1
|
Bedree JK, Bourgeois J, Balani P, Cen L, Hendrickson EL, Kerns KA, Camilli A, McLean JS, Shi W, He X. Identifying essential genes in Schaalia odontolytica using a highly-saturated transposon library. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.604004. [PMID: 39071323 PMCID: PMC11275721 DOI: 10.1101/2024.07.17.604004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The unique epibiotic-parasitic relationship between Nanosynbacter lyticus type strain TM7x, a member of the newly identified Candidate Phyla Radiation, now referred to as Patescibacteria, and its basibiont, Schaalia odontolytica strain XH001 (formerly Actinomyces odontolyticus), require more powerful genetic tools for deeper understanding of the genetic underpinnings that mediate their obligate relationship. Previous studies have mainly characterized the genomic landscape of XH001 during or post TM7x infection through comparative genomic or transcriptomic analyses followed by phenotypic analysis. Comprehensive genetic dissection of the pair is currently cumbersome due to the lack of robust genetic tools in TM7x. However, basic genetic tools are available for XH001 and this study expands the current genetic toolset by developing high-throughput transposon insertion sequencing (Tn-seq). Tn-seq was employed to screen for essential genes in XH001 under laboratory conditions. A highly saturated Tn-seq library was generated with nearly 660,000 unique insertion mutations, averaging one insertion every 2-3 nucleotides. 203 genes, 10.5% of the XH001 genome, were identified as putatively essential.
Collapse
Affiliation(s)
- Joseph K Bedree
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California-Los Angeles, Los Angeles, CA, 90095
- Department of Microbiology, The ADA Forsyth Institute; Cambridge, MA, 02142
| | - Jacob Bourgeois
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Pooja Balani
- Department of Microbiology, The ADA Forsyth Institute; Cambridge, MA, 02142
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Lujia Cen
- Department of Microbiology, The ADA Forsyth Institute; Cambridge, MA, 02142
| | - Erik L Hendrickson
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA, 98195
| | - Kristopher A Kerns
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA, 98195
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Jeffrey S McLean
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA, 98195
| | - Wenyuan Shi
- Department of Microbiology, The ADA Forsyth Institute; Cambridge, MA, 02142
| | - Xuesong He
- Department of Microbiology, The ADA Forsyth Institute; Cambridge, MA, 02142
| |
Collapse
|
2
|
Song C, Liu R, Yin D, Xie C, Liang Y, Yang D, Jiang M, Zhang H, Shen N. A Comparative Transcriptome Analysis Unveils the Mechanisms of Response in Feather Degradation by Pseudomonas aeruginosa Gxun-7. Microorganisms 2024; 12:841. [PMID: 38674785 PMCID: PMC11052024 DOI: 10.3390/microorganisms12040841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Microbial degradation of feathers offers potential for bioremediation, yet the microbial response mechanisms warrant additional investigation. In prior work, Pseudomonas aeruginosa Gxun-7, which demonstrated robust degradation of feathers at elevated concentrations, was isolated. However, the molecular mechanism of this degradation remains only partially understood. To investigate this, we used RNA sequencing (RNA-seq) to examine the genes that were expressed differentially in P. aeruginosa Gxun-7 when exposed to 25 g/L of feather substrate. The RNA-seq analysis identified 5571 differentially expressed genes; of these, 795 were upregulated and 603 were downregulated. Upregulated genes primarily participated in proteolysis, amino acid, and pyruvate metabolism. Genes encoding proteases, as well as those involved in sulfur metabolism, phenazine synthesis, and type VI secretion systems, were notably elevated, highlighting their crucial function in feather decomposition. Integration of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) taxonomies, combined with a review of the literature, led us to propose that metabolic feather degradation involves environmental activation, reducing agent secretion, protease release, peptide/amino acid uptake, and metabolic processes. Sulfite has emerged as a critical activator of keratinase catalysis, while cysteine serves as a regulatory mediator. qRT-PCR assay results for 11 selected gene subset corroborated the RNA-seq findings. This study enhances our understanding of the transcriptomic responses of P. aeruginosa Gxun-7 to feather degradation and offers insights into potential degradation mechanisms, thereby aiding in the formulation of effective feather waste management strategies in poultry farming.
