1
|
Soares R, Fonseca BM, Nash BW, Paquete CM, Louro RO. A survey of the Desulfuromonadia "cytochromome" provides a glimpse of the unexplored diversity of multiheme cytochromes in nature. BMC Genomics 2024; 25:982. [PMID: 39428470 PMCID: PMC11492766 DOI: 10.1186/s12864-024-10872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Multiheme cytochromes c (MHC) provide prokaryotes with a broad metabolic versatility that contributes to their role in the biogeochemical cycling of the elements and in energy production in bioelectrochemical systems. However, MHC have only been isolated and studied in detail from a limited number of species. Among these, Desulfuromonadia spp. are particularly MHC-rich. To obtain a broad view of the diversity of MHC, we employed bioinformatic tools to study the cytochromome encoded in the genomes of the Desulfuromonadia class. RESULTS We found that the distribution of the MHC families follows a different pattern between the two orders of the Desulfuromonadia class and that there is great diversity in the number of heme-binding motifs in MHC. However, the vast majority of MHC have up to 12 heme-binding motifs. MHC predicted to be extracellular are the least conserved and show high diversity, whereas inner membrane MHC are well conserved and show lower diversity. Although the most prevalent MHC have homologues already characterized, nearly half of the MHC families in the Desulforomonadia class have no known characterized homologues. AlphaFold2 was employed to predict their 3D structures. This provides an atlas of novel MHC, including examples with high beta-sheet content and nanowire MHC with unprecedented high numbers of putative heme cofactors per polypeptide. CONCLUSIONS This work illuminates for the first time the universe of experimentally uncharacterized cytochromes that are likely to contribute to the metabolic versatility and to the fitness of Desulfuromonadia in diverse environmental conditions and to drive biotechnological applications of these organisms.
Collapse
Affiliation(s)
- Ricardo Soares
- Av da República (EAN), Instituto de Tecnologia Química e Bioloógica António Xavier da Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Bruno M Fonseca
- Av da República (EAN), Instituto de Tecnologia Química e Bioloógica António Xavier da Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Benjamin W Nash
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Catarina M Paquete
- Av da República (EAN), Instituto de Tecnologia Química e Bioloógica António Xavier da Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Ricardo O Louro
- Av da República (EAN), Instituto de Tecnologia Química e Bioloógica António Xavier da Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal.
| |
Collapse
|
2
|
Jeuken LJC. Biodegradation of pollutants by exoelectrogenic bacteria is not always performed extracellularly. Environ Microbiol 2022; 24:1835-1837. [PMID: 35199430 PMCID: PMC9305215 DOI: 10.1111/1462-2920.15942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300RA, Leiden, the Netherlands
| |
Collapse
|
3
|
Zhu TT, Cheng ZH, Yu SS, Li WW, Liu DF, Yu HQ. Unexpected role of electron-transfer hub in direct degradation of pollutants by exoelectrogenic bacteria. Environ Microbiol 2022; 24:1838-1848. [PMID: 35170205 DOI: 10.1111/1462-2920.15939] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
Exoelectrogenic bacteria (EEB) are capable of anaerobic respiration with diverse extracellular electron acceptors including insoluble minerals, electrodes and flavins, but the detailed electron transfer pathways and reaction mechanisms remain elusive. Here, we discover that CymA, which is usually considered to solely serve as an inner-membrane electron transfer hub in Shewanella oneidensis MR-1 (a model EEB), might also function as a reductase for direct reducing diverse nitroaromatic compounds (e.g., 2,4-dichloronitrobenzene) and azo dyes. Such a process can be accelerated by dosing anthraquinone-2,6-disulfonate. The CymA-based reduction pathways in S. oneidensis MR-1 for different contaminants could be functionally reconstructed and strengthened in Escherichia coli. The direct reduction of lowly polar contaminants by quinol oxidases like CymA homologs might be universal in diverse microbes. This work offers new insights into the pollutant reduction mechanisms of EEB and unveils a new function of CymA to act as a terminal reductase. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhou-Hua Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Sheng-Song Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.,University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou, 215123, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.,Anhui Key Laboratory of Sewage Purification and Ecological Rehabilitation Materials, Hefei, 230601, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Paquete CM, Rusconi G, Silva AV, Soares R, Louro RO. A brief survey of the "cytochromome". Adv Microb Physiol 2019; 75:69-135. [PMID: 31655743 DOI: 10.1016/bs.ampbs.2019.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Multihaem cytochromes c are widespread in nature where they perform numerous roles in diverse anaerobic metabolic pathways. This is achieved in two ways: multihaem cytochromes c display a remarkable diversity of ways to organize multiple hemes within the protein frame; and the hemes possess an intrinsic reactive versatility derived from diverse spin, redox and coordination states. Here we provide a brief survey of multihaem cytochromes c that have been characterized in the context of their metabolic role. The contribution of multihaem cytochromes c to dissimilatory pathways handling metallic minerals, nitrogen compounds, sulfur compounds, organic compounds and phototrophism are described. This aims to set the stage for the further exploration of the vast unknown "cytochromome" that can be anticipated from genomic databases.
