1
|
Burgess RR. What is in the black box? The discovery of the sigma factor and the subunit structure of E. coli RNA polymerase. J Biol Chem 2021; 297:101310. [PMID: 34673029 PMCID: PMC8569590 DOI: 10.1016/j.jbc.2021.101310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/24/2022] Open
Abstract
This Reflections article is focused on the 5 years while I was a graduate student (1964-1969). During this period, I made some of the most significant discoveries of my career. I have written this article primarily for a protein biochemistry audience, my colleagues who shared this exciting time in science, and the many scientists over the last 50 years who have contributed to our knowledge of transcriptional machinery and their regulation. It is also written for today's graduate students, postdocs, and scientists who may not know much about the discoveries and technical advances that are now taken for granted, to show that even with methods primitive by today's standards, we were still able to make foundational advances. I also hope to provide a glimpse into how fortunate I was to be a graduate student over 50 years ago in the golden age of molecular biology.
Collapse
Affiliation(s)
- Richard R Burgess
- James D. Watson Professor Emeritus of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
2
|
Berry SM, Pezzi HM, LaVanway AJ, Guckenberger D, Anderson M, Beebe DJ. AirJump: Using Interfaces to Instantly Perform Simultaneous Extractions. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15040-5. [PMID: 27249333 PMCID: PMC5058634 DOI: 10.1021/acsami.6b02555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Analyte isolation is an important process that spans a range of biomedical disciplines, including diagnostics, research, and forensics. While downstream analytical techniques have advanced in terms of both capability and throughput, analyte isolation technology has lagged behind, increasingly becoming the bottleneck in these processes. Thus, there exists a need for simple, fast, and easy to integrate analyte separation protocols to alleviate this bottleneck. Recently, a new class of technologies has emerged that leverages the movement of paramagnetic particle (PMP)-bound analytes through phase barriers to achieve a high efficiency separation in a single or a few steps. Specifically, the passage of a PMP/analyte aggregate through a phase interface (aqueous/air in this case) acts to efficiently "exclude" unbound (contaminant) material from PMP-bound analytes with higher efficiency than traditional washing-based solid-phase extraction (SPE) protocols (i.e., bind, wash several times, elute). Here, we describe for the first time a new type of "exclusion-based" sample preparation, which we term "AirJump". Upon realizing that much of the contaminant carryover stems from interactions with the sample vessel surface (e.g., pipetting residue, wetting), we aim to eliminate the influence of that factor. Thus, AirJump isolates PMP-bound analyte by "jumping" analyte directly out of a free liquid/air interface. Through careful characterization, we have demonstrated the validity of AirJump isolation through comparison to traditional washing-based isolations. Additionally, we have confirmed the suitability of AirJump in three important independent biological isolations, including protein immunoprecipitation, viral RNA isolation, and cell culture gene expression analysis. Taken together, these data sets demonstrate that AirJump performs efficiently, with high analyte yield, high purity, no cross contamination, rapid time-to-isolation, and excellent reproducibility.
Collapse
|
3
|
C. Semedo M, Karmali A, Martins S, Fonseca L. Generation of high-affinity monoclonal antibodies of IgG class against native β-d-glucans from basidiomycete mushrooms. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Hnilicová J, Jirát Matějčková J, Šiková M, Pospíšil J, Halada P, Pánek J, Krásný L. Ms1, a novel sRNA interacting with the RNA polymerase core in mycobacteria. Nucleic Acids Res 2014; 42:11763-76. [PMID: 25217589 PMCID: PMC4191392 DOI: 10.1093/nar/gku793] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 11/12/2022] Open
Abstract
Small RNAs (sRNAs) are molecules essential for a number of regulatory processes in the bacterial cell. Here we characterize Ms1, a sRNA that is highly expressed in Mycobacterium smegmatis during stationary phase of growth. By glycerol gradient ultracentrifugation, RNA binding assay, and RNA co-immunoprecipitation, we show that Ms1 interacts with the RNA polymerase (RNAP) core that is free of the primary sigma factor (σA) or any other σ factor. This contrasts with the situation in most other species where it is 6S RNA that interacts with RNAP and this interaction requires the presence of σA. The difference in the interaction of the two types of sRNAs (Ms1 or 6S RNA) with RNAP possibly reflects the difference in the composition of the transcriptional machinery between mycobacteria and other species. Unlike Escherichia coli, stationary phase M. smegmatis cells contain relatively few RNAP molecules in complex with σA. Thus, Ms1 represents a novel type of small RNAs interacting with RNAP.