Collapse
Affiliation(s)
- Chaodong Song
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Rui Liu
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Doudou Yin
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Chenjie Xie
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Ying Liang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, No. 98, Daxue Road, Nanning 530007, China;
| | - Mingguo Jiang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Hongyan Zhang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Naikun Shen
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| |
Collapse
|
3
|
Iron–Sulfur Clusters toward Stresses: Implication for Understanding and Fighting Tuberculosis. INORGANICS 2022. [DOI: 10.3390/inorganics10100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) remains the leading cause of death due to a single pathogen, accounting for 1.5 million deaths annually on the global level. Mycobacterium tuberculosis, the causative agent of TB, is persistently exposed to stresses such as reactive oxygen species (ROS), reactive nitrogen species (RNS), acidic conditions, starvation, and hypoxic conditions, all contributing toward inhibiting bacterial proliferation and survival. Iron–sulfur (Fe-S) clusters, which are among the most ancient protein prosthetic groups, are good targets for ROS and RNS, and are susceptible to Fe starvation. Mtb holds Fe-S containing proteins involved in essential biological process for Mtb. Fe-S cluster assembly is achieved via complex protein machineries. Many organisms contain several Fe-S assembly systems, while the SUF system is the only one in some pathogens such as Mtb. The essentiality of the SUF machinery and its functionality under the stress conditions encountered by Mtb underlines how it constitutes an attractive target for the development of novel anti-TB.
Collapse
|
4
|
Li ZW, Liang S, Ke Y, Deng JJ, Zhang MS, Lu DL, Li JZ, Luo XC. The feather degradation mechanisms of a new Streptomyces sp. isolate SCUT-3. Commun Biol 2020; 3:191. [PMID: 32332852 PMCID: PMC7181669 DOI: 10.1038/s42003-020-0918-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/30/2020] [Indexed: 01/08/2023] Open
Abstract
Feather waste is the highest protein-containing resource in nature and is poorly reused. Bioconversion is widely accepted as a low-cost and environmentally benign process, but limited by the availability of safe and highly efficient feather degrading bacteria (FDB) for its industrial-scale fermentation. Excessive focuses on keratinase and limited knowledge of other factors have hindered complete understanding of the mechanisms employed by FDB to utilize feathers and feather cycling in the biosphere. Streptomyces sp. SCUT-3 can efficiently degrade feather to products with high amino acid content, useful as a nutrition source for animals, plants and microorganisms. Using multiple omics and other techniques, we reveal how SCUT-3 turns on its feather utilization machinery, including its colonization, reducing agent and protease secretion, peptide/amino acid importation and metabolism, oxygen consumption and iron uptake, spore formation and resuscitation, and so on. This study would shed light on the feather utilization mechanisms of FDBs. Li et a. report a new Streptromyces isolate, SCUT-3 which can efficiently degrade feather into products with high amino acid content, useful as feed for plants, animals and microbes. Using multiple omics and other techniques, they report how SCUT-3 turns on its feather utilization machinery and suggest a number of expressed genes most likely implicated in feather degradation.
Collapse
Affiliation(s)
- Zhi-Wei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Shuang Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Ye Ke
- Yingdong College of Life Sciences, Shaoguan University, Shaoguan, Guangdong, P. R. China
| | - Jun-Jin Deng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Ming-Shu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - De-Lin Lu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Jia-Zhou Li
- Zhanjiang Ocean Sciences and Technologies Research Co. LTD, Zhanjiang, Guangdong, P. R. China
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
5
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out multiple functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters with small/redox-active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial reprogramming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances: Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high-resolution structural data. Although this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
6
|
Bush MJ. The actinobacterial WhiB-like (Wbl) family of transcription factors. Mol Microbiol 2018; 110:663-676. [PMID: 30179278 PMCID: PMC6282962 DOI: 10.1111/mmi.14117] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023]
Abstract
The WhiB‐like (Wbl) family of proteins are exclusively found in Actinobacteria. Wbls have been shown to play key roles in virulence and antibiotic resistance in Mycobacteria and Corynebacteria, reflecting their importance during infection by the human pathogens Mycobacterium tuberculosis, Mycobacterium leprae and Corynebacterium diphtheriae. In the antibiotic‐producing Streptomyces, several Wbls have important roles in the regulation of morphological differentiation, including WhiB, a protein that controls the initiation of sporulation septation and the founding member of the Wbl family. In recent years, genome sequencing has revealed the prevalence of Wbl paralogues in species throughout the Actinobacteria. Wbl proteins are small (generally ~80–140 residues) and each contains four invariant cysteine residues that bind an O2‐ and NO‐sensitive [4Fe–4S] cluster, raising the question as to how they can maintain distinct cellular functions within a given species. Despite their discovery over 25 years ago, the Wbl protein family has largely remained enigmatic. Here I summarise recent research in Mycobacteria, Corynebacteria and Streptomyces that sheds light on the biochemical function of Wbls as transcription factors and as potential sensors of O2 and NO. I suggest that Wbl evolution has created diversity in protein–protein interactions, [4Fe–4S] cluster‐sensitivity and the ability to bind DNA.