Collapse
|
5
|
Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer. Biotechnol Adv 2018; 36:1815-1827. [PMID: 30196813 DOI: 10.1016/j.biotechadv.2018.07.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 11/21/2022]
Abstract
Redox mediator plays an important role in extracellular electron transfer (EET) in many environments wherein microbial electrocatalysis occurs actively. Because of the block of cell envelope and the low difference of redox potential between the intracellular and extracellular surroundings, the proceeding of EET depends mainly on the help of a variety of mediators that function as an electron carrier or bridge. In this Review, we will summarize a wide range of redox mediators and further discuss their functional mechanisms in EET that drives a series of microbial electrocatalytic reactions. Studying these mediators adds to our knowledge of how charge transport and electrochemical reactions occur at the microorganism-electrode interface. This understanding would promote the widespread applications of microbial electrocatalysis in microbial fuel cells, bioremediation, bioelectrosynthesis, biomining, nanomaterial productions, etc. These improved applications will greatly benefit the sustainable development of the environmental-friendly biochemical industries.
Collapse
|
6
|
Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk. Proc Natl Acad Sci U S A 2014; 111:E5096-104. [PMID: 25385629 DOI: 10.1073/pnas.1413110111] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria play many important roles in animal digestive systems, including the provision of enzymes critical to digestion. Typically, complex communities of bacteria reside in the gut lumen in direct contact with the ingested materials they help to digest. Here, we demonstrate a previously undescribed digestive strategy in the wood-eating marine bivalve Bankia setacea, wherein digestive bacteria are housed in a location remote from the gut. These bivalves, commonly known as shipworms, lack a resident microbiota in the gut compartment where wood is digested but harbor endosymbiotic bacteria within specialized cells in their gills. We show that this comparatively simple bacterial community produces wood-degrading enzymes that are selectively translocated from gill to gut. These enzymes, which include just a small subset of the predicted wood-degrading enzymes encoded in the endosymbiont genomes, accumulate in the gut to the near exclusion of other endosymbiont-made proteins. This strategy of remote enzyme production provides the shipworm with a mechanism to capture liberated sugars from wood without competition from an endogenous gut microbiota. Because only those proteins required for wood digestion are translocated to the gut, this newly described system reveals which of many possible enzymes and enzyme combinations are minimally required for wood degradation. Thus, although it has historically had negative impacts on human welfare, the shipworm digestive process now has the potential to have a positive impact on industries that convert wood and other plant biomass to renewable fuels, fine chemicals, food, feeds, textiles, and paper products.
