1
|
Jiao YL, Shen PQ, Wang SF, Chen J, Zhou XH, Ma GZ. Arginase from Priestia megaterium and the Effects of CMCS Conjugation on Its Enzymological Properties. Curr Microbiol 2023; 80:292. [PMID: 37466752 DOI: 10.1007/s00284-023-03406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
Arginase has shown promising potential in treating cancers by arginine deprivation therapy; however, low enzymatic activity and stability of arginase are impeding its development. This study was aimed to improve the enzymological properties of a marine bacterial arginase by carboxymethyl chitosan (CMCS) conjugation. An arginase producing marine bacterium Priestia megaterium strain P6 was isolated and identified. The novel arginase PMA from the strain was heterologously expressed, purified, and then conjugated to CMCS by ionic gelation with calcium chloride as the crosslinking agent. Enzymological properties of both PMA and CMCS-PMA conjugate were determined. The optimum temperature for PMA and CMCS-PMA at pH 7 were 60 °C and 55 °C, respectively. The optimum pH for PMA and CMCS-PMA at 37 °C were pH 10 and 9, respectively. CMCS-PMA showed higher thermostability than PMA over 55-70 °C and higher pH stability over pH 4-11 with the highest pH stability at pH 7. At 37 °C and pH of 7, i.e., around the human blood temperature and pH, CMCS-PMA was higher than the free PMA in enzymatic activity and stability by 24% and 21%, respectively. CMCS conjugation not only changed the optimum temperature, optimum pH, and enzymatic activity of PMA, but also improved its pH stability and temperature stability, and thus made it more favorable for medical application.
Collapse
Affiliation(s)
- Yu Liang Jiao
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China.
| | - Pin Quan Shen
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| | - Shu Fang Wang
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| | - Jing Chen
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| | - Xiang Hong Zhou
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| | - Gui Zhen Ma
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
Li M, Qin J, Xiong K, Jiang B, Zhang T. Review of arginase as a promising biocatalyst: characteristics, preparation, applications and future challenges. Crit Rev Biotechnol 2021; 42:651-667. [PMID: 34612104 DOI: 10.1080/07388551.2021.1947962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As a committed step in the urea cycle, arginase cleaves l-arginine to form l-ornithine and urea. l-Ornithine is essential to: cell proliferation, collagen formation and other physiological functions, while the urea cycle itself converts highly toxic ammonia to urea for excretion. Recently, arginase was exploited as an efficient catalyst for the environmentally friendly synthesis of l-ornithine, an abundant nonprotein amino acid that is widely employed as a food supplement and nutrition product. It was also proposed as an arginine-reducing agent in order to treat arginase deficiency and to be a means of depleting arginine to treat arginine auxotrophic tumors. Targeting arginase inhibitors of the arginase/ornithine pathway offers great promise as a therapy for: cardiovascular, central nervous system diseases and cancers with high arginase expression. In this review, recent advances in the characteristics, structure, catalytic mechanism and preparation of arginase were summarized, with a focus being placed on the biotechnical and medical applications of arginase. In particular, perspectives have been presented on the challenges and opportunities for the environmentally friendly utilization of arginase during l-ornithine production and in therapies.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kai Xiong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Amperometric Biosensors for L-Arginine Determination Based on L-Arginine Oxidase and Peroxidase-Like Nanozymes. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11157024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There are limited data on amperometric biosensors (ABSs) for L-arginine (Arg) determination based on oxidases that produce hydrogen peroxide (H2O2) as a byproduct of enzymatic reaction, and artificial peroxidases (POs) for decomposition of H2O2. The most frequently proposed Arg-sensitive oxidase-based ABSs contain at least two enzymes in the bioselective layer; this complicates the procedure and increases the cost of analysis. Therefore, the construction of a one-enzyme ABS for Arg analysis is a practical problem. In the current work, fabrication, and characterization of three ABS types for the direct measurement of Arg were proposed. L-arginine oxidase (ArgO) isolated from the mushroom Amanita phalloides was co-immobilized with PO-like nanozymes (NZs) on the surface of graphite electrodes. As PO mimetics, chemically synthesized NZs of CeCu (nCeCU) and NiPtPd (nNiPtPd), as well as green-synthesized hexacyanoferrate of copper (gCuHCF), were used. The novel ABSs exhibited high sensitivity and selectivity to Arg, broad linear ranges and good storage stabilities. Two ABSs were tested on real samples of products containing Arg, including the pharmaceutical preparation “Tivortine”, juices, and wine. A high correlation (R = 0.995) was demonstrated between the results of testing “Tivortine” and juice using nCeCU/GE and nNiPtPd/GE. It is worth mentioning that only a slight difference (less than 1%) was observed for “Tivortin” between the experimentally determined content of Arg and its value declared by the producer. The proposed ArgO-NZ-based ABSs may be promising for Arg analysis in different branches of science, medicine, and industry.
