1
|
You Y, Kong H, Li C, Gu Z, Ban X, Li Z. Carbohydrate binding modules: Compact yet potent accessories in the specific substrate binding and performance evolution of carbohydrate-active enzymes. Biotechnol Adv 2024; 73:108365. [PMID: 38677391 DOI: 10.1016/j.biotechadv.2024.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Carbohydrate binding modules (CBMs) are independent non-catalytic domains widely found in carbohydrate-active enzymes (CAZymes), and they play an essential role in the substrate binding process of CAZymes by guiding the appended catalytic modules to the target substrates. Owing to their precise recognition and selective affinity for different substrates, CBMs have received increasing research attention over the past few decades. To date, CBMs from different origins have formed a large number of families that show a variety of substrate types, structural features, and ligand recognition mechanisms. Moreover, through the modification of specific sites of CBMs and the fusion of heterologous CBMs with catalytic domains, improved enzymatic properties and catalytic patterns of numerous CAZymes have been achieved. Based on cutting-edge technologies in computational biology, gene editing, and protein engineering, CBMs as auxiliary components have become portable and efficient tools for the evolution and application of CAZymes. With the aim to provide a theoretical reference for the functional research, rational design, and targeted utilization of novel CBMs in the future, we systematically reviewed the function-related characteristics and potentials of CAZyme-derived CBMs in this review, including substrate recognition and binding mechanisms, non-catalytic contributions to enzyme performances, module modifications, and innovative applications in various fields.
Collapse
Affiliation(s)
- Yuxian You
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
2
|
Ben Guerrero E, Soria M, Salvador R, Ceja-Navarro JA, Campos E, Brodie EL, Talia P. Effect of Different Lignocellulosic Diets on Bacterial Microbiota and Hydrolytic Enzyme Activities in the Gut of the Cotton Boll Weevil ( Anthonomus grandis). Front Microbiol 2016; 7:2093. [PMID: 28082962 PMCID: PMC5186755 DOI: 10.3389/fmicb.2016.02093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/09/2016] [Indexed: 11/13/2022] Open
Abstract
Cotton boll weevils, Anthonomus grandis, are omnivorous coleopteran that can feed on diets with different compositions, including recalcitrant lignocellulosic materials. We characterized the changes in the prokaryotic community structure and the hydrolytic activities of A. grandis larvae fed on different lignocellulosic diets. A. grandis larvae were fed on three different artificial diets: cottonseed meal (CM), Napier grass (NG) and corn stover (CS). Total DNA was extracted from the gut samples for amplification and sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. Proteobacteria and Firmicutes dominated the gut microbiota followed by Actinobacteria, Spirochaetes and a small number of unclassified phyla in CM and NG microbiomes. In the CS feeding group, members of Spirochaetes were the most prevalent, followed by Proteobacteria and Firmicutes. Bray-Curtis distances showed that the samples from the CS community were clearly separated from those samples of the CM and NG diets. Gut extracts from all three diets exhibited endoglucanase, xylanase, β-glucosidase and pectinase activities. These activities were significantly affected by pH and temperature across different diets. We observed that the larvae reared on a CM showed significantly higher activities than larvae reared on NG and CS. We demonstrated that the intestinal bacterial community structure varies depending on diet composition. Diets with more variable and complex compositions, such as CS, showed higher bacterial diversity and richness than the two other diets. In spite of the detected changes in composition and diversity, we identified a core microbiome shared between the three different lignocellulosic diets. These results suggest that feeding with diets of different lignocellulosic composition could be a viable strategy to discover variants of hemicellulose and cellulose breakdown systems.
Collapse
Affiliation(s)
- Emiliano Ben Guerrero
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Centro Nacional de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria Castelar Hurlingham, Argentina
| | - Marcelo Soria
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales-Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Ricardo Salvador
- Instituto de Microbiología y Zoología Agrícola, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Centro Nacional de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria Castelar Hurlingham, Argentina
| | - Javier A Ceja-Navarro
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Eleonora Campos
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Centro Nacional de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria CastelarHurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos Aires, Argentina
| | - Eoin L Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Paola Talia
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Centro Nacional de Investigaciones Agropecuarias - Instituto Nacional de Tecnología Agropecuaria CastelarHurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos Aires, Argentina
| |
Collapse
|
3
|
Lim S, Chundawat SP, Fox BG. Expression, purification and characterization of a functional carbohydrate-binding module from Streptomyces sp. SirexAA-E. Protein Expr Purif 2014; 98:1-9. [DOI: 10.1016/j.pep.2014.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/23/2014] [Accepted: 02/25/2014] [Indexed: 11/25/2022]
|
4
|
Talia P, Sede SM, Campos E, Rorig M, Principi D, Tosto D, Hopp HE, Grasso D, Cataldi A. Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes. Res Microbiol 2011; 163:221-32. [PMID: 22202170 DOI: 10.1016/j.resmic.2011.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 11/25/2011] [Indexed: 12/21/2022]
Abstract
Sequence analysis of the 16S ribosomal RNA gene was used to study bacterial diversity of a pristine forest soil and of two cultures of the same soil enriched with cellulolytic bacteria. Our analysis revealed high bacterial diversity in the native soil sample, evidencing at least 10 phyla, in which Actinobacteria, Proteobacteria and Acidobacteria accounted for more than 76% of all sequences. In both enriched samples, members of Proteobacteria were the most frequently represented. The majority of bacterial genera in both enriched samples were identified as Brevundimonas and Caulobacter, but members of Devosia, Sphingomonas, Variovorax, Acidovorax, Pseudomonas, Xanthomonas, Stenotrophomonas, Achromobacter and Delftia were also found. In addition, it was possible to identify cellulolytic taxa such as Acidothermus, Micromonospora, Streptomyces, Paenibacillus and Pseudomonas, which indicates that this ecosystem could be an attractive source for study of novel enzymes for cellulose degradation.
Collapse
Affiliation(s)
- Paola Talia
- Instituto de Biotecnología, CICVyA, CNIA, INTA Castelar, Dr. N. Repetto y Los Reseros s/n, 1686 Hurlingham, Provincia de Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Yin LJ, Huang PS, Lin HH. Isolation of cellulase-producing bacteria and characterization of the cellulase from the isolated bacterium Cellulomonas sp. YJ5. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:9833-9837. [PMID: 20687562 DOI: 10.1021/jf1019104] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A cellulase-producing bacterium was isolated from soil and identified as Cellulomonas sp. YJ5. Maximal cellulase activity was obtained after 48 h of incubation at 30 degrees C in a medium containing 1.0% carboxymethyl cellulose (CMC), 1.0% algae powder, 1.0% peptone, 0.24% (NH4)2SO4, 0.20% K2HPO4, and 0.03% MgSO(4).7H2O. The cellulase was purified after Sephacryl S-100 chromatography twice with a recovery of 27.9% and purification fold of 17.5. It was, with N-terminal amino acids of AGTKTPVAK, stable at pH 7.5-10.5 and 20-50 degrees C with optimal pH and temperature of 7.0 and 60 degrees C, respectively. Cu2+, Fe2+, Hg2+, Cr3+, and SDS highly inhibited, but cysteine and beta-mercaptoethanol activated, its activity. Substrate specificity indicated it to be an endo-beta-1,4-glucanase.
Collapse
Affiliation(s)
- Li-Jung Yin
- Department of Sea Food Science, National Kaohsiung Marine University, No. 142 Hai-Chuan Road, Nan-Tzu, Kaohsiung 81143, Taiwan.
| | | | | |
Collapse
|