Collapse
Affiliation(s)
- Jarmila Hnilicová
- Department of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Jitka Jirát Matějčková
- Department of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Michaela Šiková
- Department of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Jiří Pospíšil
- Department of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Petr Halada
- Department of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Josef Pánek
- Department of Bioinformatics, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Libor Krásný
- Department of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| |
Collapse
|
5
|
Lim FY, Ames B, Walsh CT, Keller NP. Co-ordination between BrlA regulation and secretion of the oxidoreductase FmqD directs selective accumulation of fumiquinazoline C to conidial tissues in Aspergillus fumigatus. Cell Microbiol 2014; 16:1267-83. [PMID: 24612080 DOI: 10.1111/cmi.12284] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 01/18/2023]
Abstract
Aerial spores, crucial for propagation and dispersal of the Kingdom Fungi, are commonly the initial inoculum of pathogenic fungi. Natural products (secondary metabolites) have been correlated with fungal spore development and enhanced virulence in the human pathogen Aspergillus fumigatus but mechanisms for metabolite deposition in the spore are unknown. Metabolomic profiling of A. fumigatus deletion mutants of fumiquinazoline (Fq) cluster genes reveal that the first two products of the Fq cluster, FqF and FqA, are produced to comparable levels in all fungal tissues but the final enzymatically derived product, FqC, predominantly accumulates in the fungal spore. Loss of the sporulation-specific transcription factor, BrlA, yields a strain unable to produce FqA or FqC. Fluorescence microscopy showed FmqD, the oxidoreductase required to generate FqC, was secreted via the Golgi apparatus to the cell wall in an actin-dependent manner. In contrast, all other members of the Fq pathway including the putative transporter, FmqE - which had no effect on Fq biosynthesis - were internal to the hyphae. The co-ordination of BrlA-mediated tissue specificity with FmqD secretion to the cell wall presents a previously undescribed mechanism to direct localization of specific secondary metabolites to spores of the differentiating fungus.
Collapse
Affiliation(s)
- Fang Yun Lim
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | |
Collapse
|
6
|
Berry SM, Chin EN, Jackson SS, Strotman LN, Goel M, Thompson NE, Alexander CM, Miyamoto S, Burgess RR, Beebe DJ. Weak protein-protein interactions revealed by immiscible filtration assisted by surface tension. Anal Biochem 2013; 447:133-40. [PMID: 24215910 DOI: 10.1016/j.ab.2013.10.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 11/25/2022]
Abstract
Biological mechanisms are often mediated by transient interactions between multiple proteins. The isolation of intact protein complexes is essential to understanding biochemical processes and an important prerequisite for identifying new drug targets and biomarkers. However, low-affinity interactions are often difficult to detect. Here, we use a newly described method called immiscible filtration assisted by surface tension (IFAST) to isolate proteins under defined binding conditions. This method, which gives a near-instantaneous isolation, enables significantly higher recovery of transient complexes compared to current wash-based protocols, which require reequilibration at each of several wash steps, resulting in protein loss. The method moves proteins, or protein complexes, captured on a solid phase through one or more immiscible-phase barriers that efficiently exclude the passage of nonspecific material in a single operation. We use a previously described polyol-responsive monoclonal antibody to investigate the potential of this new method to study protein binding. In addition, difficult-to-isolate complexes involving the biologically and clinically important Wnt signaling pathway were isolated. We anticipate that this simple, rapid method to isolate intact, transient complexes will enable the discoveries of new signaling pathways, biomarkers, and drug targets.
Collapse
Affiliation(s)
- Scott M Berry
- Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, WI 53705, USA.
| | - Emily N Chin
- Department of Oncology, University of Wisconsin at Madison, Madison, WI 53705, USA
| | - Shawn S Jackson
- Department of Oncology, University of Wisconsin at Madison, Madison, WI 53705, USA
| | - Lindsay N Strotman
- Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, WI 53705, USA
| | - Mohit Goel
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Nancy E Thompson
- Department of Oncology, University of Wisconsin at Madison, Madison, WI 53705, USA
| | - Caroline M Alexander
- Department of Oncology, University of Wisconsin at Madison, Madison, WI 53705, USA
| | - Shigeki Miyamoto
- Department of Oncology, University of Wisconsin at Madison, Madison, WI 53705, USA
| | - Richard R Burgess
- Department of Oncology, University of Wisconsin at Madison, Madison, WI 53705, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, WI 53705, USA
| |
Collapse
|
7
|
Perotti N, Etcheverrigaray M, Kratje R, Oggero M. A versatile ionic strength sensitive tag from a human GM-CSF-derived linear epitope. Protein Expr Purif 2013; 91:10-9. [DOI: 10.1016/j.pep.2013.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/06/2013] [Accepted: 06/14/2013] [Indexed: 11/25/2022]
|
8
|
Yang X, Zhang X, Yang SP, Liu WQ. Evaluation of the antibacterial activity of patchouli oil. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2013; 12:307-16. [PMID: 24250637 PMCID: PMC3813264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the present study, the antimicrobial tests of patchouli oil were studied by using molecular docking technology and antimicrobial test in vitro. Five biological macromolecule enzymes, required by the bacteria in the process of biosynthesis were selected as target molecules. Five antibiotics benzylpenicillin, sulfadiazine, trimethoprim, rifampicin and ciprofloxacin, which are generally acknowledged as antibacterial drugs, were selected as reference compounds. The 3 three-dimensional (3D) structures of the 5 reference compounds and 26 compounds from patchouli oil were established by using surflex-dock software (8.1). And the 3D structures of five biological macromolecule enzymes derived from Protein Data Bank (PDB). Molecular docking was carried out between the 31 chemical compounds (ligands) and the 5 enzymes (receptors) by using surflex-dock function. Furthermore, the antibacterial effects of 31 chemical compounds were investigated by the scoring function after molecular docking was completed. By comparing the scoring result of 26 compounds in patchouli oil with 5 compared components, we inferred antibacterial activity in about 26 compounds in patchouli oil. On the other hand, six frequently-used pathogenic bacteria were selected for antimicrobial test in vitro, patchouli oil and its two major compounds: (-)-patchouli alcohol and pogostone, which their contents exceeded 60% in patchouli oil samples, were selected antibacterial agents. Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) were also determined. Molecular docking technology and antimicrobial test in vitro proved that patchouli oil had strong antimicrobial effects. Particularly, pogostone and (-)-patchouli alcohol have potent antimicrobial activity.