Collapse
|
7
|
Jin M, Jiang Y, Sun L, Yin J, Fu H, Wu G, Gao H. Unique organizational and functional features of the cytochrome c maturation system in Shewanella oneidensis. PLoS One 2013; 8:e75610. [PMID: 24040415 PMCID: PMC3769277 DOI: 10.1371/journal.pone.0075610] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/16/2013] [Indexed: 11/19/2022] Open
Abstract
Shewanella are renowned for their ability to respire on a wide range of electron acceptors, which has been partially accredited to the presence of a large number of the c-type cytochromes. In the model species S. oneidensis MR-1, at least 41 genes encode c-type cytochromes that are predicted to be intact, thereby likely functional. Previously, in-frame deletion mutants for 36 of these genes were obtained and characterized. In this study, first we completed the construction of an entire set of c-type cytochrome mutants utilizing a newly developed att-based mutagenesis approach, which is more effective and efficient than the approach used previously by circumventing the conventional cloning. Second, we investigated the cytochrome c maturation (Ccm) system in S. oneidensis. There are two loci predicted to encode components of the Ccm system, SO0259-SO0269 and SO0476-SO0478. The former is proven essential for cytochrome c maturation whereas the latter is dispensable. Unlike the single operon organization observed in other γ-proteobacteria, genes at the SO0259-SO0269 locus are uniquely organized into four operons, ccmABCDE, scyA, SO0265, and ccmFGH-SO0269. Functional analysis revealed that the SO0265 gene rather than the scyA and SO0269 genes are relevant to cytochrome c maturation.
Collapse
Affiliation(s)
- Miao Jin
- College of Life Sciences and Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yaoming Jiang
- College of Life Sciences and Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Linlin Sun
- College of Life Sciences and Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhua Yin
- College of Life Sciences and Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huihui Fu
- College of Life Sciences and Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Genfu Wu
- College of Life Sciences and Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haichun Gao
- College of Life Sciences and Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
8
|
McMillan DGG, Marritt SJ, Firer-Sherwood MA, Shi L, Richardson DJ, Evans SD, Elliott SJ, Butt JN, Jeuken LJC. Protein-protein interaction regulates the direction of catalysis and electron transfer in a redox enzyme complex. J Am Chem Soc 2013; 135:10550-6. [PMID: 23799249 PMCID: PMC3823026 DOI: 10.1021/ja405072z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Protein–protein interactions
are well-known to regulate
enzyme activity in cell signaling and metabolism. Here, we show that
protein–protein interactions regulate the activity of a respiratory-chain
enzyme, CymA, by changing the direction or bias of catalysis. CymA,
a member of the widespread NapC/NirT superfamily, is a menaquinol-7
(MQ-7) dehydrogenase that donates electrons to several distinct terminal
reductases in the versatile respiratory network of Shewanella oneidensis. We report the incorporation
of CymA within solid-supported membranes that mimic the inner membrane
architecture of S. oneidensis. Quartz-crystal
microbalance with dissipation (QCM-D) resolved the formation of a
stable complex between CymA and one of its native redox partners,
flavocytochrome c3 (Fcc3) fumarate reductase.
Cyclic voltammetry revealed that CymA alone could only reduce MQ-7,
while the CymA-Fcc3 complex catalyzed the reaction required
to support anaerobic respiration, the oxidation of MQ-7. We propose
that MQ-7 oxidation in CymA is limited by electron transfer to the
hemes and that complex formation with Fcc3 facilitates
the electron-transfer rate along the heme redox chain. These results
reveal a yet unexplored mechanism by which bacteria can regulate multibranched
respiratory networks through protein–protein interactions.
Collapse
Affiliation(s)
- Duncan G G McMillan
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Combined effect of loss of the caa3 oxidase and Crp regulation drives Shewanella to thrive in redox-stratified environments. ISME JOURNAL 2013; 7:1752-63. [PMID: 23575370 DOI: 10.1038/ismej.2013.62] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 11/08/2022]
Abstract
Shewanella species are a group of facultative Gram-negative microorganisms with remarkable respiration abilities that allow the use of a diverse array of terminal electron acceptors (EA). Like most bacteria, S. oneidensis possesses multiple terminal oxidases, including two heme-copper oxidases (caa3- and cbb3-type) and a bd-type quinol oxidase. As aerobic respiration is energetically favored, mechanisms underlying the fact that these microorganisms thrive in redox-stratified environments remain vastly unexplored. In this work, we discovered that the cbb3-type oxidase is the predominant system for respiration of oxygen (O2), especially when O2 is abundant. Under microaerobic conditions, the bd-type quinol oxidase has a significant role in addition to the cbb3-type oxidase. In contrast, multiple lines of evidence suggest that under test conditions the caa3-type oxidase, an analog to the mitochondrial enzyme, has no physiological significance, likely because of its extremely low expression. In addition, expression of both cbb3- and bd-type oxidases is under direct control of Crp (cAMP receptor protein) but not the well-established redox regulator Fnr (fumarate nitrate regulator) of canonical systems typified in Escherichia coli. These data, collectively, suggest that adaptation of S. oneidensis to redox-stratified environments is likely due to functional loss of the caa3-type oxidase and switch of the regulatory system for respiration.