Collapse
Affiliation(s)
- Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
7
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out a wide range of functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters towards small/redox active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial re-programming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances. Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high resolution structural data. Though this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry , University of East Anglia , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| | - Nick E Le Brun
- University of East Anglia, School of Chemistry , University plain , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| |
Collapse
|
8
|
Chim N, Johnson PM, Goulding CW. Insights into redox sensing metalloproteins in Mycobacterium tuberculosis. J Inorg Biochem 2014; 133:118-26. [PMID: 24314844 PMCID: PMC3959581 DOI: 10.1016/j.jinorgbio.2013.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis, the pathogen that causes tuberculosis, has evolved sophisticated mechanisms for evading assault by the human host. This review focuses on M. tuberculosis regulatory metalloproteins that are sensitive to exogenous stresses attributed to changes in the levels of gaseous molecules (i.e., molecular oxygen, carbon monoxide and nitric oxide) to elicit an intracellular response. In particular, we highlight recent developments on the subfamily of Whi proteins, redox sensing WhiB-like proteins that contain iron-sulfur clusters, sigma factors and their cognate anti-sigma factors of which some are zinc-regulated, and the dormancy survival regulon DosS/DosT-DosR heme sensory system. Mounting experimental evidence suggests that these systems contribute to a highly complex and interrelated regulatory network that controls M. tuberculosis biology. This review concludes with a discussion of strategies that M. tuberculosis has developed to maintain redox homeostasis, including mechanisms to regulate endogenous nitric oxide and carbon monoxide levels.
Collapse
Affiliation(s)
- Nicholas Chim
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA
| | - Parker M Johnson
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, UCI, Irvine, CA 92697, USA.
| |
Collapse
|
9
|
Raju RM, Jedrychowski MP, Wei JR, Pinkham JT, Park AS, O'Brien K, Rehren G, Schnappinger D, Gygi SP, Rubin EJ. Post-translational regulation via Clp protease is critical for survival of Mycobacterium tuberculosis. PLoS Pathog 2014; 10:e1003994. [PMID: 24603869 PMCID: PMC3946367 DOI: 10.1371/journal.ppat.1003994] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 01/29/2014] [Indexed: 01/22/2023] Open
Abstract
Unlike most bacterial species, Mycobacterium tuberculosis depends on the Clp proteolysis system for survival even in in vitro conditions. We hypothesized that Clp is required for the physiologic turnover of mycobacterial proteins whose accumulation is deleterious to bacterial growth and survival. To identify cellular substrates, we employed quantitative proteomics and transcriptomics to identify the set of proteins that accumulated upon the loss of functional Clp protease. Among the set of potential Clp substrates uncovered, we were able to unambiguously identify WhiB1, an essential transcriptional repressor capable of auto-repression, as a substrate of the mycobacterial Clp protease. Dysregulation of WhiB1 turnover had a toxic effect that was not rescued by repression of whiB1 transcription. Thus, under normal growth conditions, Clp protease is the predominant regulatory check on the levels of potentially toxic cellular proteins. Our findings add to the growing evidence of how post-translational regulation plays a critical role in the regulation of bacterial physiology.
Collapse
Affiliation(s)
- Ravikiran M. Raju
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Mark P. Jedrychowski
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jun-Rong Wei
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Jessica T. Pinkham
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Annie S. Park
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Kathryn O'Brien
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - German Rehren
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Bhat SA, Singh N, Trivedi A, Kansal P, Gupta P, Kumar A. The mechanism of redox sensing in Mycobacterium tuberculosis. Free Radic Biol Med 2012; 53:1625-41. [PMID: 22921590 DOI: 10.1016/j.freeradbiomed.2012.08.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/03/2012] [Accepted: 08/03/2012] [Indexed: 12/25/2022]
Abstract
Tuberculosis epidemics have defied constraint despite the availability of effective treatment for the past half-century. Mycobacterium tuberculosis, the causative agent of TB, is continually exposed to a number of redox stressors during its pathogenic cycle. The mechanisms used by Mtb to sense redox stress and to maintain redox homeostasis are central to the success of Mtb as a pathogen. Careful analysis of the Mtb genome has revealed that Mtb lacks classical redox sensors such as FNR, FixL, and OxyR. Recent studies, however, have established that Mtb is equipped with various sophisticated redox sensors that can detect diverse types of redox stress, including hypoxia, nitric oxide, carbon monoxide, and the intracellular redox environment. Some of these sensors, such as heme-based DosS and DosT, are unique to mycobacteria, whereas others, such as the WhiB proteins and anti-σ factor RsrA, are unique to actinobacteria. This article provides a comprehensive review of the literature on these redox-sensory modules in the context of TB pathogenesis.