Collapse
Affiliation(s)
- Xian Yang
- College of Resources and Environment, Southwest University, Chongqing, 400716, P.R. China.,College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China.
| | - Xue Zhang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, P.R. China.
| | - Shui-Ping Yang
- College of Resources and Environment, Southwest University, Chongqing, 400716, P.R. China.,Corresponding author: E-mail:
| | - Wei-Qi Liu
- College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China.
| |
Collapse
|
9
|
Berry SM, Regehr KJ, Casavant BP, Beebe DJ. Automated operation of immiscible filtration assisted by surface tension (IFAST) arrays for streamlined analyte isolation. ACTA ACUST UNITED AC 2012; 18:206-11. [PMID: 23015519 DOI: 10.1177/2211068212462023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purification of analytes is an important prerequisite for many analytical processes. Although automated infrastructure has dramatically increased throughput for many of these processes, the upstream analyte purification throughput has lagged behind, partially due to the complexity of conventional isolation processes. Here, we demonstrate automated operation of arrays of a new sample preparation technology--immiscible filtration assisted by surface tension (IFAST). IFAST uses surface tension to position an immiscible liquid barrier between a biological sample and downstream buffer. Paramagnetic particles are used to capture analytes of interest and draw them across the immiscible barrier, thus resulting in purification in a single step. Furthermore, the planarity of the IFAST design enables facile and simultaneous operation of multiple IFAST devices. To demonstrate the application of automation to IFAST, we successfully perform an array of 48 IFAST-based assays to detect the presence of a specific antibody. This assay array uses only a commercial automated liquid handler to load the devices and a custom-built magnet actuator to operate the assays. Automated operation of the IFAST devices resulted in more repeatable results relative to manual operation.
Collapse
Affiliation(s)
- Scott M Berry
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | |
Collapse
|
10
|
Reynolds J, Wigneshweraraj S. Molecular insights into the control of transcription initiation at the Staphylococcus aureus agr operon. J Mol Biol 2011; 412:862-81. [PMID: 21741390 DOI: 10.1016/j.jmb.2011.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/10/2011] [Accepted: 06/11/2011] [Indexed: 11/18/2022]
Abstract
The accessory gene regulatory (agr) operon of the opportunistic human pathogen Staphylococcus aureus is a prime pathogenesis factor in this bacterium. The agr operon consists of two transcription units, RNAII and RNAIII, which are transcribed from divergent promoters, P2 and P3, respectively. RNAII encodes a quorum-sensing system, including AgrA, the master transcription activator of the agr operon. RNAIII is the effector RNA molecule that regulates the expression of many virulence genes. Owing to the atypical spacer lengths of P2 and P3, it is widely considered that transcription from P2 and P3 only occurs in a strictly AgrA-dependent manner. Here, using a fully native S. aureus in vitro transcription system, we provide the first molecular and mechanistic characterisation of the regulation of transcription initiation at the agr operon. Surprisingly, the results demonstrate that RNA polymerase (RNAp) can interact with P2 and P3 equally well in the absence of AgrA. However, formation of a transcription-competent open promoter complex (RPo) occurs more readily at P2 than at P3 when AgrA is absent. Reducing the atypical P3 spacer region length to the optimal length of 17 nucleotides significantly improves promoter activity by facilitating the isomerisation of the initial RNAp-P3 complexes to RPo, and the extended -10-like element of P3 is required for optimal promoter activity. AgrA increases the occupancy of both promoters by RNAp and thereby increases the amount of transcription initiated at P2 and P3. However, the AgrA-mediated effect on transcription initiation is more prominent at P3 that at P2. The effect of AgrA at P2 and P3 appears to be restricted to events leading to the formation of RPo. The relevance of AgrA-independent and AgrA-dependent transcription initiation at P2 and P3 is presented in the context of our current understanding of the role of the agr operon in the pathobiology of S. aureus.
Collapse
Affiliation(s)
- Jonathan Reynolds
- Section of Microbiology, Faculty of Medicine and Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|