Collapse
|
10
|
Top-Down Characterization of the Post-Translationally Modified Intact Periplasmic Proteome from the Bacterium Novosphingobium aromaticivorans. INTERNATIONAL JOURNAL OF PROTEOMICS 2013; 2013:279590. [PMID: 23555055 PMCID: PMC3608174 DOI: 10.1155/2013/279590] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 11/17/2022]
Abstract
The periplasm of Gram-negative bacteria is a dynamic and physiologically important subcellular compartment where the constant exposure to potential environmental insults amplifies the need for proper protein folding and modifications. Top-down proteomics analysis of the periplasmic fraction at the intact protein level provides unrestricted characterization and annotation of the periplasmic proteome, including the post-translational modifications (PTMs) on these proteins. Here, we used single-dimension ultra-high pressure liquid chromatography coupled with the Fourier transform mass spectrometry (FTMS) to investigate the intact periplasmic proteome of Novosphingobium aromaticivorans. Our top-down analysis provided the confident identification of 55 proteins in the periplasm and characterized their PTMs including signal peptide removal, N-terminal methionine excision, acetylation, glutathionylation, pyroglutamate, and disulfide bond formation. This study provides the first experimental evidence for the expression and periplasmic localization of many hypothetical and uncharacterized proteins and the first unrestrictive, large-scale data on PTMs in the bacterial periplasm.
Collapse
|
11
|
Youngblut M, Judd ET, Srajer V, Sayyed B, Goelzer T, Elliott SJ, Schmidt M, Pacheco AA. Laue crystal structure of Shewanella oneidensis cytochrome c nitrite reductase from a high-yield expression system. J Biol Inorg Chem 2012; 17:647-62. [PMID: 22382353 PMCID: PMC3412176 DOI: 10.1007/s00775-012-0885-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
The high-yield expression and purification of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR) and its characterization by a variety of methods, notably Laue crystallography, are reported. A key component of the expression system is an artificial ccNiR gene in which the N-terminal signal peptide from the highly expressed S. oneidensis protein "small tetraheme c" replaces the wild-type signal peptide. This gene, inserted into the plasmid pHSG298 and expressed in S. oneidensis TSP-1 strain, generated approximately 20 mg crude ccNiR per liter of culture, compared with 0.5-1 mg/L for untransformed cells. Purified ccNiR has nitrite and hydroxylamine reductase activities comparable to those previously reported for Escherichia coli ccNiR, and is stable for over 2 weeks in pH 7 solution at 4 °C. UV/vis spectropotentiometric titrations and protein film voltammetry identified five independent one-electron reduction processes. Global analysis of the spectropotentiometric data also allowed determination of the extinction coefficient spectra for the five reduced ccNiR species. The characteristics of the individual extinction coefficient spectra suggest that, within each reduced species, the electrons are distributed among the various hemes, rather than being localized on specific heme centers. The purified ccNiR yielded good-quality crystals, with which the 2.59-Å-resolution structure was solved at room temperature using the Laue diffraction method. The structure is similar to that of E. coli ccNiR, except in the region where the enzyme interacts with its physiological electron donor (CymA in the case of S. oneidensis ccNiR, NrfB in the case of the E. coli protein).