Collapse
Affiliation(s)
- Shabir Ahmad Bhat
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India
| | | | | | | | | | | |
Collapse
|
11
|
Averina OV, Zakharevich NV, Danilenko VN. Identification and characterization of WhiB-like family proteins of the Bifidobacterium genus. Anaerobe 2012; 18:421-9. [DOI: 10.1016/j.anaerobe.2012.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 04/23/2012] [Accepted: 04/27/2012] [Indexed: 11/30/2022]
|
12
|
Barzantny H, Schröder J, Strotmeier J, Fredrich E, Brune I, Tauch A. The transcriptional regulatory network of Corynebacterium jeikeium K411 and its interaction with metabolic routes contributing to human body odor formation. J Biotechnol 2012; 159:235-48. [DOI: 10.1016/j.jbiotec.2012.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/12/2012] [Accepted: 01/17/2012] [Indexed: 01/08/2023]
|
13
|
Saini V, Farhana A, Steyn AJC. Mycobacterium tuberculosis WhiB3: a novel iron-sulfur cluster protein that regulates redox homeostasis and virulence. Antioxid Redox Signal 2012; 16:687-97. [PMID: 22010944 PMCID: PMC3277930 DOI: 10.1089/ars.2011.4341] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
SIGNIFICANCE Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), can persist in a latent state for decades without causing overt disease. Since latent Mtb is refractory to current antimycobacterial drugs, the discovery and characterization of the biological mechanisms controlling the entry, maintenance, and emergence from latent infection is critical to the development of novel clinical therapies. RECENT ADVANCES Recently, Mtb WhiB3, a member of the family of intracellular iron-sulfur (Fe-S) cluster proteins has emerged as a redox sensor and effector molecule controlling several aspects of Mtb virulence. WhiB3 was shown to contain a 4Fe-4S cluster that specifically reacts with important host gases (O(2) and NO), and exogenous and endogenous metabolic signals to maintain redox balance. Notably, the concept of reductive stress emerged from studies on WhiB3. CRITICAL ISSUES The detailed mechanism of how WhiB3 functions as an intracellular redox sensor is unknown. Sustaining Mtb redox balance is particularly important since the bacilli encounter a large number of redox stressors during infection, and because several antimycobacterial prodrugs are effective only upon bioreductive activation in the mycobacterial cytoplasm. FUTURE DIRECTIONS How Mtb WhiB3 monitors its internal and external surroundings and modulates endogenous oxido-reductive pathways which in turn alter Mtb signal transduction, nucleic acid and protein synthesis, and enzymatic activation, is mostly unexplored. Modern expression, metabolomic and proteomic technologies should provide fresh insights into these yet unanswered questions.