Collapse
|
4
|
Ferenc-Mrozek A, Bojarska E, Stepinski J, Darzynkiewicz E, Lukaszewicz M. Effect of the His-Tag Location on Decapping Scavenger Enzymes and Their Hydrolytic Activity toward Cap Analogs. ACS OMEGA 2020; 5:10759-10766. [PMID: 32455195 PMCID: PMC7240826 DOI: 10.1021/acsomega.0c00304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/08/2020] [Indexed: 05/11/2023]
Abstract
Decapping scavenger enzymes (DcpSs) are important players in mRNA degradation machinery and conserved in eukaryotes. Importantly, human DcpS is the recognized target for spinal muscular atrophy (SMA) and acute myeloid leukemia (AML) therapy, and has recently been connected to development of intellectual disability. Most recombinant DcpSs used in biochemical and biophysical studies are prepared as tagged proteins, with polyhistidine (His-tag) at the N-terminus or C-terminus. Our work is the first report on the parallel characterization of three versions of DcpSs (native and N- or C-terminally tagged) of three species (humans, Caenorhabditis elegans , and Ascaris suum). The native forms of all three enzymes were prepared by N-(His)10 tag cleavage. Protein thermal stability, measured by differential scanning fluorimetry (DSF), was unaffected in the case of native and tagged versions of human and A. suum DcpS; however, the melting temperature (T m) of C. elagans DcpS of was significantly influenced by the presence of the additional N- or C-tag. To investigate the impact of the tag positioning on the catalytic properties of DcpS, we tested the hydrolytic activity of native DcpS and their His-tagged counterparts toward cap dinucleotides (m7GpppG and m3 2,2,7GpppG) and m7GDP. The kinetic data indicate that dinucleotide substrates are hydrolyzed with comparable efficiency by native human and A. suum DcpS and their His-tagged forms. In contrast, both His-tagged C. elegans DcpSs exhibited higher activity toward m7GpppG than the native enzyme. m7GDP is resistant to enzymatic cleavage by all three forms of human and nematode DcpS.
Collapse
Affiliation(s)
- Aleksandra Ferenc-Mrozek
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
- Centre
of New Technologies, University of Warsaw, 02-093 Warsaw, Poland
| | - Elzbieta Bojarska
- Centre
of New Technologies, University of Warsaw, 02-093 Warsaw, Poland
| | - Janusz Stepinski
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
- Centre
of New Technologies, University of Warsaw, 02-093 Warsaw, Poland
| | - Maciej Lukaszewicz
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| |
Collapse
|
5
|
Zakalskiy AE, Stasyuk NY, Zakalska OM, Boretsky YR, Gonchar MV. Overexpression and one-step renaturation-purification of the tagged creatinine deiminase of Corynebacterium glutamicum in Escherichia coli cells. Cell Biol Int 2020; 44:1204-1211. [PMID: 32039507 DOI: 10.1002/cbin.11320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/02/2020] [Indexed: 11/09/2022]
Abstract
The codA gene of Corynebacterium glutamicum PCM 1945 coding for a creatinine deiminase (CDI) (EC 3.5.4.21) has been amplified and cloned. The recombinant strain of Escherichia coli that overproduces the (His)6 -tagged inactive CDI of C. glutamicum as inclusion bodies has been constructed. After solubilization of inclusion bodies in the presence of 0.3% N-lauroylsarcosine, the enzyme was renaturated and purified by a single-step procedure using metal-affinity chromatography. The yield of the (His)6 -tagged CDI is ~30 mg from 1 L culture. The purified enzyme is sufficiently stable under the conditions designed and possesses an activity of 10-20 U/mg. The main characteristics of the tagged enzyme remained similar to that of the natural enzyme.