Collapse
Affiliation(s)
- Matthew Youngblut
- Department of Chemistry and Biochemistry, 3210 N. Cramer St, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Evan T. Judd
- Department of Chemistry, 590 Commonwealth Ave., Boston, MA 02215
| | - Vukica Srajer
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Bilal Sayyed
- Department of Chemistry and Biochemistry, 3210 N. Cramer St, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Tyler Goelzer
- Department of Chemistry and Biochemistry, 3210 N. Cramer St, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Sean J. Elliott
- Department of Chemistry, 590 Commonwealth Ave., Boston, MA 02215
| | - Marius Schmidt
- Department of Physics, 1900 E. Kenwood Blvd, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - A. Andrew Pacheco
- Department of Chemistry and Biochemistry, 3210 N. Cramer St, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| |
Collapse
|
12
|
Fonseca BM, Tien M, Rivera M, Shi L, Louro RO. Efficient and selective isotopic labeling of hemes to facilitate the study of multiheme proteins. Biotechniques 2012; 52:000113859. [PMID: 26307249 DOI: 10.2144/000113859] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 04/02/2012] [Indexed: 11/23/2022] Open
Abstract
Specific isotopic labeling of hemes provides a unique opportunity to characterize the structure and function of heme-proteins. Unfortunately, current methods do not allow efficient labeling in high yields of multiheme cytochromes c, which are of great biotechnological interest. Here, a method for production of recombinant multiheme cytochromes c in Escherichia coli with isotopically labeled hemes is reported. A small tetraheme cytochrome of 12 kDa from Shewanella oneidensis MR-1 was used to demonstrate the method, achieving a production of 4 mg pure protein per liter. This method achieves, in a single step, efficient expression and incorporation of hemes isotopically labeled in specific atom positions adequate for spectroscopic characterization of these complex heme proteins. It is, furthermore, of general application to heme proteins, opening new possibilities for the characterization of this important class of proteins.
Collapse
Affiliation(s)
- Bruno M Fonseca
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ming Tien
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Mario Rivera
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Liang Shi
- Microbiology Group, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
13
|
Pulcu GS, Frato KE, Gupta R, Hsu HR, Levine GA, Hendrich MP, Elliott SJ. The diheme cytochrome c peroxidase from Shewanella oneidensis requires reductive activation. Biochemistry 2012; 51:974-85. [PMID: 22239664 DOI: 10.1021/bi201135s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the characterization of the diheme cytochrome c peroxidase (CcP) from Shewanella oneidensis (So) using UV-visible absorbance, electron paramagnetic resonance spectroscopy, and Michaelis-Menten kinetics. While sequence alignment with other bacterial diheme cytochrome c peroxidases suggests that So CcP may be active in the as-isolated state, we find that So CcP requires reductive activation for full activity, similar to the case for the canonical Pseudomonas type of bacterial CcP enzyme. Peroxide turnover initiated with oxidized So CcP shows a distinct lag phase, which we interpret as reductive activation in situ. A simple kinetic model is sufficient to recapitulate the lag-phase behavior of the progress curves and separate the contributions of reductive activation and peroxide turnover. The rates of catalysis and activation differ between MBP fusion and tag-free So CcP and also depend on the identity of the electron donor. Combined with Michaelis-Menten analysis, these data suggest that So CcP can accommodate electron donor binding in several possible orientations and that the presence of the MBP tag affects the availability of certain binding sites. To further investigate the structural basis of reductive activation in So CcP, we introduced mutations into two different regions of the protein that have been suggested to be important for reductive activation in homologous bacterial CcPs. Mutations in a flexible loop region neighboring the low-potential heme significantly increased the activation rate, confirming the importance of flexible loop regions of the protein in converting the inactive, as-isolated enzyme into the activated form.