Collapse
Affiliation(s)
- Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
14
|
Zheng F, Long Q, Xie J. The Function and Regulatory Network of WhiB and WhiB-Like Protein from Comparative Genomics and Systems Biology Perspectives. Cell Biochem Biophys 2012; 63:103-8. [DOI: 10.1007/s12013-012-9348-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Trivedi A, Singh N, Bhat SA, Gupta P, Kumar A. Redox biology of tuberculosis pathogenesis. Adv Microb Physiol 2012; 60:263-324. [PMID: 22633061 DOI: 10.1016/b978-0-12-398264-3.00004-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most successful human pathogens. Mtb is persistently exposed to numerous oxidoreductive stresses during its pathogenic cycle of infection and transmission. The distinctive ability of Mtb, not only to survive the redox stress manifested by the host but also to use it for synchronizing the metabolic pathways and expression of virulence factors, is central to its success as a pathogen. This review describes the paradigmatic redox and hypoxia sensors employed by Mtb to continuously monitor variations in the intracellular redox state and the surrounding microenvironment. Two component proteins, namely, DosS and DosT, are employed by Mtb to sense changes in oxygen, nitric oxide, and carbon monoxide levels, while WhiB3 and anti-sigma factor RsrA are used to monitor changes in intracellular redox state. Using these and other unidentified redox sensors, Mtb orchestrates its metabolic pathways to survive in nutrient-deficient, acidic, oxidative, nitrosative, and hypoxic environments inside granulomas or infectious lesions. A number of these metabolic pathways are unique to mycobacteria and thus represent potential drug targets. In addition, Mtb employs versatile machinery of the mycothiol and thioredoxin systems to ensure a reductive intracellular environment for optimal functioning of its proteins even upon exposure to oxidative stress. Mtb also utilizes a battery of protective enzymes, such as superoxide dismutase (SOD), catalase (KatG), alkyl hydroperoxidase (AhpC), and peroxiredoxins, to neutralize the redox stress generated by the host immune system. This chapter reviews the current understanding of mechanisms employed by Mtb to sense and neutralize redox stress and their importance in TB pathogenesis and drug development.
Collapse
|
16
|
Park JS, Shin S, Kim ES, Kim P, Kim Y, Lee HS. Identification of SpiA that interacts with Corynebacterium glutamicum WhcA using a two-hybrid system. FEMS Microbiol Lett 2011; 322:8-14. [DOI: 10.1111/j.1574-6968.2011.02318.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
17
|
Farhana A, Guidry L, Srivastava A, Singh A, Hondalus MK, Steyn AJC. Reductive stress in microbes: implications for understanding Mycobacterium tuberculosis disease and persistence. Adv Microb Physiol 2011; 57:43-117. [PMID: 21078441 DOI: 10.1016/b978-0-12-381045-8.00002-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a remarkably successful pathogen that is capable of persisting in host tissues for decades without causing disease. Years after initial infection, the bacilli may resume growth, the outcome of which is active tuberculosis (TB). In order to establish infection, resist host defences and re-emerge, Mtb must coordinate its metabolism with the in vivo environmental conditions and nutrient availability within the primary site of infection, the lung. Maintaining metabolic homeostasis for an intracellular pathogen such as Mtb requires a carefully orchestrated series of oxidation-reduction reactions, which, if unbalanced, generate oxidative or reductive stress. The importance of oxidative stress in microbial pathogenesis has been appreciated and well studied over the past several decades. However, the role of its counterpart, reductive stress, has been largely ignored. Reductive stress is defined as an aberrant increase in reducing equivalents, the magnitude and identity of which is determined by host carbon source utilisation and influenced by the presence of host-generated gases (e.g. NO, CO, O(2) and CO(2)). This increased reductive power must be dissipated for bacterial survival. To recycle reducing equivalents, microbes have evolved unique electron 'sinks' that are distinct for their particular environmental niche. In this review, we describe the specific mechanisms that some microbes have evolved to dispel reductive stress. The intention of this review is to introduce the concept of reductive stress, in tuberculosis research in particular, in the hope of stimulating new avenues of investigation.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Microbiology, University of Alabama at Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
18
|
Fowler-Goldsworthy K, Gust B, Mouz S, Chandra G, Findlay KC, Chater KF. The actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2). MICROBIOLOGY-SGM 2011; 157:1312-1328. [PMID: 21330440 DOI: 10.1099/mic.0.047555-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Streptomyces coelicolor A3(2) sporulation gene whiB is the paradigm of a family of genes (wbl, whiB-like) that are confined to actinobacteria. The chromosome of S. coelicolor contains 11 wbl genes, among which five are conserved in many actinobacteria: whiB itself; whiD, a sporulation gene; wblC, which is required for multi-drug resistance; and wblA and wblE, whose roles had previously been little studied. We succeeded in disrupting wblA and the six non-conserved genes, but could not disrupt wblE. Although mutations in the six non-conserved wbl genes (including some multiple wbl mutants) produced no readily detectable phenotype, mutations in wblA had novel and complex effects. The aerial mycelium of wblA mutants was coloured red, because of the ectopic presence of pigmented antibiotics (actinorhodin and undecylprodigiosin) normally confined to lower parts of wild-type colonies, and consisted almost entirely of non-sporulating, thin, straight filaments, often bundled together in a fibrillar matrix. Rare spore chains were also formed, which exhibited wild-type properties but were genetically still wblA mutants. A wblA mutant achieved higher biomass than the wild-type. Microarray analysis indicated major transcriptional changes in a wblA mutant: using a relatively stringent cut-off, 183 genes were overexpressed, including genes for assimilative primary metabolism and actinorhodin biosynthesis, and 103 were underexpressed, including genes associated with stages of aerial hyphal growth. We suggest that WblA is important in both the slow-down of biomass accumulation and the change from aerial hyphal initial cells to the subapical stem and apical compartments that precede sporulation; and that the mutant aerial mycelium consists of recapitulated defective aerial hyphal initial cells.