Collapse
Affiliation(s)
- Andriy E Zakalskiy
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005, Lviv, Ukraine.,Ivan Bobersky Lviv State University of Physical Culture, 11 Kostiushko Str., 79000, Lviv, Ukraine
| | - Nataliya Ye Stasyuk
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005, Lviv, Ukraine
| | - Oksana M Zakalska
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005, Lviv, Ukraine
| | - Yuriy R Boretsky
- Ivan Bobersky Lviv State University of Physical Culture, 11 Kostiushko Str., 79000, Lviv, Ukraine
| | - Mykhailo V Gonchar
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005, Lviv, Ukraine.,Ivan Bobersky Lviv State University of Physical Culture, 11 Kostiushko Str., 79000, Lviv, Ukraine.,Drohobych Ivan Franko State Pedagogical University, 24 Ivan Franko Str., 82100, Drohobych, Ukraine
| |
Collapse
|
6
|
Grobben Y, Uitdehaag JC, Willemsen-Seegers N, Tabak WW, de Man J, Buijsman RC, Zaman GJ. Structural insights into human Arginase-1 pH dependence and its inhibition by the small molecule inhibitor CB-1158. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 4:100014. [PMID: 32647818 PMCID: PMC7337048 DOI: 10.1016/j.yjsbx.2019.100014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Arginase-1 is a manganese-dependent metalloenzyme that catalyzes the hydrolysis of L-arginine into L-ornithine and urea. Arginase-1 is abundantly expressed by tumor-infiltrating myeloid cells that promote tumor immunosuppression, which is relieved by inhibition of Arginase-1. We have characterized the potencies of the Arginase-1 reference inhibitors (2S)-2-amino-6-boronohexanoic acid (ABH) and N ω-hydroxy-nor-L-arginine (nor-NOHA), and studied their pH-dependence and binding kinetics. To gain a better understanding of the structural changes underlying the high pH optimum of Arginase-1 and its pH-dependent inhibition, we determined the crystal structure of the human Arginase-1/ABH complex at pH 7.0 and 9.0. These structures revealed that at increased pH, the manganese cluster assumes a more symmetrical coordination structure, which presumably contributes to its increase in catalytic activity. Furthermore, we show that binding of ABH involves the presence of a sodium ion close to the manganese cluster. We also studied the investigational new drug CB-1158 (INCB001158). This inhibitor has a low-nanomolar potency at pH 7.4 and increases the thermal stability of Arginase-1 more than ABH and nor-NOHA. Moreover, CB-1158 displays slow association and dissociation kinetics at both pH 9.5 and 7.4, as indicated by surface plasmon resonance. The potent character of CB-1158 is presumably due to its increased rigidity compared to ABH as well as the formation of an additional hydrogen-bond network as observed by resolution of the Arginase-1/CB-1158 crystal structure.