Collapse
Affiliation(s)
- Gökçe Su Pulcu
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | | | | | | | | | | | | |
Collapse
|
14
|
Fonseca BM, Paquete CM, Salgueiro CA, Louro RO. The role of intramolecular interactions in the functional control of multiheme cytochromes c. FEBS Lett 2011; 586:504-9. [PMID: 21856299 DOI: 10.1016/j.febslet.2011.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
Detailed thermodynamic and structural data measured in soluble monomeric multiheme cytochromes c provided the basis to investigate the functional significance of interactions between redox co-factors. The steep decay of intramolecular interactions with distance means that close proximity of the redox centers is necessary to modulate the intrinsic reduction potentials in a significant way. This ensures selection of specific populations during redox activity in addition to maintaining fast intramolecular electron transfer. Therefore, intramolecular interactions between redox co-factors play an important role in establishing the biological function of the protein by controlling how electrons flow through and are distributed among the co-factors.
Collapse
Affiliation(s)
- Bruno M Fonseca
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | | | | | | |
Collapse
|
15
|
Abstract
Answering questions about proteins' structures and functions in the new era of systems biology and genomics requires the development of new methods for heterologous production of numerous proteins from newly sequenced genomes. Cytochromes c - electron transfer proteins carrying one or more hemes covalently bound to the polypeptide chain - are one of the most recalcitrant classes of proteins with respect to heterologous expression because post-translational incorporation of hemes is required for proper folding and stability. However, significant advances in expression of recombinant cytochromes c have been made during the last decade. It has been shown that a single gene cluster, ccmA-H, is responsible for cytochrome c maturation in Escherichia coli under anaerobic conditions and that constitutive co-expression of this cluster under aerobic conditions is sufficient to provide heme incorporation in many different types of cytochromes c, regardless of their origin, as long as the nascent polypeptide is translocated to the periplasm. Using conditions that result in sub-maximal protein induction can dramatically increase the yield of mature protein. The intrinsic peroxidase activity of hemes can be used as a highly selective and sensitive detection method of mature cytochromes in samples resolved by gel electrophoresis.
Collapse
|
16
|
Alves AS, Paquete CM, Fonseca BM, Louro RO. Exploration of the ‘cytochromome’ of Desulfuromonas acetoxidans, a marine bacterium capable of powering microbial fuel cells. Metallomics 2011; 3:349-53. [DOI: 10.1039/c0mt00084a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Abstract
Engineering efficient, directional electronic communication between living and nonliving systems has the potential to combine the unique characteristics of both materials for advanced biotechnological applications. However, the cell membrane is designed by nature to be an insulator, restricting the flow of charged species; therefore, introducing a biocompatible pathway for transferring electrons across the membrane without disrupting the cell is a significant challenge. Here we describe a genetic strategy to move intracellular electrons to an inorganic extracellular acceptor along a molecularly defined route. To do so, we reconstitute a portion of the extracellular electron transfer chain of Shewanella oneidensis MR-1 into the model microbe Escherichia coli. This engineered E. coli can reduce metal ions and solid metal oxides ∼8× and ∼4× faster than its parental strain. We also find that metal oxide reduction is more efficient when the extracellular electron acceptor has nanoscale dimensions. This work demonstrates that a genetic cassette can create a conduit for electronic communication from living cells to inorganic materials, and it highlights the importance of matching the size scale of the protein donors to inorganic acceptors.
Collapse
|
18
|
Zerbs S, Frank AM, Collart FR. Bacterial systems for production of heterologous proteins. Methods Enzymol 2009; 463:149-68. [PMID: 19892172 DOI: 10.1016/s0076-6879(09)63012-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Proteins are the working molecules of all biological systems and participate in a majority of cellular chemical reactions and biological processes. Knowledge of the properties and function of these molecules is central to an understanding of chemical and biological processes. In this context, purified proteins are a starting point for biophysical and biochemical characterization methods that can assist in the elucidation of function. The challenge for production of proteins at the scale and quality required for experimental, therapeutic and commercial applications has led to the development of a diverse set of methods for heterologous protein production. Bacterial expression systems are commonly used for protein production as these systems provide an economical route for protein production and require minimal technical expertise to establish a laboratory protein production system.
Collapse
Affiliation(s)
- Sarah Zerbs
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, USA
| | | | | |
Collapse
|