid unsaturation in Escherichia coli. Proc Natl Acad Sci U S A 2019; 116:6775-6783. [PMID: 30872475 DOI: 10.1073/pnas.1818686116] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fatty acid biosynthesis in α- and γ-proteobacteria requires two functionally distinct dehydratases, FabA and FabZ. Here, mechanistic cross-linking facilitates the structural characterization of a stable hexameric complex of six Escherichia coli FabZ dehydratase subunits with six AcpP acyl carrier proteins. The crystal structure sheds light on the divergent substrate selectivity of FabA and FabZ by revealing distinct architectures of the binding pocket. Molecular dynamics simulations demonstrate differential biasing of substrate orientations and conformations within the active sites of FabA and FabZ such that FabZ is preorganized to catalyze only dehydration, while FabA is primed for both dehydration and isomerization.
Collapse
|
3
|
Rivas MA, Courouble VC, Baker MC, Cookmeyer DL, Fiore KE, Frost AJ, Godbe KN, Jordan MR, Krasnow EN, Mollo A, Ridings ST, Sawada K, Shroff KD, Studnitzer B, Thiele GAR, Sisto AC, Nawal S, Huff AR, Fairman R, Johnson KA, Beld J, Kokona B, Charkoudian LK. The Effect of Divalent Cations on the Thermostability of Type II Polyketide Synthase Acyl Carrier Proteins. AIChE J 2018; 64:4308-4318. [PMID: 31527922 DOI: 10.1002/aic.16402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The successful engineering of biosynthetic pathways hinges on understanding the factors that influence acyl carrier protein (ACP) stability and function. The stability and structure of ACPs can be influenced by the presence of divalent cations, but how this relates to primary sequence remains poorly understood. As part of a course-based undergraduate research experience, we investigated the thermostability of type II polyketide synthase (PKS) ACPs. We observed an approximate 40 °C range in the thermostability amongst the 14 ACPs studied, as well as an increase in stability (5 - 26 °C) of the ACPs in the presence of divalent cations. Distribution of charges in the helix II-loop-helix III region was found to impact the enthalpy of denaturation. Taken together, our results reveal clues as to how the sequence of type II PKS ACPs relates to their structural stability, information that can be used to study how ACP sequence relates to function.
Collapse
Affiliation(s)
| | - Valentine C. Courouble
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Miranda C. Baker
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | | | - Kristen E. Fiore
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Alexander J. Frost
- Dept. of Biology Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | | | - Michael R. Jordan
- Dept. of Physics Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Emily N. Krasnow
- Dept. of Biology Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Aurelio Mollo
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Stephen T. Ridings
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Keisuke Sawada
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Kavita D. Shroff
- Dept. of Biology Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Bradley Studnitzer
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Grace A. R. Thiele
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | | | - Saadia Nawal
- Dept. of Chemistry Haverford College Haverford PA 19041
| | - Adam R. Huff
- Dept. of Chemistry Haverford College Haverford PA 19041
| | | | | | - Joris Beld
- Dept. of Microbiology and Immunology Drexel University College of Medicine Philadelphia PA 19102
| | | | | |
Collapse
|
4
|
Zhang L, Xiao J, Xu J, Fu T, Cao Z, Zhu L, Chen HZ, Shen X, Jiang H, Zhang L. Crystal structure of FabZ-ACP complex reveals a dynamic seesaw-like catalytic mechanism of dehydratase in fatty acid biosynthesis. Cell Res 2016; 26:1330-1344. [PMID: 27874013 PMCID: PMC5143422 DOI: 10.1038/cr.2016.136] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/18/2016] [Accepted: 09/07/2016] [Indexed: 12/28/2022] Open
Abstract
Fatty acid biosynthesis (FAS) is a vital process in cells. Fatty acids are essential for cell assembly and cellular metabolism. Abnormal FAS directly correlates with cell growth delay and human diseases, such as metabolic syndromes and various cancers. The FAS system utilizes an acyl carrier protein (ACP) as a transporter to stabilize and shuttle the growing fatty acid chain throughout enzymatic modules for stepwise catalysis. Studying the interactions between enzymatic modules and ACP is, therefore, critical for understanding the biological function of the FAS system. However, the information remains unclear due to the high flexibility of ACP and its weak interaction with enzymatic modules. We present here a 2.55 Å crystal structure of type II FAS dehydratase FabZ in complex with holo-ACP, which exhibits a highly symmetrical FabZ hexamer-ACP3 stoichiometry with each ACP binding to a FabZ dimer subunit. Further structural analysis, together with biophysical and computational results, reveals a novel dynamic seesaw-like ACP binding and catalysis mechanism for the dehydratase module in the FAS system, which is regulated by a critical gatekeeper residue (Tyr100 in FabZ) that manipulates the movements of the β-sheet layer. These findings improve the general understanding of the dehydration process in the FAS system and will potentially facilitate drug and therapeutic design for diseases associated with abnormalities in FAS.