Collapse
Key Words
- ABH, (2S)-2-amino-6-boronohexanoic acid
- Biochemical inhibition
- Cancer immunotherapy
- DMSO, dimethyl sulfoxide
- IC50, half-maximal inhibitory concentration
- ITC, isothermal titration calorimetry
- KD, binding affinity
- KM, Michaelis constant
- Ki, inhibition constant
- MQ, MilliQ water
- PDB, Protein Data Bank
- RMSD, root-mean-square deviation
- SD, standard deviation
- SPR, surface plasmon resonance
- Surface plasmon resonance
- Thermal stability
- Tm, melting temperature
- X-ray crystallography
- ka, association rate constant
- kcat, catalytic rate constant
- kd, dissociation rate constant
- nor-NOHA, Nω-hydroxy-nor-L-arginine
- ΔTm, melting temperature shift
- τ, target residence time
Collapse
|
7
|
Ma L, Ma Q, Cai R, Zong Z, Du L, Guo G, Zhang Y, Xiao D. Effect of β-mannanase domain from Trichoderma reesei on its biochemical characters and synergistic hydrolysis of sugarcane bagasse. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2540-2547. [PMID: 29028116 DOI: 10.1002/jsfa.8741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND β-mannanase is a key enzyme for hydrolyzing mannan, a major constituent of hemicellulose, which is the second most abundant polysaccharide in nature. Different structural domains greatly affect its biochemical characters and catalytic efficiency. However, the effects of linker and carbohydrate-binding module (CBM) on β-mannanase from Trichoderma reesei (Man1) have not yet been fully described. The present study aimed to determine the influence of different domains on the expression efficiency, biochemical characteristics and hemicellulosic deconstruction of Man1. RESULTS The expression efficiency was improved after truncating CBM. Activities of Man1 and Man1ΔCBM (CBM) in the culture supernatant after 168 h of induction were 34.5 and 42.9 IU mL-1 , although a value of only 0.36 IU mL-1 was detected for Man1ΔLCBM (lacking CBM and linker). Man1 showed higher thermostability than Man1ΔCBM at low temperature, whereas Man1ΔCBM had a higher specificity for galactomannan (Km = 2.5 mg mL-1 ) than Man1 (Km = 4.0 mg mL-1 ). Both Man1 and Man1ΔCBM could synergistically improve the hydrolysis of cellulose, galactomannan and pretreated sugarcane bagasse, with a 10-30% improvement of the reducing sugar yield. CONCLUSION Linker and CBM domains were vital for mannanase activity and expression efficiency. CBM affected the thermostability and adsorption ability of Man1. The results obtained in the present study should help guide the rational design and directional modification of Man with respect to improving its catalytic efficiency. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lijuan Ma
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qing Ma
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Rui Cai
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhiyou Zong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Liping Du
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Gaojie Guo
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yingying Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Dongguang Xiao
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
8
|
Stasyuk N, Gayda G, Zakalskiy A, Zakalska O, Errachid A, Gonchar M. Highly selective apo-arginase based method for sensitive enzymatic assay of manganese (II) and cobalt (II) ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:349-356. [PMID: 29268235 DOI: 10.1016/j.saa.2017.12.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
A novel enzymatic method of manganese (II) and cobalt (II) ions assay, based on using apo-enzyme of Mn2+-dependent recombinant arginase I (arginase) and 2,3-butanedione monoxime (DMO) as a chemical reagent is proposed. The principle of the method is the evaluation of the activity of L-arginine-hydrolyzing of arginase holoenzyme after the specific binding of Mn2+ or Co2+ with apo-arginase. Urea, which is the product of enzymatic hydrolysis of L-arginine (Arg), reacts with DMO and the resulted compound is detected by both fluorometry and visual spectrophotometry. Thus, the content of metal ions in the tested samples can be determined by measuring the level of urea generated after enzymatic hydrolysis of Arg by reconstructed arginase holoenzyme in the presence of tested metal ions. The linearity range of the fluorometric apo-arginase-DMO method in the case of Mn2+ assay is from 4pM to 1.10nM with a limit of detection of 1pM Mn2+, whereas the linearity range of the present method in the case of Co2+ assay is from 8pM to 45nM with a limit of detection of 2.5pM Co2+. The proposed method being highly sensitive, selective, valid and low-cost, may be useful to monitor Mn2+ and Co2+ content in clinical laboratories, food industry and environmental control service.
Collapse
Affiliation(s)
- Nataliya Stasyuk
- Department of Analytical Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Str. 14/16, Lviv 79005, Ukraine
| | - Galina Gayda
- Department of Analytical Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Str. 14/16, Lviv 79005, Ukraine
| | - Andriy Zakalskiy
- Department of Analytical Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Str. 14/16, Lviv 79005, Ukraine
| | - Oksana Zakalska
- Department of Analytical Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Str. 14/16, Lviv 79005, Ukraine
| | - Abdelhamid Errachid
- Université de Lyon, Analytical Sciences Institute, UMR CNRS 5180, CNRS, Université de Lyon 1, ENS Lyon, 5 rue de la Doua, F-69100 Villeurbanne Cedex, France
| | - Mykhailo Gonchar
- Department of Analytical Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Str. 14/16, Lviv 79005, Ukraine.