Collapse
Affiliation(s)
- Kay Fowler-Goldsworthy
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Bertolt Gust
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Sébastien Mouz
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Kim C Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Keith F Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| |
Collapse
|
19
|
Smith LJ, Stapleton MR, Fullstone GJM, Crack JC, Thomson AJ, Le Brun NE, Hunt DM, Harvey E, Adinolfi S, Buxton RS, Green J. Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide-sensitive iron-sulfur cluster. Biochem J 2010; 432:417-27. [PMID: 20929442 PMCID: PMC2992795 DOI: 10.1042/bj20101440] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mycobacterium tuberculosis is a major pathogen that has the ability to establish, and emerge from, a persistent state. Wbl family proteins are associated with developmental processes in actinomycetes, and M. tuberculosis has seven such proteins. In the present study it is shown that the M. tuberculosis H37Rv whiB1 gene is essential. The WhiB1 protein possesses a [4Fe-4S]2+ cluster that is stable in air but reacts rapidly with eight equivalents of nitric oxide to yield two dinuclear dinitrosyl-iron thiol complexes. The [4Fe-4S] form of WhiB1 did not bind whiB1 promoter DNA, but the reduced and oxidized apo-WhiB1, and nitric oxide-treated holo-WhiB1 did bind to DNA. Mycobacterium smegmatis RNA polymerase induced transcription of whiB1 in vitro; however, in the presence of apo-WhiB1, transcription was severely inhibited, irrespective of the presence or absence of the CRP (cAMP receptor protein) Rv3676, which is known to activate whiB1 expression. Footprinting suggested that autorepression of whiB1 is achieved by apo-WhiB1 binding at a region that overlaps the core promoter elements. A model incorporating regulation of whiB1 expression in response to nitric oxide and cAMP is discussed with implications for sensing two important signals in establishing M. tuberculosis infections.
Collapse
Affiliation(s)
- Laura J. Smith
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Melanie R. Stapleton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Gavin J. M. Fullstone
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jason C. Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Andrew J. Thomson
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Debbie M. Hunt
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Evelyn Harvey
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Salvatore Adinolfi
- Division of Molecular Structure, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Roger S. Buxton
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
20
|
Schröder J, Tauch A. Transcriptional regulation of gene expression inCorynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 2010; 34:685-737. [DOI: 10.1111/j.1574-6976.2010.00228.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
21
|
Worrall JAR, Vijgenboom E. Copper mining in Streptomyces: enzymes, natural products and development. Nat Prod Rep 2010; 27:742-56. [DOI: 10.1039/b804465c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Crack JC, den Hengst CD, Jakimowicz P, Subramanian S, Johnson MK, Buttner MJ, Thomson AJ, Le Brun NE. Characterization of [4Fe-4S]-containing and cluster-free forms of Streptomyces WhiD. Biochemistry 2009; 48:12252-64. [PMID: 19954209 PMCID: PMC2815329 DOI: 10.1021/bi901498v] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
WhiD, a member of the WhiB-like (Wbl) family of iron-sulfur proteins found exclusively within the actinomycetes, is required for the late stages of sporulation in Streptomyces coelicolor. Like all other Wbl proteins, WhiD has not so far been purified in a soluble form that contains a significant amount of cluster, and characterization has relied on cluster-reconstituted protein. Thus, a major goal in Wbl research is to obtain and characterize native protein containing iron-sulfur clusters. Here we report the analysis of S. coelicolor WhiD purified anaerobically from Escherichia coli as a soluble protein containing a single [4Fe-4S](2+) cluster ligated by four cysteines. Upon exposure to oxygen, spectral features associated with the [4Fe-4S] cluster were lost in a slow reaction that unusually yielded apo-WhiD directly without significant concentrations of cluster intermediates. This process was found to be highly pH dependent with an optimal stability observed between pH 7.0 and pH 8.0. Low molecular weight thiols, including a mycothiol analogue and thioredoxin, exerted a small but significant protective effect against WhiD cluster loss, an activity that could be of physiological importance. [4Fe-4S](2+) WhiD was found to react much more rapidly with superoxide than with either oxygen or hydrogen peroxide, which may also be of physiological significance. Loss of the [4Fe-4S] cluster to form apoprotein destabilized the protein fold significantly but did not lead to complete unfolding. Finally, apo-WhiD exhibited negligible activity in an insulin-based disulfide reductase assay, demonstrating that it does not function as a general protein disulfide reductase.