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Jianfeng Xiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianran Fu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Cao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Xu Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| |
Collapse
|
5
|
Gay D, You YO, Keatinge-Clay A, Cane DE. Structure and stereospecificity of the dehydratase domain from the terminal module of the rifamycin polyketide synthase. Biochemistry 2013; 52:8916-28. [PMID: 24274103 DOI: 10.1021/bi400988t] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RifDH10, the dehydratase domain from the terminal module of the rifamycin polyketide synthase, catalyzes the stereospecific syn dehydration of the model substrate (2S,3S)-2-methyl-3-hydroxypentanoyl-RifACP10, resulting in the exclusive formation of (E)-2-methyl-2-pentenoyl-RifACP10. RifDH10 does not dehydrate any of the other three diastereomeric, RifACP10-bound, diketide thioester substrates. On the other hand, when EryACP6, from the sixth module of the erythromycin polyketide synthase, is substituted for RifACP10, RifDH10 stereospecifically dehydrates only (2R,3R)-2-methyl-3-hydroxypentanoyl-EryACP6 to give exclusively (E)-2-methyl-2-pentenoyl-EryACP6, with no detectable dehydration of any of the other three diastereomeric, EryACP6-bound, diketides. An identical alteration in substrate diastereospecificity was observed for the corresponding N-acetylcysteamine or pantetheine thioester analogues, regardless of acyl chain length or substitution pattern. Incubation of (2RS)-2-methyl-3-ketopentanoyl-RifACP10 with the didomain reductase-dehydratase RifKR10-RifDH10 yielded (E)-2-methyl-2-pentenoyl-RifACP10, the expected product of syn dehydration of (2S,3S)-2-methyl-3-hydroxypentanoyl-RifACP10, while incubation with the corresponding EryACP6-bound substrate, (2RS)-2-methyl-3-ketopentanoyl-EryACP6, gave only the reduction product (2S,3S)-2-methyl-3-hydroxypentanoyl-EryACP6 with no detectable dehydration. These results establish the intrinsic syn dehydration stereochemistry and substrate diastereoselectivity of RifDH10 and highlight the critical role of the natural RifACP10 domain in chaperoning the proper recognition and processing of the natural ACP-bound undecaketide substrate. The 1.82 Å resolution structure of RifDH10 reveals the atomic-resolution details of the active site and allows modeling of the syn dehydration of the (2S,3S)-2-methyl-3-hydroxyacyl-RifACP10 substrate. These results suggest that generation of the characteristic cis double bond of the rifamycins occurs after formation of the full-length RifACP10-bound acyclic trans-unsaturated undecaketide intermediate, most likely during the subsequent macrolactamization catalyzed by the amide synthase RifF.
Collapse
Affiliation(s)
- Darren Gay
- Department of Chemistry and Biochemistry, The University of Texas at Austin , 1 University Station A5300, Austin, Texas 78712-0165, United States
| | | | | | | |
Collapse
|
6
|
Crosby J, Crump MP. The structural role of the carrier protein--active controller or passive carrier. Nat Prod Rep 2012; 29:1111-37. [PMID: 22930263 DOI: 10.1039/c2np20062g] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Common to all FASs, PKSs and NRPSs is a remarkable component, the acyl or peptidyl carrier protein (A/PCP). These take the form of small individual proteins in type II systems or discrete folded domains in the multi-domain type I systems and are characterized by a fold consisting of three major α-helices and between 60-100 amino acids. This protein is central to these biosynthetic systems and it must bind and transport a wide variety of functionalized ligands as well as mediate numerous protein-protein interactions, all of which contribute to efficient enzyme turnover. This review covers the structural and biochemical characterization of carrier proteins, as well as assessing their interactions with different ligands, and other synthase components. Finally, their role as an emerging tool in biotechnology is discussed.