| |
Collapse
|
9
|
Recombinant Forms of Arginase and Arginine Deiminase as Catalytic Components of «Argitest» Enzymatic Kit for L-arginine Analysis. SCIENCE AND INNOVATION 2017. [DOI: 10.15407/scine13.04.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
10
|
Kurlishchuk Y, Vynnytska-Myronovska B, Grosse-Gehling P, Bobak Y, Manig F, Chen O, Merker SR, Henle T, Löck S, Stange DE, Stasyk O, Kunz LA. Co-application of canavanine and irradiation uncouples anticancer potential of arginine deprivation from citrulline availability. Oncotarget 2016; 7:73292-73308. [PMID: 27689335 PMCID: PMC5341980 DOI: 10.18632/oncotarget.12320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/19/2016] [Indexed: 12/17/2022] Open
Abstract
The moderate anticancer effect of arginine deprivation in clinical trials has been linked to an induced argininosuccinate synthetase (ASS1) expression in initially ASS1-negative tumors, and ASS1-positive cancers are anticipated as non-responders. Our previous studies indicated that arginine deprivation and low doses of the natural arginine analog canavanine can enhance radioresponse. However, the efficacy of the proposed combination in the presence of extracellular citrulline, the substrate for arginine synthesis by ASS1, remains to be elucidated, in particular for malignant cells with positive and/or inducible ASS1 as in colorectal cancer (CRC). Here, the physiological citrulline concentration of 0.05 mM was insufficient to overcome cell cycle arrest and radiosensitization triggered by arginine deficiency. Hyperphysiological citrulline (0.4 mM) did not entirely compensate for the absence of arginine and significantly decelerated cell cycling. Similar levels of canavanine-induced apoptosis were detected in the absence of arginine regardless of citrulline supplementation both in 2-D and advanced 3-D assays, while normal colon epithelial cells in organoid/colonosphere culture were unaffected. Notably, canavanine tremendously enhanced radiosensitivity of arginine-starved 3-D CRC spheroids even in the presence of hyperphysiological citrulline. We conclude that the novel combinatorial targeting strategy of metabolic-chemo-radiotherapy has great potential for the treatment of malignancies with inducible ASS1 expression.
Collapse
Affiliation(s)
- Yuliya Kurlishchuk
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Bozhena Vynnytska-Myronovska
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
- Current address: Clinic of Urology and Pediatric Urology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Philipp Grosse-Gehling
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
| | - Yaroslav Bobak
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Friederike Manig
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
- Institute of Food Chemistry, TU Dresden, Dresden, Germany
| | - Oleg Chen
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Sebastian R. Merker
- Department of Gastrointestinal, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Thomas Henle
- Institute of Food Chemistry, TU Dresden, Dresden, Germany
| | - Steffen Löck
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
| | - Daniel E. Stange
- Department of Gastrointestinal, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Oleh Stasyk
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Leoni A. Kunz
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden, Germany
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| |
Collapse
|
11
|
Stasyuk NY, Gayda GZ, Fayura LR, Boretskyy YR, Gonchar MV, Sibirny AA. Novel arginine deiminase-based method to assay L-arginine in beverages. Food Chem 2016; 201:320-6. [PMID: 26868583 DOI: 10.1016/j.foodchem.2016.01.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 12/01/2022]
Abstract
A highly selective and sensitive enzymatic method for the quantitative determination of L-arginine (Arg) has been developed. The method is based on the use of recombinant bacterial arginine deiminase (ADI) isolated from the cells of a recombinant strain Escherichia coli and o-phthalaldehyde (OPA) as a chemical reagent. Ammonia, the product of the enzymatic digestion of Arg by ADI, reacts with OPA and forms in the presence of sulfite a product, which can be detected by spectrophotometry (S) and fluorometry (F). The linear concentration range for Arg assay in the final reaction mixture varies for ADI-OPA-F variant of the method from 0.35 μM to 24 μM with the detection limit of 0.25 μM. For ADI-OPA-S variant of the assay, the linearity varies from 0.7 μM to 50 μM with the detection limit of 0.55 μM. The new method was tested on real samples of wines and juices. A high correlation (R=0.978) was shown for the results obtained with the proposed and the reference enzymatic method.