Collapse
Affiliation(s)
- Jason C. Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Chris D. den Hengst
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Piotr Jakimowicz
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Sowmya Subramanian
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA, 30602-2556
| | - Michael K. Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA, 30602-2556
| | - Mark J. Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Andrew J. Thomson
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
23
|
Garg S, Alam MS, Bajpai R, Kishan KR, Agrawal P. Redox biology of Mycobacterium tuberculosis H37Rv: protein-protein interaction between GlgB and WhiB1 involves exchange of thiol-disulfide. BMC BIOCHEMISTRY 2009; 10:1. [PMID: 19121228 PMCID: PMC2631452 DOI: 10.1186/1471-2091-10-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 01/05/2009] [Indexed: 12/22/2022]
Abstract
Background Mycobacterium tuberculosis, an intracellular pathogen encounters redox stress throughout its life inside the host. In order to protect itself from the redox onslaughts of host immune system, M. tuberculosis appears to have developed accessory thioredoxin-like proteins which are represented by ORFs encoding WhiB-like proteins. We have earlier reported that WhiB1/Rv3219 is a thioredoxin like protein of M. tuberculosis and functions as a protein disulfide reductase. Generally thioredoxins have many substrate proteins. The current study aims to identify the substrate protein(s) of M. tuberculosis WhiB1. Results Using yeast two-hybrid screen, we identified alpha (1,4)-glucan branching enzyme (GlgB) of M. tuberculosis as a interaction partner of WhiB1. In vitro GST pull down assay confirmed the direct physical interaction between GlgB and WhiB1. Both mass spectrometry data of tryptic digests and in vitro labeling of cysteine residues with 4-acetamido-4' maleimidyl-stilbene-2, 2'-disulfonic acid showed that in GlgB, C95 and C658 are free but C193 and C617 form an intra-molecular disulfide bond. WhiB1 has a C37XXC40 motif thus a C40S mutation renders C37 to exist as a free thiol to form a hetero-disulfide bond with the cysteine residue of substrate protein. A disulfide mediated binary complex formation between GlgB and WhiB1C40S was shown by both in-solution protein-protein interaction and thioredoxin affinity chromatography. Finally, transfer of reducing equivalent from WhiB1 to GlgB disulfide was confirmed by 4-acetamido-4' maleimidyl-stilbene-2, 2'-disulfonic acid trapping by the reduced disulfide of GlgB. Two different thioredoxins, TrxB/Rv1471 and TrxC/Rv3914 of M. tuberculosis could not perform this reaction suggesting that the reduction of GlgB by WhiB1 is specific. Conclusion We conclude that M. tuberculosis GlgB has one intra-molecular disulfide bond which is formed between C193 and C617. WhiB1, a thioredoxin like protein interacts with GlgB and transfers its electrons to the disulfide thus reduces the intra-molecular disulfide bond of GlgB. For the first time, we report that GlgB is one of the in vivo substrate of M. tuberculosis WhiB1.
Collapse
Affiliation(s)
- Saurabh Garg
- Institute of Microbial Technology, CSIR, Sector-39A, Chandigarh 160036, India.