Collapse
Affiliation(s)
- John Crosby
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | |
Collapse
|
7
|
Han YH, Liu WZ, Shi YZ, Lu LQ, Xiao SD, Zhang QH. Gene expression profile of Helicobacter pylori in response to growth temperature variation. J Microbiol 2009; 47:455-65. [PMID: 19763420 DOI: 10.1007/s12275-009-0003-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 04/03/2009] [Indexed: 02/07/2023]
Abstract
A Helicobacter pylori whole-genome DNA microarray was constructed to study expression profiles of H. pylori in response to a sudden temperature transfer from 37 degrees C to 20 degrees C. The expression level of the genome at each of four time points (15, 30, 60, and 120 min) after temperature downshift was compared with that just before cold treatment. Globally, 10.2 % (n=167) of the total predicted H. pylori genes (n=1636) represented on the microarray were significantly differentially expressed (p<0.05) over a 120 min period after shift to low temperature. The expression profiles of the differentially expressed genes were grouped, and their expression patterns were validated by quantitative real-time PCR. Up-regulated genes mainly included genes involved in energy metabolism and substance metabolism, cellular processes, protein fate, ribosomal protein genes, and hypothetical protein genes, which indicate the compensational responses of H. pylori to temperature downshift. Those genes play important roles in adaption to temperature downshift of H. pylori. Down-regulation of DNA metabolism genes and cell envelope genes and cellular processes genes may reflect damaged functions under low temperature, which is unfavorable to bacterial infection and propagation. Overall, this time-course study provides new insights into the primary response of H. pylori to a sudden temperature downshift, which allow the bacteria to survive and adapt to the new host environment.
Collapse
Affiliation(s)
- Yue-hua Han
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, P. R. China.
| | | | | | | | | | | |
Collapse
|
8
|
Colizzi F, Recanatini M, Cavalli A. Mechanical features of Plasmodium falciparum acyl carrier protein in the delivery of substrates. J Chem Inf Model 2009; 48:2289-93. [PMID: 19007113 DOI: 10.1021/ci800297v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Acyl Carrier Protein (ACP) is a key element in the biosynthesis of fatty acids being responsible for the acyl group shuttling and delivery within a series of related enzymes. The molecular mechanism of the delivery process is poorly known, and its characterization is essential for in-depth understanding the biosynthetic machinery. A steered molecular dynamics approach has been applied to shed light on the putative delivery pathway, suggesting the small alpha3-helix act as gatekeeper for the transfer process. Preventing the delivery mechanism would be an innovative strategy for the development of pathway-based antimalarial compounds.
Collapse
|
9
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Miernyk JA, Thelen JJ. Biochemical approaches for discovering protein-protein interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:597-609. [PMID: 18269571 DOI: 10.1111/j.1365-313x.2007.03316.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein-protein interactions or protein complexes are integral in nearly all cellular processes, ranging from metabolism to structure. Elucidating both individual protein associations and complex protein interaction networks, while challenging, is an essential goal of functional genomics. For example, discovering interacting partners for a 'protein of unknown function' can provide insight into actual function far beyond what is possible with sequence-based predictions, and provide a platform for future research. Synthetic genetic approaches such as two-hybrid screening often reveal a perplexing array of potential interacting partners for any given target protein. It is now known, however, that this type of anonymous screening approach can yield high levels of false-positive results, and therefore putative interactors must be confirmed by independent methods. In vitro biochemical strategies for identifying interacting proteins are varied and time-honored, some being as old as the field of protein chemistry itself. Herein we discuss five biochemical approaches for isolating and characterizing protein-protein interactions in vitro: co-immunoprecipitation, blue native gel electrophoresis, in vitro binding assays, protein cross-linking, and rate-zonal centrifugation. A perspective is provided for each method, and where appropriate specific, trial-tested methods are included.