Collapse
Affiliation(s)
- N Ye Stasyuk
- Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov Str. 14/16, 79005 Lviv, Ukraine
| | - G Z Gayda
- Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov Str. 14/16, 79005 Lviv, Ukraine.
| | - L R Fayura
- Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov Str. 14/16, 79005 Lviv, Ukraine
| | - Y R Boretskyy
- Department of Biochemistry and Hygiene, Lviv State University of Physical Culture, Kosciuszko Street 11, 79000 Lviv, Ukraine; Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov Str. 14/16, 79005 Lviv, Ukraine
| | - M V Gonchar
- Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov Str. 14/16, 79005 Lviv, Ukraine; Institute of Applied Biotechnology and Basic Sciences, Rzeszow University, Sokolowska Str. 26, 36-100 Kolbuszowa, Poland
| | - A A Sibirny
- Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov Str. 14/16, 79005 Lviv, Ukraine; Department of Biotechnology and Microbiology, Rzeszow University, Cwiklinskiej 2, 35-601 Rzeszow, Poland
| |
Collapse
|
12
|
Wang M, Xu M, Rao Z, Yang T, Zhang X. Construction of a highly efficient Bacillus subtilis 168 whole-cell biocatalyst and its application in the production of l-ornithine. ACTA ACUST UNITED AC 2015; 42:1427-37. [DOI: 10.1007/s10295-015-1672-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
Abstract
l-Ornithine, a non-protein amino acid, is usually extracted from hydrolyzed protein as well as produced by microbial fermentation. Here, we focus on a highly efficient whole-cell biocatalyst for the production of l-ornithine. The gene argI, encoding arginase, which catalyzes the hydrolysis of l-arginine to l-ornithine and urea, was cloned from Bacillus amyloliquefaciens B10-127 and expressed in GRAS strain Bacillus subtilis 168. The recombinant strain exhibited an arginase activity of 21.9 U/mg, which is 26.7 times that of wild B. subtilis 168. The optimal pH and temperature of the purified recombinant arginase were 10.0 and 40 °C, respectively. In addition, the recombinant arginase exhibited a strong Mn2+ preference. When using whole-cell biocatalyst-based bioconversion, a hyper l-ornithine production of 356.9 g/L was achieved with a fed-batch strategy in a 5-L reactor within 12 h. This whole-cell bioconversion study demonstrates an environmentally friendly strategy for l-ornithine production in industry.
Collapse
Affiliation(s)
- Meizhou Wang
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi Jiangsu People’s Republic of China
| | - Meijuan Xu
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi Jiangsu People’s Republic of China
| | - Zhiming Rao
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi Jiangsu People’s Republic of China
| | - Taowei Yang
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi Jiangsu People’s Republic of China
| | - Xian Zhang
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi Jiangsu People’s Republic of China
| |
Collapse
|
13
|
Zhang X, Liu J, Yu X, Wang F, Yi L, Li Z, Liu Y, Ma L. High-level expression of human arginase I in Pichia pastoris and its immobilization on chitosan to produce L-ornithine. BMC Biotechnol 2015; 15:66. [PMID: 26227111 PMCID: PMC4521451 DOI: 10.1186/s12896-015-0184-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND L-ornithine (L-Orn), is an intermediate metabolite in the urea cycle that plays a significant role in humans. L-Orn can be obtained from the catalysis of L-arginine (L-Arg) by arginase. The Pichia pastoris expression system offers the possibility of generating a large amount of recombinant protein. The immobilized enzyme technology can overcome the difficulties in recovery, recycling and long-term stability that result from the use of free enzyme. METHODS The recombinant human arginase I (ARG I) was obtained using an optimized method with the Pichia pastoris GS115 as the host strain. Chitosan paticles were cross-linked with glutaraldehyde and rinsed exhaustively. Then the expressed ARG I was immobilized on the crosslinked chitosan particles, and the enzymatic properties of both the free and immobilized enzymes were evaluated. At last, the immobilized ARG I was employed to catalyze L-Arg to L-Orn. RESULTS The results indicated that these two states both exhibited optimal activity under the same condition of pH10 at 40 °C. However, the immobilized ARG I exhibited the remarkable thermal and long-term stability as well as broad adaptability to pH, suggesting its potential for wide application in future industry. After a careful analysis of its catalytic conditions, immobilized ARG I was employed to catalyze the conversion of L-Arg to L-Orn under optimal condition of 1 % glutaraldehyde, 1 mM Mn(2+), 40 °C, pH10 and an L-arginine (L-Arg) concentration of 200 g/L, achieving a highly converted content of 149.g/L L-Orn. CONCLUSIONS In this work, ARG Ι was abundantly expressed, and an efficient, facile and repeatable method was developed to synthesize high-quality L-Orn. This method not only solved the problem of obtaining a large amount of arginase, but also provided a promising alternative for the future industrial production of L-Orn.