| | | | | | | | | |
Collapse
|
24
|
Choi WW, Park SD, Lee SM, Kim HB, Kim Y, Lee HS. ThewhcAgene plays a negative role in oxidative stress response ofCorynebacterium glutamicum. FEMS Microbiol Lett 2009; 290:32-8. [DOI: 10.1111/j.1574-6968.2008.01398.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 2009; 7:36-49. [DOI: 10.1038/nrmicro1968] [Citation(s) in RCA: 465] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Alam MS, Garg SK, Agrawal P. Studies on structural and functional divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv. FEBS J 2008; 276:76-93. [DOI: 10.1111/j.1742-4658.2008.06755.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Matrix-assisted refolding and redox properties of WhiB3/Rv3416 of Mycobacterium tuberculosis H37Rv. Protein Expr Purif 2008; 61:83-91. [PMID: 18550384 DOI: 10.1016/j.pep.2008.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 04/27/2008] [Indexed: 11/23/2022]
Abstract
Redox stress is one of the major challenges faced by Mycobacterium tuberculosis during early infection and latency. The mechanism of sensing and adaptation to altered redox conditions is poorly understood. whiB family of Mtb is emerging as an important class of stress responsive genes. WhiB3/Rv3416 has been shown to be important for pathogenesis in animal model and was recently shown to co-ordinate a Fe-S cluster. Here, we report a simple, rapid and efficient matrix-assisted refolding method and important redox properties of WhiB3. Similar to other WhiB proteins, WhiB3 also has four conserved cysteine residues, where two of them are present in a CXXC motif. The Fe-S cluster of WhiB3 remained bound in the presence of strong protein denaturant. Upon cluster removal due to oxidation, the four cysteine residues which are ligands of Fe-S cluster, formed two intra-molecular disulfide bridges where one of them is possibly between the cysteines of CXXC motif, an important feature of several thiol-disulfide oxido-reductases. Far-UV CD spectroscopy revealed the presence of both alpha-helices and beta-strands in apo WhiB3. The secondary structural elements of apo WhiB3 were found resistant for thermal denaturation. The results demonstrated that apo WhiB3 functions as a protein disulfide reductase similar to thioredoxins. The importance of WhiB3 in redox sensing and its possible role in mycobacterial physiology has been discussed.
Collapse
|
28
|
den Hengst CD, Buttner MJ. Redox control in actinobacteria. Biochim Biophys Acta Gen Subj 2008; 1780:1201-16. [PMID: 18252205 DOI: 10.1016/j.bbagen.2008.01.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/07/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
As most actinobacteria are obligate aerobes, they have to cope with endogenously generated reactive oxygen species, and actinobacterial pathogens have to resist oxidative attack by phagocytes. Actinobacteria also have to survive long periods under low oxygen tension; for example, Mycobacterium tuberculosis can persist in the host for years under apparently hypoxic conditions in a latent, non-replicative state. Here we focus on the regulatory switches that control actinobacterial responses to peroxide stress, disulfide stress and low oxygen tension. Other unique aspects of their redox biology will be highlighted, including the use of the pseudodisaccharide mycothiol as their major low-molecular-weight thiol buffer, and the [4Fe-4S]-containing WhiB-like proteins, which play diverse, important roles in actinobacterial biology, but whose biochemical role is still controversial.
Collapse
Affiliation(s)
- Chris D den Hengst
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK.
| | | |
Collapse
|
29
|
Alam MS, Garg SK, Agrawal P. Molecular function of WhiB4/Rv3681c of Mycobacterium tuberculosis H37Rv: a [4Fe?4S] cluster co-ordinating protein disulphide reductase. Mol Microbiol 2007; 63:1414-31. [PMID: 17302817 DOI: 10.1111/j.1365-2958.2007.05589.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The genome sequence of Mycobacterium tuberculosis H37Rv revealed the presence of seven whiB-like open reading frames. In spite of several genetic studies on whiB genes, the biochemical properties of WhiB proteins are poorly understood. All WhiB-like proteins have four conserved cysteine residues, out of which two are present in a CXXC motif. We report for the first time the detailed biochemical and biophysical properties of M. tuberculosis WhiB4/Rv3681c and demonstrate the functional relevance of four conserved cysteines and the CXXC motif. UV-visible absorption spectra of freshly purified mWhiB4 showed the presence of a [2Fe-2S] cluster, whereas the electron paramagnetic resonance (EPR) spectra of reconstituted protein showed the presence of a [4Fe-4S] cluster. The iron-sulphur cluster was redox sensitive but stably co-ordinated to the protein even in the presence of high concentration of chaotropic agents. Despite primary sequence divergence from thioredoxin family proteins, the apo mWhiB4 has properties similar to thioredoxins and functions as a protein disulphide reductase, whereas holo mWhiB4 is enzymatically inactive. Apart from the cysteine thiol of CXXC motif the distantly placed thiol pair also contributes equally to the enzymatic activity of mWhiB4. A functional model of mWhiB4 in redox signaling during oxidative stress in M. tuberculosis has been presented.
Collapse
Affiliation(s)
- Md Suhail Alam
- Institute of Microbial Technology, Sector-39A, Chandigarh, 160 036, India
| | | | | |
Collapse
|