Collapse
Affiliation(s)
- Jan A Miernyk
- Department of Biochemistry, University of Missouri-Columbia, 109 Christopher S. Bond Life Sciences Center, 1201 E. Rollins St., Columbia, MO 65211, USA
| | | |
Collapse
|
11
|
Zhang L, Liu W, Hu T, Du L, Luo C, Chen K, Shen X, Jiang H. Structural basis for catalytic and inhibitory mechanisms of beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ). J Biol Chem 2007; 283:5370-9. [PMID: 18093984 DOI: 10.1074/jbc.m705566200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Hydroxyacyl-acyl carrier protein dehydratase (FabZ) is an important enzyme for the elongation cycles of both saturated and unsaturated fatty acids biosyntheses in the type II fatty acid biosynthesis system (FAS II) pathway. FabZ has been an essential target for the discovery of compounds effective against pathogenic microbes. In this work, to characterize the catalytic and inhibitory mechanisms of FabZ, the crystal structures of the FabZ of Helicobacter pylori (HpFabZ) and its complexes with two newly discovered inhibitors have been solved. Different from the structures of other bacterial FabZs, HpFabZ contains an extra short two-turn alpha-helix (alpha4) between alpha3 and beta3, which plays an important role in shaping the substrate-binding tunnel. Residue Tyr-100 at the entrance of the tunnel adopts either an open or closed conformation in the crystal structure. The crystal structural characterization, the binding affinity determination, and the enzymatic activity assay of the HpFabZ mutant (Y100A) confirm the importance of Tyr-100 in catalytic activity and substrate binding. Residue Phe-83 at the exit tunnel was also refined in two alternative conformations, leading the tunnel to form an L-shape and U-shape. All these data thus contributed much to understanding the catalytic mechanism of HpFabZ. In addition, the co-crystal structures of HpFabZ with its inhibitors have suggested that the enzymatic activity of HpFabZ could be inhibited either by occupying the entrance of the tunnel or plugging the tunnel to prevent the substrate from accessing the active site. Our study has provided some insights into the catalytic and inhibitory mechanisms of FabZ, thus facilitating antibacterial agent development.
Collapse
Affiliation(s)
- Liang Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang L, Liu W, Xiao J, Hu T, Chen J, Chen K, Jiang H, Shen X. Malonyl-CoA: acyl carrier protein transacylase from Helicobacter pylori: Crystal structure and its interaction with acyl carrier protein. Protein Sci 2007; 16:1184-92. [PMID: 17525466 PMCID: PMC2206670 DOI: 10.1110/ps.072757307] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Malonyl-CoA: acyl carrier protein transacylase (MCAT) is a critical enzyme responsible for the transfer of the malonyl moiety to holo-acyl carrier protein (ACP) forming the malonyl-ACP intermediates in the initiation step of type II fatty acid synthesis (FAS II) in bacteria. MCAT has been considered as an attractive drug target in the discovery of antibacterial agents. In this study, the crystal structure of MCAT from Helicobacter pylori (Hp) at 2.5 angstroms resolution is reported, and the interaction of HpMCAT with HpACP is extensively investigated by using computational docking, GST-pull-down, and surface plasmon resonance (SPR) technology-based assays. The crystal structure results reveal that HpMCAT has a compact folding composed of a large subdomain with a similar core as in alpha/beta hydrolases, and a similar ferredoxin-like small subdomain as in acylphosphatases. The docking result suggests two positively charged areas near the entrance of the active site of HpMCAT as the ACP-binding region. Binding assay research shows that HpMCAT demonstrates a moderately binding ability against HpACP. The solved 3D structure of HpMCAT is expected to supply useful information for the structure-based discovery of novel inhibitors against MCAT, and the quantitative study of HpMCAT interaction with HpACP is hoped to give helpful hints in the understanding of the detailed catalytic mechanisms for HpMCAT.
Collapse
Affiliation(s)
- Liang Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|