Collapse
Affiliation(s)
- Xue Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China.
| | - Jin Liu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China.
| | - Xianhong Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China.
| | - Fei Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China.
| | - Li Yi
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China.
| | - Zhezhe Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China.
| | - Yunyun Liu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China.
| | - Lixin Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China.
| |
Collapse
|
14
|
Park WJ, You SH, Choi HA, Chu YJ, Kim GJ. Over-expression of recombinant proteins with N-terminal His-tag via subcellular uneven distribution in Escherichia coli. Acta Biochim Biophys Sin (Shanghai) 2015; 47:488-95. [PMID: 25994007 DOI: 10.1093/abbs/gmv036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/18/2015] [Indexed: 11/14/2022] Open
Abstract
Specific tags with defined amino acid residues are widely used to purify or probe target proteins. Interestingly, the tagging system occasionally results in an increase of the recombinant protein expression in vivo. Here, we systematically examined this phenomenon using a poly-histidine (His)-tag fused to N- or C-terminal region of green, red, and blue fluorescent proteins by quantification and uneven distribution in cytoplasm of Escherichia coli. This effect was further supported by the distinct over-expression of several unrelated proteins, such as esterase, neopullulanase, and chloramphenicol acetyltransferase, tagging with the same tag. These results suggest that a poly-His-tag placed at N-terminal region can induce over-expression of recombinant protein via subcellular uneven distribution in vivo.
Collapse
Affiliation(s)
- Won-Ji Park
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Sung-Hwan You
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hyoung-An Choi
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yeon-Jin Chu
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
15
|
Huang K, Mu W, Zhang T, Jiang B, Miao M. Cloning, expression, and characterization of a thermostablel-arginase fromGeobacillus thermodenitrificansNG80-2 forl-ornithine production. Biotechnol Appl Biochem 2015; 63:391-7. [DOI: 10.1002/bab.1385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/12/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Huang
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
| |
Collapse
|
16
|
Stasyk OV, Boretsky YR, Gonchar MV, Sibirny AA. Recombinant arginine‐degrading enzymes in metabolic anticancer therapy and bioanalytics. Cell Biol Int 2014; 39:246-52. [DOI: 10.1002/cbin.10383] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/17/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Oleh V. Stasyk
- Institute of Cell BiologyNational Academy of Sciences of UkraineDrahomanov St. 14/16Lviv79005Ukraine
| | - Yuriy R. Boretsky
- Institute of Cell BiologyNational Academy of Sciences of UkraineDrahomanov St. 14/16Lviv79005Ukraine
- Department of Biochemistry and HygieneLviv State University of Physical CultureKosciuszko St. 11Lviv79000Ukraine
| | - Mykhailo V. Gonchar
- Institute of Cell BiologyNational Academy of Sciences of UkraineDrahomanov St. 14/16Lviv79005Ukraine
- Institute of Applied Biotechnology and Basic SciencesRzeszow UniversitySokolowska Str. 26Kolbuszowa36‐100Poland
| | - Andriy A. Sibirny
- Institute of Cell BiologyNational Academy of Sciences of UkraineDrahomanov St. 14/16Lviv79005Ukraine
- Department of Biotechnology and MicrobiologyRzeszow UniversityCwiklinskiej 2Rzeszow35‐601Poland
| |
Collapse
|
17
|
|